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REVIEW ARTICLE

The Acetazolamide Challenge: Techniques and
Applications in the Evaluation of Chronic Cerebral
Ischemia

A.S. Vagal
J.L. Leach

M. Fernandez-Ulloa
M. Zuccarello

SUMMARY: The acetazolamide (ACZ) challenge test is a useful clinical tool and a reliable predictor of
critically reduced perfusion. In patients with chronic steno-occlusive disease, the ability to maintain
normal cerebral blood flow by reducing vascular resistance secondary to autoregulatory vasodilation is
compromised. Identification of the presence and degree of autoregulatory vasodilation (reflecting the
cerebrovascular reserve) is a significant prognostic factor in patients with chronic cerebrovascular
disease. The pharmacologic challenge of a vasodilatory stimulus such as ACZ can also be used to
optimize the treatment strategies for these patients. The pathophysiology, methods, and clinical
applications of the ACZ challenge test are discussed in this article.

Viability of the cerebral parenchyma is dependent on the
ability of the brain vasculature to provide adequate levels

of cerebral blood flow (CBF). In patients with chronic steno-
occlusive disease, the ability to maintain normal CBF by re-
ducing vascular resistance is compromised. Identification of
the degree of autoregulatory vasodilation reflects cerebrovas-
cular reserve (CVR), which is a significant prognostic factor in
chronic cerebrovascular disease.1-5 Flow reserve can be as-
sessed with the use of paired blood flow measurements, with
the initial measurement obtained at baseline and the second,
after a vasodilatory stimulus, such as acetazolamide (ACZ).6

Pathophysiology of Chronic Cerebrovascular Disease
Chronic cerebral hypoperfusion is usually the result of occlu-
sion or stenosis of large arteries in the neck or the circle of
Willis. Clinical symptoms and manifestations of brain isch-
emia in patients with chronic cerebrovascular disease (CVD)
develop as a consequence of 2 main mechanisms: embolic
events from atherosclerotic plaques resulting in local compro-
mise of blood flow and systemic hemodynamic alterations that
further reduce an already compromised cerebral perfusion
state.7

The hemodynamic changes due to a decline in cerebral
perfusion pressure have been studied by many investiga-
tors.6,8-11 Chronic CBF restriction causes a progressive de-
crease in cerebral perfusion pressure (CPP). Initially, de-
creases of CPP cause varying degrees of autoregulatory
vasodilation of small distal arterioles.12 Powers10 and Powers
et al11 proposed a 2-stage classification of hemodynamic im-
pairment in patients with CVD. In stage I (autoregulatory va-
sodilation), autoregulation reduces cerebral vascular resis-
tance. CBF and oxygen extraction fraction (OEF) are not

significantly changed. Increases of cerebral blood volume
(CBV) and mean transit time (MTT) are 2 parameters that
reflect this initial phase of compensatory autoregulatory vaso-
dilation. Further decreases of CPP beyond cerebral autoregu-
latory vasodilation capacity eventually result in stage II (auto-
regulatory failure), characterized by decreases of CBF and
increases of OEF. When the CBF decreases, neurons increase
the fraction of oxygen extracted from the blood to maintain
normal neurologic function.13 This phenomenon of reduced
CBF and increased OEF has been termed “misery
perfusion.”11,14

Derdeyn et al9 have more recently shown that autoregula-
tory vasodilation and increased oxygen extraction occur si-
multaneously. Slight reductions in CBF through the autoreg-
ulatory range lead to slight but measurable increases in OEF.15

When autoregulatory capacity is finally exceeded, CBF de-
creases more rapidly and OEF increases dramatically.16 The
CBV is more variable in the autoregulatory range.9 The cere-
bral rate for oxygen metabolism (CMRO2) remains un-
changed over the initial and late decreased levels of CPP.9,17 As
the CPP falls further, oxygen extraction reaches a maximum.
Further decreases in CPP will result in an inability to maintain
adequate blood flow and lead to varying degrees of brain
ischemia.

Evaluation of these compensatory mechanisms is impor-
tant in patients with CVD to determine the risk of future isch-
emic events and in the selection and planning of therapeutic
interventions. Generally speaking, 3 approaches can be used in
the evaluation of patients with CVD6: One requires the mea-
surement of the CBV/CBF ratio, mathematically equivalent to
the MTT. The second approach (and the focus of this article)
attempts to determine the degree of cerebral flow reserve. This
is accomplished by comparing CBF under baseline conditions
and after a vasodilatory stimulus such as ACZ. Finally, direct
measurements of OEF to identify patients with increased ox-
ygen extraction (currently performed by using positron-emis-
sion tomography [PET]) can be performed.

Cerebrovascular Reactivity
Alterations in blood flow secondary to a vasodilatory stimulus
(such as ACZ) can be used to estimate CVR, which is calcu-
lated as the percentage increase in CBF after ACZ relative to
baseline1,18:
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CVR �
CBF �Post-ACZ� � CBF �baseline�

CBF (baseline)
� 100.

Vascular territories harboring vaso-occlusive disease undergo
compensatory vasodilation up to a maximal level. This pre-
cludes further dilation of the arterioles in the affected region in
response to ACZ; therefore, the expected normal increases of
CBF following ACZ challenge are blunted compared with nor-
mal brain parenchyma.

On the basis of studies using stable xenon-enhanced CT
(Xe-CT) and ACZ challenge, Rogg et al19 classified 3 types of
patient responses to ACZ:

Type I patients have normal baseline CBF that increases
after ACZ challenge.

Type II patients have areas of decreased CBF on baseline
studies that increase after ACZ administration.

Type III patients have decreased CBF at baseline and a
paradoxic continued reduction in regional CBF after ACZ
administration.

Type III responses appear to define those patients who are
the most likely to benefit from surgical revascularization.19

This final category likely relates to a steal phenomenon, indi-
cating a decrease in blood flow in regions that are already
maximally dilated,20,21 identified with quantitative CBF
measurements.22

ACZ
ACZ is a carbonic anhydrase inhibitor that penetrates the
blood-brain barrier slowly and acts as a cerebral vasodilator
agent. Inhibition of carbonic anhydrase causes carbonic aci-
dosis, which induces a considerable increase in CBF.23 ACZ is
safe to administer and is generally well tolerated. Systemic
blood pressure, heart and respiratory rates, arterial pH, arte-
rial CO2 pressure, and CMRO2 are unaffected. Most common
side effects are acute and transient, including transient circu-
moral numbness, paresthesias, malaise, and headache.23,24 Re-
versible pontine ischemia caused by ACZ challenge has been
discussed in a case report25; however, Piepgras et al26 reported
no acute ischemic sequelae in more than 1000 studies with the
use of ACZ.

Contraindications to ACZ administration are hypersen-

sitivity to other sulfonamides, electrolyte disturbances,
marked kidney and liver disease, adrenocortical insufficiency,
and long-term use in chronic noncongestive angle-closure
glaucoma.27

A standard dose of 1000 mg intravenously is used for the
ACZ challenge test. Peak CBF augmentation occurs at approx-
imately 10 –15 minutes after intravenous bolus administra-
tion. A 30%– 60% increase in CBF is achieved in healthy sub-
jects.28 Criteria that have been used to define an abnormal
response to ACZ include �10% increase in the absolute CBF
or an absolute change of �10 mL/100 g/min.29

Imaging Techniques
There is a large armamentarium of imaging techniques for
assessing the adequacy of cerebral perfusion. These include
PET, single-photon emission CT (SPECT), Xe-CT, dynamic
perfusion CT (PCT), MR imaging dynamic susceptibility con-
trast, arterial spin-labeling (ASL), and transcranial Doppler
sonography.

Xe-CT
Xe-CT combined with ACZ challenge is an established tech-
nique, which has been used for �20 years to evaluate chronic
cerebral ischemia. It provides quantitative assessment of CBF
and CVR (Fig 1). The inhaled xenon gas dissolves in blood
rapidly and freely crosses the blood-brain barrier and concen-
trates in the brain by virtue of its liposolubility. CBF is calcu-
lated by measuring the rate of xenon clearance from the brain
by using the Kety-Schmidt model, which provides reliable
CBF quantization, along with high-resolution imaging.28,30

Because of the short cerebral residence time of inhaled xenon,
the study can be repeated in the same session. Xe-CT is an
expensive and complex examination, requiring excellent pa-
tient cooperation, the presence of an anesthetist, and the use of
specialized and expensive equipment. Side effects of xenon
inhalation, such as a decrease in respiratory rate, headache,
nausea, vomiting, and convulsions may occasionally occur.31

In the United States, xenon is not currently approved by
the US Food and Drug administration for clinical Xe-CT
assessment.

Fig 1. Xe-CT CBF maps in a patient with Moyamoya disease.
A, Baseline. B, After ACZ administration. Baseline scan (A)
shows reduced CBF in the bilateral ACA and anterior water-
shed areas (areas 1, 2, 19, and 20, asterisk). After ACZ, there
is a robust increase in the CBF, indicating a normal cerebral
reserve in these territories. There is reduced baseline flow
with decreased augmentation of CBF after ACZ, indicating
poor cerebral reserve in the left posterior MCA and the left
posterior watershed territories (areas 13–15, arrows).
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PCT
PCT is a noninvasive method that provides CBF, CBV, and
MTT values and can be combined successfully with ACZ to
assess cerebral hemodynamics more completely. The feasibil-
ity of CTP in the evaluation of chronic ischemia has been
encouraging in various studies.32-34 Furukawa et al35 studied
the usefulness of PCT in the evaluation of chronic cerebral
ischemia and compared the technique with Xe-CT. In their
study, the relative scores of CBF obtained by PCT correlated
well with Xe-CT values, though the absolute values did not
show as good a correlation. CTP imaging has also been vali-
dated against PET.36 Bisdas et al37 studied 12 patients with
chronic carotid stenosis who underwent dynamic PCT and
PET studies.37 CBF measurements from PCT correlated well
with PET-derived CBF values. This study also reported over-
estimation of CBF in PCT compared with PET after ACZ chal-
lenge. This has also been reported by Kudo et al,38 who hy-
pothesized that inclusion of surface blood vessels and
perforating arteries very likely leads to the overestimation by
PCT.38 Vascular pixel elimination in PCT analysis can mini-
mize this problem.38

PCT with ACZ challenge relies on quantitative assessment;
therefore, the reproducibility of the perfusion parameters is
important. Establishing a uniform and standard postprocess-
ing technique is essential for maintaining good reproducibility
(Fig 2).39,40 Use of standard head immobilization techniques
and adequate patient coaching are important to minimize pa-
tient motion. Waaijer et al41 studied PCT images in 20 patients
with unilateral symptomatic carotid artery stenosis to assess
the reproducibility of quantitative CTP parameters. This study
revealed that MTT is the most reproducible parameter for
regional measurements of PCT and that the use of CBV and
CBF ratios results in better reproducibility compared with ab-
solute CBV and CBF values for this patient group.41

The choice of a reference artery is critical for accurate CBF
measurements in CTP, both in acute and chronic ischemia.
However, no general consensus has been reached regarding
whether the arterial input function (AIF) ipsilateral or con-
tralateral to the side of stenosis is more accurate.37,42 More-
over, the choice of the AIF may be more complex in chronic
carotid occlusion because collateral formation through the
circle of Willis results in delay and dispersion of the contrast
bolus. In a recent study comparing PCT with PET in patients
with chronic cervical carotid artery occlusion, Kamath et
al43suggested that CBF values obtained by PCT and PET com-

pared favorably when processed by using a dedicated AIF for
each territory.43 In Moyamoya disease, both anterior and mid-
dle cerebral arteries (ACA, MCA) may be occluded. In these
cases, the basilar artery or the P1 segment of the posterior
cerebral artery (PCA) should be selected.44

The advantages of PCT are that it is a rapid, noninvasive,
and readily available method that provides CBF, CBV, and
MTT values and can be combined successfully with ACZ to
assess cerebral hemodynamics fully. Also, anatomic vascular
imaging such as CT angiography can be performed at the same
time. One current drawback of PCT is restricted spatial cov-
erage. Continually improving CT technology (wider detector
arrays and controlled table movements) will very likely over-
come this problem. Other inherent disadvantages of PCT in-
clude the risks of ionizing radiation and iodinated contrast.
Further studies are needed to establish the accuracy, reliability,
and reproducibility of PCT-derived quantitative measure-
ments, but the present data regarding CVR assessment are
encouraging.

MR Perfusion

Dynamic Contrast Bolus MR Perfusion
MR imaging can detect the changes in magnetic susceptibility
during passage of a compact bolus injection of contrast and
can yield relative and absolute hemodynamic values of brain
perfusion. Dynamic susceptibility contrast MR perfusion,
similar to CTP, has the advantages of widespread availability,
high spatial resolution, and the ability to obtain concomitant
anatomic vascular mapping. As an added advantage, there is a
more complete coverage of the brain and no ionizing radia-
tion. One of the disadvantages of MR perfusion is the complex
relation between the signal intensity and contrast concentra-
tion, resulting in difficulties with absolute perfusion parame-
ter calculation.45,46

Assessment of CVR with the ACZ challenge has been de-
scribed with MR perfusion studies.47-51 Perfusion MR imaging
before and after ACZ administration compares favorably with
technetium Tc99m ethyl cysteinate dimmer (Tc99m-ECD)
SPECT for the detection of impaired CVR.52 Agreement be-
tween PET and MR perfusion was moderate for physiologic
CBF values at rest and after the ACZ challenge in healthy hu-
mans.53 Similar to CTP, the CBF values reported with MR
perfusion were overestimated compared with the gold stan-
dard of PET.54-56

Fig 2. A 34-year-old man with severe headache and blurry
vision was diagnosed with Moyamoya disease. CT perfusion
maps. A, Baseline. B, After ACZ administration. CBF (mea-
sured in mL/100 g/min) is diminished in bilateral ACA,
ACA-MCA watershed, and the MCA territories (depicted as
blue to green). These areas show a very suboptimal increase
in CBF after ACZ administration and thus exhibit limited CVR.
Note the increased CBF secondary to vasodilatory capacity in
the PCA and MCA-PCA distribution after ACZ administration.
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ASL MR Perfusion
ASL is a MR perfusion technique that takes advantage of arte-
rial water as a freely diffusible tracer to measure CBF. Because
exogenous contrast is not required for this technique, it is
completely noninvasive and repeatable. There are only a lim-
ited number of studies in humans assessing the feasibility of
ASL in chronic ischemia. The combination of ACZ challenge
and ASL MR perfusion in CVD produced the expected results
of CBF alteration.51 Obtaining quantitative accurate CBF data
is challenging; however, test-retest reproducibility of these
techniques has been encouraging.50 A study of a small number
of patients with chronic arterial stenosis compared ASL per-
fusion with ACZ challenge with iodine 123 N-isopropyl-p-
iodoamphetamine (123I-IMP) SPECT and demonstrated
concordant results.57 A recent study of a large number of pa-
tients with ASL suggested the potential use of this technique
for measuring CVR and for serial assessment following
revascularization.58,59

PET
Physiologic evaluation of chronic CVD can also be performed
with PET, which measures the CBF and OEF to estimate cere-
bral perfusion. It offers the advantage of providing quantita-
tive evaluations useful for the assessment of various parame-
ters of brain metabolism and physiology. PET techniques are
not as readily available because the radioisotopes have very
short half-lives and need to be produced by cyclotrons, a tech-
nology only available in large medical centers or in central
commercial radiopharmacies.

Several studies using PET have been conducted to correlate
various pathophysiologic aspects of early ischemia with the
final outcome of brain tissue at risk for infarction. Patients
classified as having hemodynamic ischemia were found in 1
study to have low CBF associated with decreases of CMRO2 on
the side of the arterial occlusion.60 PET measurement of in-
creased OEF has been shown to be an important and indepen-
dent predictor of subsequent stroke. 61,62 Generally speaking,
an increased OEF should correspond to decrease in CVR when
assessed by challenge tests. These 2 measures, though strongly
related, are not equivalent. Recent studies demonstrated that

decreases in CVR and increases in OEF did not necessarily
parallel each other.63-65

PET measurements have been useful in demonstrating re-
versals of altered OEF because patients improve brain flow
through collaterals66 and following superficial temporal-to-
MCA anastomoses.67,14 Controlled studies to assess the value
of OEF determinations for selection of therapy in patients with
carotid occlusive disease are needed to determine the utility of
these techniques.

SPECT
Currently, SPECT is the most readily available nuclear medi-
cine technique for assessment of cerebral hemodynamics and
uses radionuclides that concentrate in neurons in direct rela-
tion to flow. Technetium Tc99m hexamethylpropyleneamine
oxime (HMPAO) and Tc99m-ECD are 2 Technetium Tc99m
compounds used in routine clinical practice. There are signif-
icant differences in the pharmacokinetics and brain distribu-
tion between these 2 agents, but in general, they are equivalent
for imaging of the brain. SPECT images with these 2 radionu-
clides represent the distribution and concentration of the ra-
dionuclide within the brain parenchyma according to blood
flow and are mainly evaluated qualitatively by visual inspec-
tion (Fig 3). Some semiquantitative techniques exist that pro-
vide a more objective assessment, especially useful when com-
bined with ACZ challenge. However, currently there are no
practical absolute quantitative techniques to measure CBF by
using SPECT.

Brain SPECT has also been validated in comparison studies
with O-15 H2O PET for evaluation of cerebrovascular reactiv-
ity to ACZ challenge in patients with CVD.68,69 Several studies
have demonstrated the usefulness of brain SPECT in conjunc-
tion with ACZ challenge for evaluation of vascular reactivity in
patients with various types of vaso-occlusive disease.70-72 Re-
sponses to ACZ have been studied in patients with Moyamoya
disease.73 Brain SPECT with Tc99m HMPAO and ACZ chal-
lenge was used successfully in the assessment of brain hemo-
dynamics in 15 patients with CVD before and after bypass
surgery.74

Although evaluation of cerebral hemodynamics in patients

Fig 3. SPECT perfusion study of a 64-year-old man with high-
grade right M1 and A1 segment stenosis. A, Baseline. B, After
ACZ administration. There is decreased uptake and perfusion
(arrows) involving the right frontal, parietal, and temporal lobes
on the ACZ study (B), which resolve during baseline conditions
(arrowheads).
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with CVD is best performed by using PET, SPECT imaging
with ACZ challenge offers a more practical alternative for
many centers.

Clinical Applications of the ACZ Challenge

Stroke Risk Assessment
Identification of compromise in CVR capacity is important in
the evaluation of ischemic stroke. The degree of vascular oc-
clusion in this situation is an incomplete indicator of future
stroke risk.75 There may be a synergistic effect between em-
bolic phenomenon from atherosclerotic plaque and impaired
hemodynamics causing ischemic stroke in large artery athero-
sclerotic occlusions.76,77 Compromised CVR is a key determi-
nant of ischemic infarction, regardless of whether it is precip-
itated by embolic or hemodynamic factors.75

Kuroda et al2 describe a prospectively studied longitudinal
cohort of 77 patients in which patients with decreased CBF
and CVR resulting from internal carotid artery (ICA) or MCA
occlusion had a higher risk of new ischemic stroke than those
without. This was one of the first prospective studies to con-
firm the value of CVR as a predictor of the future stroke risk.2

Another prospective study demonstrated that decreased cere-
brovascular reactivity to ACZ (determined quantitatively by
133Xe SPECT) is an independent predictor of the 5-year risk of
subsequent stroke in patients with symptomatic major cere-
bral artery occlusion.5 Multiple studies of patients with carotid
occlusive disease have consistently shown a higher incidence
of ischemic complications in those patients with compro-
mised vascular reserve (Fig 4).3,4,62,78

ACZ-defined CVR can also be used as an additional assess-

ment tool in asymptomatic carotid artery stenosis.7,79 In a pro-
spective study of 94 patients with asymptomatic carotid artery
stenosis of �70%, Silvestrini et al79 suggested a link between
impaired cerebrovascular reactivity and the risk of ischemic
events ipsilateral to severe asymptomatic carotid stenosis.

The risk of perioperative cerebral infarction during carotid
and cardiac surgery can be estimated by using CVR. Schoof et
al80 prospectively studied 2797 patients with carotid artery ste-
nosis/occlusion undergoing cardiac surgery with cardiopul-
monary bypass and assessed cerebral autoregulation by using
transcranial Doppler sonography with CO2 stimulation. In-
creased risk of perioperative stroke was observed in patients
with high-grade stenosis or occlusion and exhausted autoreg-
ulatory reserve, suggesting that assessment of CVR facilitates
identification of patients with an excess perioperative stroke
risk.80

Moyamoya Disease
Moyamoya disease is a well-described entity characterized by
progressive stenosis and occlusion of the supraclinoid ICA
and its branches, affecting both the pediatric and adult popu-
lation and frequently resulting in cerebral infarctions.81 Med-
ical therapy for Moyamoya disease is ineffective; conse-
quently, direct and indirect surgical revascularization has
become the primary technique of treatment for these patients
to reduce the incidence of ischemic sequelae. Many series have
reported the efficacy of revascularization in this syndrome by
using primarily direct superficial temporal artery (STA)-MCA
bypass.82-89

PET studies in Moyamoya disease have demonstrated re-

Fig 4. CTP. Chronic left internal carotid artery occlusion. A,
Baseline. B, After ACZ administration. There is significant
hypoperfusion in the left hemisphere at baseline with de-
creased CBF and increased TTP (A, short arrows). After
administration of ACZ (B), CBF decreases throughout the left
hemisphere, resulting in negative calculated CVR percent-
ages. The left-sided TTP increases even further in post-ACZ
flow maps as seen by the accentuated asymmetry (B, long
arrows). Note the normal increase in the right-sided CBF after
the vasodilatory stimulus of ACZ (B, arrowheads).
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duced CBF and CO2 response and increased CBV, MTT, and
OEF.90 CBF is significantly lower in patients with Moyamoya
disease than in healthy subjects of the same age. Also the CBF
has a dominant posterior distribution in contrast to the ante-
rior distribution observed in healthy control subjects (Fig 5).91

CVR testing with ACZ challenge is useful in Moyamoya
disease. CVR in the anterior cerebral and middle cerebral
territories is significantly lower than that in the posterior ce-
rebral territory and the central region around the basal gan-
glia.92 Of multiple hemodynamic parameters measured by
ACZ challenge PCT in adult Moyamoya disease, percentage
change in CBF correlated most significantly with the angio-
graphic stage of the disease.93 Another study correlated ACZ-
challenged PCT with SPECT in patients with Moyamoya dis-
ease and showed that baseline PCT parameters, including
CBV and MTT, correlated weakly with the CVR obtained with
SPECT.33 The study demonstrated that percentage change
of CBF correlated well with quantitative SPECT CVR
measurements.33

Pre- and Postoperative Evaluation of Extracranial-
Intracranial Bypass for Flow Augmentation
Cerebral revascularization by using extracranial�intracranial
(ECIC) bypass is a treatment option in the setting of major
cerebral artery occlusive disease. A large ECIC bypass study
was initiated to determine whether anastomosis of the STA to
the MCA could reduce ischemic stroke and stroke-related
death among patients with symptomatic surgically inaccessi-
ble (to carotid endarterectomy [CEA]) atherosclerotic steno-
sis or occlusion of the ICA or MCA.94 Although this study
failed to show the efficacy of bypass over medical management
for anterior circulation occlusive disease, it preceded effective
noninvasive tools for CBF testing. With greater understanding
of the importance of assessing cerebral hemodynamics in pa-
tients with CVD, interest in revascularization has re-emerged.

In recent years, the use of ECIC bypass for anterior circu-
lation ischemia in selected patients has been reported in sev-
eral studies.95-97 Several case series have demonstrated benefit
from ECIC bypass if the patient population is carefully de-
fined. In a study by Mendelowitsch et al,98 85% of the patients
had no further cerebrovascular events after surgery in the av-
erage follow-up period of 44 months, and only 11% experi-

enced another cerebrovascular event. Following ECIC bypass,
most (95.4%) patients experience cessation of their ischemic
events and stabilization of pre-existing neurologic dysfunc-
tion.99 To assess the efficacy of ECIC bypass in this group more
definitively, a randomized trial, the Carotid Occlusion Surgery
Study, is underway in North America.100 This study is funded
by the National Institutes of Health, which stratifies patients as
candidates for surgery only if they manifest increased OEF on
PET.

Hemodynamic assessment, including CVR testing, repre-
sents an important assessment tool after ECIC bypass surgery.
After ECIC bypass, several studies have shown that there can
be full or partial reversal of impaired CVR (Fig 6).21,101,102 One
study using 133Xe SPECT in 28 patients who underwent ECIC
bypass showed significant improvement of CVR after surgery
while the resting CBF was essentially unchanged.103 Schaller104

concluded that the hemodynamic parameters observed in pa-
tients who experience improved neurologic function or di-
minished stroke risk profile after ECIC-bypass surgery contain
both significantly elevated OEF and CBF/CBV.

Although the role of cerebral revascularization in patients
with major cerebral artery occlusive diseases remains contro-
versial, there is growing evidence that symptomatic patients
with a documented hemodynamic source of their symptoms
are very good candidates for undergoing STA-MCA bypass.

Carotid Balloon Occlusion
Balloon test occlusion of the ICA is performed routinely to
assess the collateral circulation before surgical or endovascular
procedures that may involve sacrificing or prolonged occlu-
sion of the ICA. Patients who develop any change in the neu-
rologic status during balloon occlusion are thought to demon-
strate poor autoregulatory potential. Up to 10% of patients in
whom the test is clinically successful may still have diminished
CBF in the ipsilateral hemisphere.105,106

Perfusion imaging, pharmacologically induced hypoten-
sion, and stump pressure measurements are various methods
used for evaluation during the balloon test occlusion.28 The
feasibility of the ACZ challenge test during carotid balloon
occlusion has been shown in a few studies.105,108 Using ACZ
challenge and perfusion CT in a study of 8 patients, Jain et al107

suggested that patients with symmetric CBF and normal vaso-

Fig 5. CT perfusion maps in a 51-year-old patient presenting
with right-sided hemiparesis who was diagnosed with Moya-
moya disease, demonstrating bilateral supraclinoid internal
carotid occlusion. A, Baseline. B, After ACZ administration.
The baseline pre-ACZ PCT (A) demonstrates the typical pat-
tern of Moyamoya disease with decreased CBF and increased
MTT and TTP in the bilateral anterior and middle cerebral
distributions (arrows). After ACZ challenge (B), the CBF in the
anterior circulation decreases consistent with steal phenom-
enon (B, CBF, arrows). The CBF map demonstrates a normal
expected increase in the PCA territories. There is further
prolongation of the MTT and TTP in both ACA and MCA
distributions (arrowheads, B), consistent with worsening of
cerebral hemodynamics after ACZ, and type III physiology.
The patient successfully underwent left-sided ECIC bypass
surgery.
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dilatory capacity would do well after permanent carotid occlu-
sion and that patients with asymmetric CBF and abnormal
response to the ACZ challenge test may require a revascular-
ization procedure to protect them from future ischemic
sequelae.

Hyperperfusion Syndrome
Cerebral hyperperfusion syndrome is an uncommon but seri-
ous complication of carotid revascularization, including CEA
and carotid stent placement. Hyperperfusion syndrome (asso-
ciated with increased CBF compared with preoperative values)
results in headache, focal seizure activity, cerebral edema, and
intracerebral hemorrhage and is associated with significant
mortality and morbidity.29

Komoribayashi et al109 reported hyperperfusion immedi-
ately after CEA in 56% of patients with reduced preoperative
CVR. Another study measured concentrations of malondial-
dehyde-modified low-attenuation lipoprotein (MDA-LDL), a
biochemical marker of oxidative damage, in serum samples
and CVR measurements in 90 patients undergoing CEA.110

This study suggested that reduced preoperative CVR (�20%)
and increased MDA-LDL correlate with the development of
cerebral hyperperfusion after CEA.110 In a more recent study,
measurements of preoperative CBV by perfusion-weighted
MR imaging helped to identify patients at risk for cerebral
hyperperfusion after CEA.111 Other studies have also shown
that preoperative measurement of reduced CVR (�10% CBF
response to ACZ) results in the timely and reliable identifica-
tion of patients at risk for hyperperfusion syndrome.112,113 In
these patients, careful monitoring and control of blood pres-
sure should be initiated even intraoperatively.112

Conclusions
In patients with chronic steno-occlusive disease, it is impor-
tant to assess the capacity of the cerebral circulation to adjust
to superimposed hemodynamic changes. Current research
suggests that compromised CVR is an important risk factor of
future ischemic sequelae. Administration of a vasodilator such

as ACZ can assess cerebral reserve by observing cerebrovascu-
lar reactivity to hemodynamic stress. The ACZ challenge test is
a useful clinical tool and can be used to optimize the treatment
strategies for patients with chronic cerebral ischemic disease.
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