Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBrain

Quantitative Assessment of Brain Stem and Cerebellar Atrophy in Spinocerebellar Ataxia Types 3 and 6: Impact on Clinical Status

L. Eichler, B. Bellenberg, H.K. Hahn, O. Köster, L. Schöls and C. Lukas
American Journal of Neuroradiology May 2011, 32 (5) 890-897; DOI: https://doi.org/10.3174/ajnr.A2387
L. Eichler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Bellenberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.K. Hahn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. Köster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Schöls
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Lukas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Schöls L,
    2. Bauer P,
    3. Schmidt T,
    4. et al
    . Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 2004; 3: 291–304
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Brenneis C,
    2. Bosch SM,
    3. Schocke M,
    4. et al
    . Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 2003; 14: 1799–802
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Della Nave R,
    2. Ginestroni A,
    3. Tessa C,
    4. et al
    . Brain white matter damage in SCA1 and SCA2: an in vivo study using voxel-based morphometry, histogram analysis of mean diffusivity and tract-based spatial statistics. Neuroimage 2008; 43: 10–19
    CrossRefPubMed
  4. 4.↵
    1. Klockgether T,
    2. Skalej M,
    3. Wedekind D,
    4. et al
    . Autosomal dominant cerebellar ataxia type I: MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 1998; 121: 1687–93
    Abstract/FREE Full Text
  5. 5.↵
    1. Schulz JB,
    2. Borkert J,
    3. Wolf S,
    4. et al
    . Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 2010; 49: 158–68
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Rub U,
    2. Brunt ER,
    3. Deller T
    . New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 2008;21:111–16
    PubMedWeb of Science
  7. 7.↵
    1. Butteriss D,
    2. Chinnery P,
    3. Birchall D
    . Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol 2005; 78: 694–96
    Abstract/FREE Full Text
  8. 8.↵
    1. Murata Y,
    2. Kawakami H,
    3. Yamaguchi S,
    4. et al
    . Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol 1998; 55: 1348–52
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Satoh JI,
    2. Tokumoto H,
    3. Yukitake M,
    4. et al
    . Spinocerebellar ataxia type 6: MRI of three Japanese patients. Neuroradiology 1998; 40: 222–27
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Murata Y,
    2. Yamaguchi S,
    3. Kawakami H,
    4. et al
    . Characteristic magnetic resonance imaging findings in Machado-Joseph disease. Arch Neurol 1998; 55: 33–37
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Yoshizawa T,
    2. Watanabe M,
    3. Frusho K,
    4. et al
    . Magnetic resonance imaging demonstrates differential atrophy of pontine base and tegmentum in Machado-Joseph disease. J Neurol Sci 2003; 215: 45–50
    CrossRefPubMed
  12. 12.↵
    1. Rub U,
    2. Brunt ER,
    3. Petrasch-Parwez E,
    4. et al
    . Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol 2006; 32: 635–49
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Gierga K,
    2. Schelhaas HJ,
    3. Brunt ER,
    4. et al
    . Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol 2009; 35: 515–27
    CrossRefPubMed
  14. 14.↵
    1. Trouillas P,
    2. Takayanagi T,
    3. Hallett M,
    4. et al
    . International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome: the Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 1997; 145: 205–11
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Lukas C,
    2. Hahn HK,
    3. Bellenberg B,
    4. et al
    . Spinal cord atrophy in spinocerebellar ataxia type 3 and 6: impact on clinical disability. J Neurol 2008; 255: 1244–49
    CrossRefPubMed
  16. 16.↵
    1. Lukas C,
    2. Hahn HK,
    3. Bellenberg B,
    4. et al
    . Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis. Neuroradiology 2004; 46: 906–15
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Lukas C,
    2. Bellenberg B,
    3. Rexilius J,
    4. et al
    . A new sulcus-corrected approach for assessing cerebellar volume in spinocerebellar ataxia. European Congress of Radiology; ECR 2010, March 4–8, 2010, Vienna, Austria
  18. 18.↵
    1. Luft AR,
    2. Skalej M,
    3. Welte D,
    4. et al
    . A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med 1998; 40: 143–51
    PubMedWeb of Science
  19. 19.↵
    1. Bland M,
    2. Altman DG
    . Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307–10
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Whitwell JL,
    2. Crum WR,
    3. Watt HC,
    4. et al
    . Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol 2001; 22: 1483–89
    Abstract/FREE Full Text
  21. 21.↵
    1. Blatter DD,
    2. Bigler ED,
    3. Gale SD,
    4. et al
    . Quantitative volumetric analysis of brain MR: normative database spanning 5 decades of life. AJNR Am J Neuroradiol 1995; 16: 241–51
    Abstract/FREE Full Text
  22. 22.↵
    1. Pfefferbaum A,
    2. Mathalon DH,
    3. Sullivan EV,
    4. et al
    . A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 1994; 51: 874–87
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Luft AR,
    2. Skalej M,
    3. Schulz JB,
    4. et al
    . Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex 1999; 9: 712–21
    Abstract/FREE Full Text
  24. 24.↵
    1. Burk K,
    2. Malzig U,
    3. Wolf S,
    4. et al
    . Comparison of three clinical rating scales in Friedreich ataxia (FRDA). Mov Disord 2009; 24: 1779–84
    CrossRefPubMed
  25. 25.↵
    1. Schmitz-Hubsch T,
    2. du Montcel ST,
    3. Baliko L,
    4. et al
    . Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66:
  26. 26.↵
    1. Schmitz-Hubsch T,
    2. Coudert M,
    3. Bauer P,
    4. et al
    . Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology 2008; 71: 982–89
    Abstract/FREE Full Text
  27. 27.↵
    1. Richter S,
    2. Dimitrova A,
    3. Maschke M,
    4. et al
    . Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 2005; 54: 23–27
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Mitoma H,
    2. Hayashi R,
    3. Yanagisawa N,
    4. et al
    . Gait disturbances in patients with pontine medial tegmental lesions: clinical characteristics and gait analysis. Arch Neurol 2000; 57: 1048–57
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Dietrichs E
    . Clinical manifestation of focal cerebellar disease as related to the organization of neural pathways. Acta Neurol Scand Suppl 2008; 188: 6–11
    PubMed
  30. 30.↵
    1. Wessel K,
    2. Moschner C,
    3. Wandinger KP,
    4. et al
    . Oculomotor testing in the differential diagnosis of degenerative ataxic disorders. Arch Neurol 1998; 55: 949–56
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Thier P,
    2. Dicke PW,
    3. Haas R,
    4. et al
    . The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci 2002; 978: 50–62
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Lukas C,
    2. Schols L,
    3. Bellenberg B,
    4. et al
    . Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 2006; 408: 230–35
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (5)
American Journal of Neuroradiology
Vol. 32, Issue 5
1 May 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Assessment of Brain Stem and Cerebellar Atrophy in Spinocerebellar Ataxia Types 3 and 6: Impact on Clinical Status
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Quantitative Assessment of Brain Stem and Cerebellar Atrophy in Spinocerebellar Ataxia Types 3 and 6: Impact on Clinical Status
L. Eichler, B. Bellenberg, H.K. Hahn, O. Köster, L. Schöls, C. Lukas
American Journal of Neuroradiology May 2011, 32 (5) 890-897; DOI: 10.3174/ajnr.A2387

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Quantitative Assessment of Brain Stem and Cerebellar Atrophy in Spinocerebellar Ataxia Types 3 and 6: Impact on Clinical Status
L. Eichler, B. Bellenberg, H.K. Hahn, O. Köster, L. Schöls, C. Lukas
American Journal of Neuroradiology May 2011, 32 (5) 890-897; DOI: 10.3174/ajnr.A2387
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Credit assignment in movement-dependent reinforcement learning
  • Macro- and Microstructural Changes in Patients with Spinocerebellar Ataxia Type 6: Assessment of Phylogenetic Subdivisions of the Cerebellum and the Brain Stem
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Multimodal CT Provides Improved Performance for Lacunar Infarct Detection
  • Optimal MRI Sequence for Identifying Occlusion Location in Acute Stroke: Which Value of Time-Resolved Contrast-Enhanced MRA?
  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2021 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2022 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire