Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBrain
Open Access

Overcoming the Clinical–MR Imaging Paradox of Multiple Sclerosis: MR Imaging Data Assessed with a Random Forest Approach

K. Kac̆ar, M.A. Rocca, M. Copetti, S. Sala, Š. Mesaroš, T. Stosić Opinćal, D. Caputo, M. Absinta, J. Drulović, V.S. Kostić, G. Comi and M. Filippi
American Journal of Neuroradiology December 2011, 32 (11) 2098-2102; DOI: https://doi.org/10.3174/ajnr.A2864
K. Kac̆ar
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Rocca
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
bInstitute of Experimental Neurology, Division of Neuroscience, and Department of Neurology (M.A.R., M.A., G.C., M.F.), Scientific Institute and University Hospital San Raffaele, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Copetti
cthe Biostatistics Unit (M.C.), Istituto di Ricovero e Cura a Carattere Scientifico-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Sala
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Š. Mesaroš
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
dClinics of Neurology (S.M., J.D., V.S.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Stosić Opinćal
eRadiology (T.S.O.), Clinical Centre of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Caputo
fDepartment of Neurology (D.C.), Scientific Institute Fondazione Don Gnocchi, Milan, Italy.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Absinta
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
bInstitute of Experimental Neurology, Division of Neuroscience, and Department of Neurology (M.A.R., M.A., G.C., M.F.), Scientific Institute and University Hospital San Raffaele, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Drulović
dClinics of Neurology (S.M., J.D., V.S.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.S. Kostić
dClinics of Neurology (S.M., J.D., V.S.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Comi
bInstitute of Experimental Neurology, Division of Neuroscience, and Department of Neurology (M.A.R., M.A., G.C., M.F.), Scientific Institute and University Hospital San Raffaele, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Filippi
aFrom the Neuroimaging Research Unit (K.K., M.A.R., S.S., S.M., M.A., M.F.)
bInstitute of Experimental Neurology, Division of Neuroscience, and Department of Neurology (M.A.R., M.A., G.C., M.F.), Scientific Institute and University Hospital San Raffaele, Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bakshi R,
    2. Thompson AJ,
    3. Rocca MA,
    4. et al
    . MRI in multiple sclerosis: current status and future prospects. Lancet Neurol 2008;7:615–25
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Barkhof F,
    2. Calabresi PA,
    3. Miller DH,
    4. et al
    . Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009;5:256–66
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Kurtzke JF
    . Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52
    Abstract/FREE Full Text
  4. 4.↵
    1. Lassmann H
    . The pathologic substrate of magnetic resonance alterations in multiple sclerosis. Neuroimaging Clin N Am 2008;18:563–76, ix
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Pagani E,
    2. Filippi M,
    3. Rocca MA,
    4. et al
    . A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 2005;26:258–65
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Mesaros S,
    2. Rocca MA,
    3. Riccitelli G,
    4. et al
    . Corpus callosum damage and cognitive dysfunction in benign MS. Hum Brain Mapp 2009;30:2656–66
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Cutter GR,
    2. Baier ML,
    3. Rudick RA,
    4. et al
    . Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 1999;122(pt 5):871–82
    Abstract/FREE Full Text
  8. 8.↵
    1. Rovaris M,
    2. Agosta F,
    3. Pagani E,
    4. et al
    . Diffusion tensor MR imaging. Neuroimaging Clin N Am 2009;19:37–43
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Breiman L
    . Random forests. Mach Learn 2001;45:5–32
    CrossRefWeb of Science
  10. 10.↵
    1. Polman CH,
    2. Reingold SC,
    3. Edan G,
    4. et al
    . Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria.” Ann Neurol 2005;58:840–46
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Lublin FD,
    2. Reingold SC
    . Defining the clinical course of multiple sclerosis: results of an international survey—National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996;46:907–11
    Abstract/FREE Full Text
  12. 12.↵
    1. Hawkins SA,
    2. McDonnell GV
    . Benign multiple sclerosis? Clinical course, long term follow up, and assessment of prognostic factors. J Neurol Neurosurg Psychiatry 1999;67:148–52
    Abstract/FREE Full Text
  13. 13.↵
    1. Pittock SJ,
    2. McClelland RL,
    3. Mayr WT,
    4. et al
    . Clinical implications of benign multiple sclerosis: a 20-year population-based follow-up study. Ann Neurol 2004;56:303–06
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Montalban X,
    2. Sastre-Garriga J,
    3. Filippi M,
    4. et al
    . Primary progressive multiple sclerosis diagnostic criteria: a reappraisal. Mult Scler 2009;15:1459–65
    Abstract/FREE Full Text
  15. 15.↵
    1. Smith SM,
    2. De Stefano N,
    3. Jenkinson M,
    4. et al
    . Normalized accurate measurement of longitudinal brain change. J Comput Assist Tomogr 2001;25:466–75
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Basser PJ,
    2. Mattiello J,
    3. LeBihan D
    . MR diffusion tensor spectroscopy and imaging. Biophys J 1994;66:259–67
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Basser PJ,
    2. Pierpaoli C
    . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209–19
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Ceccarelli A,
    2. Rocca MA,
    3. Falini A,
    4. et al
    . Normal-appearing white and grey matter damage in MS: a volumetric and diffusion tensor MRI study at 3.0 Tesla. J Neurol 2007;254:513–18
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Rocca MA,
    2. Pagani E,
    3. Absinta M,
    4. et al
    . Altered functional and structural connectivities in patients with MS: a 3-T study. Neurology 2007;69:2136–45
    Abstract/FREE Full Text
  20. 20.↵
    1. Rocca MA,
    2. Valsasina P,
    3. Ceccarelli A,
    4. et al
    . Structural and functional MRI correlates of Stroop control in benign MS. Hum Brain Mapp 2009;30:276–90
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Losseff NA,
    2. Kingsley DP,
    3. McDonald WI,
    4. et al
    . Clinical and magnetic resonance imaging predictors of disability in primary and secondary progressive multiple sclerosis. Mult Scler 1996;1:218–22
    PubMed
  22. 22.↵
    1. Filippi M,
    2. Rocca MA
    . Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 2007;4:401–13
    CrossRefPubMed
  23. 23.↵
    1. Efron B,
    2. Tibshirani R
    . Improvements on cross-validation: the .632+ bootstrap method. J Am Stat Ass 1997;92:548–60
    CrossRefWeb of Science
  24. 24.↵
    1. Strobl C,
    2. Boulesteix AL,
    3. Zeileis A,
    4. et al
    . Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinformatics 2007;8:25
    CrossRefPubMed
  25. 25.↵
    1. Strobl C,
    2. Boulesteix AL,
    3. Kneib T,
    4. et al
    . Conditional variable importance for random forests. BMC Bioinformatics 2008;9:307
    CrossRefPubMed
  26. 26.↵
    1. Filippi M,
    2. Rocca MA
    . Conventional MRI in multiple sclerosis. J Neuroimaging 2007;17(suppl 1):3S–9S
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (11)
American Journal of Neuroradiology
Vol. 32, Issue 11
1 Dec 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Overcoming the Clinical–MR Imaging Paradox of Multiple Sclerosis: MR Imaging Data Assessed with a Random Forest Approach
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Overcoming the Clinical–MR Imaging Paradox of Multiple Sclerosis: MR Imaging Data Assessed with a Random Forest Approach
K. Kac̆ar, M.A. Rocca, M. Copetti, S. Sala, Š. Mesaroš, T. Stosić Opinćal, D. Caputo, M. Absinta, J. Drulović, V.S. Kostić, G. Comi, M. Filippi
American Journal of Neuroradiology Dec 2011, 32 (11) 2098-2102; DOI: 10.3174/ajnr.A2864

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Overcoming the Clinical–MR Imaging Paradox of Multiple Sclerosis: MR Imaging Data Assessed with a Random Forest Approach
K. Kac̆ar, M.A. Rocca, M. Copetti, S. Sala, Š. Mesaroš, T. Stosić Opinćal, D. Caputo, M. Absinta, J. Drulović, V.S. Kostić, G. Comi, M. Filippi
American Journal of Neuroradiology Dec 2011, 32 (11) 2098-2102; DOI: 10.3174/ajnr.A2864
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Network Damage Predicts Clinical Worsening in Multiple Sclerosis: A 6.4-Year Study
  • Defining an Analytic Framework to Evaluate Quantitative MRI Markers of Traumatic Axonal Injury: Preliminary Results in a Mouse Closed Head Injury Model
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2022 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2023 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire