Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBRAIN

Dynamic Perfusion CT: Optimizing the Temporal Resolution and Contrast Volume for Calculation of Perfusion CT Parameters in Stroke Patients

Max Wintermark, Wade S. Smith, Nerissa U. Ko, Marcel Quist, Pierre Schnyder and William P. Dillon
American Journal of Neuroradiology May 2004, 25 (5) 720-729;
Max Wintermark
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wade S. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nerissa U. Ko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcel Quist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre Schnyder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William P. Dillon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

Abstract

BACKGROUND AND PURPOSE: Numerous parameters are involved in dynamic perfusion CT (PCT). We assessed the influence of the temporal sampling rate and the volume of contrast material.

METHODS: Sixty patients with ischemic hemispheric stroke lasting ≥12 hours underwent PCT. Groups of 15 patients each received 30, 40, 50, or 60 mL of contrast agent. Regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), mean transit time (MTT), and time-to-peak (TTP) maps were calculated for temporal sampling intervals of 0.5, 1, 2, 3, 4, 5, and 6 seconds. Results were statistically compared. Signal-to-noise ratios (SNRs), duration of arterial entrance to venous exit, and radiation dose were also assessed.

RESULTS: Increasing temporal sampling intervals lead to significant overestimation of rCBV, rCBF, and TTP and significant underestimation of MTT compared with values for an interval of 1 second. Maximal allowable intervals to avoid these effects were 2, 3, 3, and 4 seconds for 30, 40, 50, and 60-mL boluses, respectively. Venous exit of contrast material occurred in 97.5% of patients after 36, 42, 42, and 48 seconds, respectively, for the four volumes. SNRs did not differ with volume. The effective radiation dose varied between 0.852 and 1.867 mSv, depending on the protocol. The cine mode with two 40-mL boluses and the toggling-table technique with one 60-mL bolus had the lowest doses.

CONCLUSION: Temporal sampling intervals greater than 1 second can be used without altering the quantitative accuracy of PCT. Increased sampling intervals reduce the radiation dose and may allow for increased spatial coverage.

  • Copyright © American Society of Neuroradiology
View Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 25 (5)
American Journal of Neuroradiology
Vol. 25, Issue 5
1 May 2004
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dynamic Perfusion CT: Optimizing the Temporal Resolution and Contrast Volume for Calculation of Perfusion CT Parameters in Stroke Patients
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dynamic Perfusion CT: Optimizing the Temporal Resolution and Contrast Volume for Calculation of Perfusion CT Parameters in Stroke Patients
Max Wintermark, Wade S. Smith, Nerissa U. Ko, Marcel Quist, Pierre Schnyder, William P. Dillon
American Journal of Neuroradiology May 2004, 25 (5) 720-729;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Dynamic Perfusion CT: Optimizing the Temporal Resolution and Contrast Volume for Calculation of Perfusion CT Parameters in Stroke Patients
Max Wintermark, Wade S. Smith, Nerissa U. Ko, Marcel Quist, Pierre Schnyder, William P. Dillon
American Journal of Neuroradiology May 2004, 25 (5) 720-729;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Focal Hypoperfusion in Acute Ischemic Stroke Perfusion CT: Clinical and Radiologic Predictors and Accuracy for Infarct Prediction
  • Optimal Computed Tomographic Perfusion Scan Duration for Assessment of Acute Stroke Lesion Volumes
  • Perfusion Computed Tomography for the Evaluation of Acute Ischemic Stroke: Strengths and Pitfalls
  • Exposing Hidden Truncation-Related Errors in Acute Stroke Perfusion Imaging
  • Whole-Brain Adaptive 70-kVp Perfusion Imaging with Variable and Extended Sampling Improves Quality and Consistency While Reducing Dose
  • C-Arm CT Measurement of Cerebral Blood Volume and Cerebral Blood Flow Using a Novel High-Speed Acquisition and a Single Intravenous Contrast Injection
  • Can Iterative Reconstruction Improve Imaging Quality for Lower Radiation CT Perfusion? Initial Experience
  • Effects of Increased Image Noise on Image Quality and Quantitative Interpretation in Brain CT Perfusion
  • CT Brain Perfusion Protocol to Eliminate the Need for Selecting a Venous Output Function
  • CT Perfusion Spot Sign Improves Sensitivity for Prediction of Outcome Compared with CTA and Postcontrast CT
  • Effect of Stenting on Cerebral CT Perfusion in Symptomatic and Asymptomatic Patients with Carotid Artery Stenosis
  • CT Perfusion in Acute Ischemic Stroke: A Comparison of 2-Second and 1-Second Temporal Resolution
  • Radiation dose evaluation in multidetector-row CT imaging for acute stroke with an anthropomorphic phantom
  • Recommendations for Imaging of Acute Ischemic Stroke: A Scientific Statement From the American Heart Association
  • Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 2: Technical Implementations
  • Multiphase CT Angiography versus Single-Phase CT Angiography: Comparison of Image Quality and Radiation Dose
  • Alberta Stroke Program Early CT Scoring of CT Perfusion in Early Stroke Visualization and Assessment
  • MR Regional Perfusion Imaging: Visualizing Functional Collateral Circulation
  • Radiation exposure of patients in comprehensive computed tomography of the head in acute stroke.
  • Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging
  • Comparative Overview of Brain Perfusion Imaging Techniques
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire