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LETTERS

Neuroradiologists, Be Mindful of the Neuroinvasive
Potential of COVID-19

The COVID-19 pandemic continues to have a far-reaching
impact on nearly all aspects of society. First identified in

December 2019 in Wuhan, the capital city of Hubei, China,
COVID-19 is disseminated primarily via respiratory droplets and
has the potential to cause severe respiratory distress in vulnerable
patients, resulting in pneumonia, acute respiratory distress syn-
drome (ARDS), multiorgan dysfunction, and death.1 Although
recent literature on the virus has centered on the respiratory
manifestations of the disease, a multitude of studies during the
past few decades have shown that several respiratory viruses,
including coronaviruses (CoVs), have neuroinvasive potential,
demonstrating the ability to spread from the respiratory tract to
the CNS to trigger or exacerbate neurologic pathology as a result
of direct viral replication in the CNS or overactive host immune
response.2,3 This information is of interest to neuroradiologists,
given that as the pandemic rages on, they may encounter sequelae
of disease in the brain and spinal cord as these patients are
imaged for neurologic symptoms.

First isolated in the mid-1960s, 6 types of CoVs, large-envel-
oped nonsegment positive-sense RNA viruses, are known to infect
humans: HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1,
Severe Acute Respiratory Syndrome-CoV (SARS), Middle East
Respiratory Syndrome-CoV (MERS), and now, SARS-CoV-2
(COVID-19), a close relative of SARS. Most of these CoVs result
in mild disease, with the exception of SARS and MERS, and most
recently COVID-19, which may be lethal. Moreover, HCoV-229E,
HCoV-OC43, SARS, and MERS have demonstrated neurotropism,
or the ability to infect resident cells of the CNS (neuronal and
glial).4 MERS and SARS have demonstrated the ability to invade
human neuronal cells in vitro. Moreover, SARS, among numerous
other CoV strains, has been found in the CSF of patients, as well as
in neurons in situ per postmortem studies.5-7 It is known that both
SARS and COVID-19 leverage the angiotensin-converting enzyme
2 (ACE-2) receptor for entry into host cells, though there is debate
as to whether there are sufficient concentrations of this receptor in
the CNS to explain their neurotropic nature.8,9

There are 2 main candidate mechanisms by which respiratory
viruses may infect the CNS: hematogenous or neuronal retrograde.

In the hematogenous route, the virus may pass through the BBB
by transcytosis across brain microvascular endothelial cells and
pericytes by endocytic vesicles or, rather, directly infect endothelial
or epithelial cells to pass across the BBB or blood-CSF barrier
in the choroid plexus of the ventricular system, respectively.
Alternatively, the virus could be transported intracellularly in a
concealed manner by leukocytes. There is mixed evidence regard-
ing the viability of the hematogenous route in the neuroinvasive-
ness of CoVs. On the one hand, it has been reported that SARS has
the ability to directly infect the BBB epithelium, representing 1 ave-
nue of hematogenous spread.3 Additionally, several strains of
CoVs, including SARS, have shown the ability to infect multiple
types of leukocytes both in vitro and in vivo.5,10,11 This feature rep-
resents a potential second avenue of hematogenous spread, akin to
the “Trojan Horse” model exhibited by HIV, by which the virus is
covertly introduced to the CNS by a host’s infected immune cells.
However, evidence against the hematogenous route revolves
around human postmortem in situ studies demonstrating the pres-
ence of SARS only in neurons and not other cell types of the brain,
as was recently argued by Li et al.9

In the neuronal retrograde route of CNS entry, the virus invades
neurons in the periphery, such as olfactory receptor neurons, those
of the trigeminal nerve that reside in the nasal cavity, or sensory
fibers of the vagus nerve in the brain stem, and leverages active
transport mechanisms to gain access to the CNS.12 The ability of
SARS, MERS, and other CoVs to leverage this mechanism has been
demonstrated in mouse models, via intranasal inoculation and sub-
sequent infection of the olfactory bulb, as in Fig 1.13-16 Once in the
CNS, some strains of CoVs have been shown to be able to propa-
gate between neurons, possibly through synaptic transmission.3

Several CoVs have demonstrated the potential for neuroviru-
lence in both children and adults.2,17 While no direct causal link
has been established, multiple strains of CoVs have been associated
with chronic CNS diseases, such as multiple sclerosis and neurode-
generation,2,3 in addition to acute processes, such as encephalitis,6

acute flaccid paralysis,18 Guillan-Barre syndrome,19 acute dissemi-
nated encephalomyelitis (ADEM),20 focal seizures,21 and other
neurologic syndromes, including hemorrhage and stroke.22-24

Clinical studies have begun to elucidate physiologic changes associ-
ated with acute CoV CNS infection, such as unique cytokine pro-
files;7,25 moreover, malfunction of the cardiorespiratory center in
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the brain stem has been hypothesized to play a potential role in re-
spiratory distress in both humans9 and mouse models.15

Although it is still fairly early in the COVID-19 pandemic,
there are already reports of neurologic symptoms. In a study pub-
lished in February this year in hospitalized patients with COVID-
19 in Wuhan, China, the authors found that around one-third of
patients had neurologic manifestations, most commonly dizzi-
ness and headache, though peripheral nervous system symptoms,
primarily hypogeusia and hyposmia, were also seen.26 A small
number of patients experienced acute cerebrovascular injury (is-
chemic stroke, cerebral hemorrhage), loss of consciousness, and
muscle injury. It is interesting that some patients developed
hypogeusia or hyposmia, perhaps in support of the retrograde
neuronal route of CNS invasion in COVID-19 via the olfactory
bulb or other sensory branches of cranial nerves.

Several older reports have incorporated imaging in the neuro-
logic work-up of patients with CoV infections. In a 15-year-old pre-
viously healthy boy, CoV-OC43 was detected in the CSF and
nasopharyngeal secretions by polymerase chain reaction, while MR
imaging of the brain and spinal cord demonstrated findings charac-
teristic of ADEM, with T2-weighted hyperintensities in white mat-
ter tracts of the brain, some of which enhanced after intravenous
gadolinium administration, as well as some in the spinal cord,
which were nonenhancing, with follow-up imaging demonstrating
improvement in these lesions.20 In a study of hospitalized children
with CoV and acute encephalitis-like syndrome, half of patients
who underwent MRI or CT showed abnormalities, such as in the

temporal lobes in patients with seizures,
in the periventricular regions in patients
with headaches, and in the basal ganglia
and thalami in patients with fever and/
or vomiting.7 Moreover, in a study that
incorporated imaging in 3 patients with
MERS, brain MRI revealed widespread,
bilateral T2-weighted hyperintense
lesions in white matter and subcortical
areas of the frontal, temporal, and pari-
etal lobes; the basal ganglia; and corpus
callosum, none of which showed gado-
linium enhancement, which investiga-
tors attributed to ADEM, anoxic injury,
and encephalitis, respectively.22,24 Most
interestingly, meningeal enhancement
has not been shown in brain MRI of
patients with CoV infection, arguing
against a hematogenous method of
entry into the CNS.22,24

Neuroradiologists will undoubt-
edly encounter increasing numbers of
patients with COVID-19 in the course
of daily practice. Therefore, they
should be cognizant of the potential
for CNS injury, either directly as the
virus replicates in cells, or indirectly as
host immune responses wage an all-
out war. Furthermore, neuroradiolo-
gists should be wary of secondary

impacts of COVID-19 on the CNS in severely ill patients, such as
anoxic brain injury as a result of ARDS, cerebral hemorrhage as a
result of thrombocytopenia, and disseminated intravascular coag-
ulation, and air and fat emboli in patients with sepsis. As
COVID-19 continues to spread across the globe, neuroradiolo-
gists should entertain this virus as a possible etiologic agent in
patients with progressive or worsening CNS symptoms.

The possible imaging manifestations of CoV disease in the
brain and spinal cord are varied, as shown by the aforementioned
studies, and include injuries to both gray and white matter. In
reading rooms, neuroimaging should be tailored to the clinical
question while evaluating for complications such as ADEM, en-
cephalitis, and Guillain-Barre syndrome, as reported in prior case
series, whenever the clinical scenario can support such etiologies.
Just as important, imaging should be reasonable and not exces-
sive, keeping in mind that hospitalized patients with COVID-19
tend to be quite ill, so as to provide optimal patient care, preserve
hospital resources, and minimize exposure of radiology staff,
such as technologists and nurses, to the virus. With time and
large-scale and rigorous investigations, hopefully the full spec-
trum of neuropathologies and exact mechanisms of injury in
patients with COVID-19 will be uncovered.
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