Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Review ArticleReview Article
Open Access

Perfusion CT Imaging of Brain Tumors: An Overview

R. Jain
American Journal of Neuroradiology October 2011, 32 (9) 1570-1577; DOI: https://doi.org/10.3174/ajnr.A2263
R. Jain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Folkman J
    . The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65–71
    PubMed
  2. 2.↵
    1. Jain RK,
    2. Munn LL,
    3. Fukumura D
    . Dissecting tumour pathophysiology using intravital microscopy. Nat Rev Cancer 2002; 2: 266–76
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Law M,
    2. Young RJ,
    3. Babb JS,
    4. et al
    . Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2008; 247: 490–98
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Roberts HC,
    2. Roberts TP,
    3. Brasch RC,
    4. et al
    . Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891–99
    Abstract/FREE Full Text
  5. 5.↵
    1. Law M,
    2. Yang S,
    3. Babb JS,
    4. et al
    . Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004; 25: 746–55
    Abstract/FREE Full Text
  6. 6.↵
    1. Ellika SK,
    2. Jain R,
    3. Patel SC,
    4. et al
    . Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 2007; 28: 1981–87
    Abstract/FREE Full Text
  7. 7.↵
    1. Jain R,
    2. Ellika SK,
    3. Scarpace L,
    4. et al
    . Quantitative estimation of permeability surface-area product in astroglial brain tumors using perfusion CT and correlation with histopathologic grade. AJNR Am J Neuroradiol 2008; 29: 694–700
    Abstract/FREE Full Text
  8. 8.↵
    1. Cairncross JG,
    2. Ueki K,
    3. Zlatescu MC,
    4. et al
    . Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–79
    Abstract/FREE Full Text
  9. 9.↵
    1. Law M,
    2. Oh S,
    3. Johnson G,
    4. et al
    . Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 2006; 58: 1099–107
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Leon SP,
    2. Folkerth RD,
    3. Black PM
    . Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996; 77: 362–72
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Li VW,
    2. Folkerth RD,
    3. Watanabe H,
    4. et al
    . Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994; 344: 82–86
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Weidner N
    . Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 1995; 147: 9–19
    PubMedWeb of Science
  13. 13.↵
    1. Cha S,
    2. Johnson G,
    3. Wadghiri YZ,
    4. et al
    . Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003; 49: 848–55
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Aronen HJ,
    2. Pardo FS,
    3. Kennedy DN,
    4. et al
    . High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000; 6: 2189–200
    Abstract/FREE Full Text
  15. 15.↵
    1. Plate KH,
    2. Breier G,
    3. Weich HA,
    4. et al
    . Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845–48
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Shweiki D,
    2. Itin A,
    3. Soffer D,
    4. et al
    . Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–45
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Bhujwalla ZM,
    2. Artemov D,
    3. Natarajan K,
    4. et al
    . Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 2003; 9: 355–62
    Abstract/FREE Full Text
  18. 18.↵
    1. Raatschen HJ,
    2. Simon GH,
    3. Fu Y,
    4. et al
    . Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology 2008; 247: 391–99
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Provenzale JM,
    2. Mukundan S,
    3. Dewhirst M
    . The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol 2005; 185: 763–67
    PubMed
  20. 20.↵
    1. Johnson JA,
    2. Wilson TA
    . A model for capillary exchange. Am J Physiol 1966; 210: 1299–303
    FREE Full Text
  21. 21.↵
    1. Purdie TG,
    2. Henderson E,
    3. Lee TY
    . Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour. Phys Med Biol 2001; 46: 3161–75
    CrossRefPubMed
  22. 22.↵
    1. Lee TY,
    2. Purdie TG,
    3. Stewart E
    . CT imaging of angiogenesis. Q J Nucl Med 2003; 47: 171–87
    PubMedWeb of Science
  23. 23.↵
    1. St Lawrence KS,
    2. Lee TY
    . An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab 1998; 18: 1365–77
    CrossRefPubMed
  24. 24.↵
    1. Lev MH,
    2. Ozsunar Y,
    3. Henson JW,
    4. et al
    . Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol 2004; 25: 214–21
    Abstract/FREE Full Text
  25. 25.↵
    1. Law M,
    2. Yang S,
    3. Wang H,
    4. et al
    . Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24: 1989–98
    Abstract/FREE Full Text
  26. 26.↵
    1. Jain R,
    2. Gutierrez J,
    3. Narang J,
    4. et al
    . In vivo correlation of tumor blood volume and permeability with histological and molecular angiogenic markers in gliomas. AJNR Am J Neuroradiol. 2011; 32: 388–94
    Abstract/FREE Full Text
  27. 27.↵
    1. Kumar AJ,
    2. Leeds NE,
    3. Fuller GN,
    4. et al
    . Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000; 217: 377–84
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Chernov M,
    2. Hayashi M,
    3. Izawa M,
    4. et al
    . Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg 2005; 48: 228–34
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Langleben DD,
    2. Segall GM
    . PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000; 41: 1861–67
    Abstract/FREE Full Text
  30. 30.↵
    1. Covarrubias DJ,
    2. Rosen BR,
    3. Lev MH
    . Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist 2004; 9: 528–37
    Abstract/FREE Full Text
  31. 31.↵
    1. Jain R,
    2. Scarpace L,
    3. Ellika S,
    4. et al
    . First-pass perfusion computed tomography: initial experience in differentiating recurrent brain tumors from radiation effects and radiation necrosis. Neurosurgery 2007; 61: 778–86, discussion 786–87
    PubMedWeb of Science
  32. 32.↵
    1. Kamiryo T,
    2. Lopes MB,
    3. Kassell NF,
    4. et al
    . Radiosurgery-induced microvascular alterations precede necrosis of the brain neuropil. Neurosurgery 2001; 49: 409–14, discussion 414–15
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Barajas RF Jr.,
    2. Chang JS,
    3. Segal MR,
    4. et al
    . Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009; 253: 486–96
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Barajas RF,
    2. Chang JS,
    3. Sneed PK,
    4. et al
    . Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2009; 30: 367–72
    Abstract/FREE Full Text
  35. 35.↵
    1. Jain R,
    2. Narang J,
    3. Schultz L,
    4. et al
    . Permeability estimates in histopathology proven treatment induced necrosis using perfusion CT: can these add to other perfusion parameters in differentiating from recurrent/progressive tumors? AJNR Am J Neuroradiol. 2011; 32: 658–63
    Abstract/FREE Full Text
  36. 36.↵
    1. Sugita Y,
    2. Terasaki M,
    3. Shigemori M,
    4. et al
    . Acute focal demyelinating disease simulating brain tumors: histopathologic guidelines for an accurate diagnosis. Neuropathology 2001; 21: 25–31
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Annesley-Williams D,
    2. Farrell MA,
    3. Staunton H,
    4. et al
    . Acute demyelination, neuropathological diagnosis, and clinical evolution. J Neuropathol Exp Neurol 2000; 59: 477–89
    PubMedWeb of Science
  38. 38.↵
    1. Zagzag D,
    2. Miller DC,
    3. Kleinman GM,
    4. et al
    . Demyelinating disease versus tumor in surgical neuropathology: clues to a correct pathological diagnosis. Am J Surg Pathol 1993; 17: 537–45
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Graham DI,
    2. Lantos PL
    1. Prineas JW,
    2. MacDonald WI
    . Demyelinating diseases. In: Graham DI, Lantos PL. eds. Greenfield's Neuropathology. 6th ed. London, UK: Oxford University Press; 1997:814–46
  40. 40.↵
    1. Jain R,
    2. Ellika S,
    3. Lehman NL,
    4. et al
    . Can permeability measurements add to blood volume measurements in differentiating tumefactive demyelinating lesions from high grade gliomas using perfusion CT? J Neurooncol 2010; 97: 383–88
    CrossRefPubMed
  41. 41.↵
    1. Yankeelov TE,
    2. Rooney WD,
    3. Huang W,
    4. et al
    . Evidence for shutter-speed variation in CR bolus-tracking studies of human pathology. NMR Biomed 2005; 18: 173–85
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Conturo TE,
    2. Akbudak E,
    3. Kotys MS,
    4. et al
    . Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 2005; 22: 697–703
    CrossRefPubMed
  43. 43.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859–67
    Abstract/FREE Full Text
  44. 44.↵
    1. Johnson G,
    2. Wetzel SG,
    3. Cha S,
    4. et al
    . Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn Reson Med 2004; 51: 961–68
    CrossRefPubMed
  45. 45.↵
    1. Uematsu H,
    2. Maeda M
    . Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol 2006; 16: 180–86
    CrossRefPubMed
  46. 46.↵
    1. Hara AK,
    2. Paden RG,
    3. Silva AC,
    4. et al
    . Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009; 193: 764–71
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 32 (9)
American Journal of Neuroradiology
Vol. 32, Issue 9
1 Oct 2011
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Perfusion CT Imaging of Brain Tumors: An Overview
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Perfusion CT Imaging of Brain Tumors: An Overview
R. Jain
American Journal of Neuroradiology Oct 2011, 32 (9) 1570-1577; DOI: 10.3174/ajnr.A2263

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Perfusion CT Imaging of Brain Tumors: An Overview
R. Jain
American Journal of Neuroradiology Oct 2011, 32 (9) 1570-1577; DOI: 10.3174/ajnr.A2263
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • Abbreviations
    • In Vivo Perfusion Imaging versus Histopathology
    • Perfusion Parameters and Their Importance
    • PCT Technique
    • Relationship between Glioma Grade and PCT Parameters
    • Heterogeneity of Glioma Angiogenesis and Perfusion Imaging
    • Role of PCT in Differentiating Recurrent Tumor from Radiation Necrosis
    • Differentiating Gliomas from Other Non-Neoplastic Lesions and from Lymphomas
    • Advantages and Limitations of PCT for Brain Tumor Assessment
    • Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • An Antibody-Tumor Necrosis Factor Fusion Protein that Synergizes with Oxaliplatin for Treatment of Colorectal Cancer
  • An antibody-tumor necrosis factor fusion protein that synergizes with oxaliplatin for treatment of colorectal cancer
  • Clinical Value of Vascular Permeability Estimates Using Dynamic Susceptibility Contrast MRI: Improved Diagnostic Performance in Distinguishing Hypervascular Primary CNS Lymphoma from Glioblastoma
  • Whole-brain Volume Perfusion Computed Tomography: Acquisition Techniques and Radiation Dose
  • Glioma Angiogenesis and Perfusion Imaging: Understanding the Relationship between Tumor Blood Volume and Leakiness with Increasing Glioma Grade
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • A Review of Robotic Interventional Neuroradiology
  • Retinoblastoma: What the Neuroradiologist Needs to Know
  • Skull Base Osteomyelitis: A Comprehensive Imaging Review
Show more REVIEW ARTICLE

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire