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ORIGINAL
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The Role of Preload and Leakage Correction in
Gadolinium-Based Cerebral Blood Volume
Estimation Determined by Comparison with MION
as a Criterion Standard

J.L. Boxerman
D.E. Prah

E.S. Paulson
J.T. Machan

D. Bedekar
K.M. Schmainda

BACKGROUND AND PURPOSE: Contrast extravasation in DSC-MRI potentiates inaccurate and impre-
cise estimates of glioma rCBV. We tested assertions that preload and postprocessing algorithms
minimize this error by comparing Gd-rCBV using permutations of these 2 techniques with criterion
standard rCBV using MION, an intravascular agent.

MATERIALS AND METHODS: We imaged 7 Fisher rats with 9L gliosarcomas, by using 3T gradient-echo
DSC-MRI with MION (2.0 mg Fe/kg) and staged injection of Gd-diethylene triamine pentaacetic acid:
a 0.1-mmol/kg bolus provided no preload (P�) data and served as preload (P�) for a subsequent
0.2-mmol/kg bolus. We computed MION-rCBV (steady-state �R2*, tumor versus normal brain) and
Gd-rCBV �R2* [t] integration) without (C�) and with (C�) postprocessing correction, thereby testing
4 correction permutations: P�C�, P�C�, P�C�, and P�C�. We tested whether each permutation
reduced bias and variance of the Gd/MION rCBV differences by using generalized estimating equations
and Fmax statistics (P � .05 significant).

RESULTS: Gd-rCBV progressively better approximated MION-rCBV with increasing leakage correction.
There was no statistically significant bias for the mean percentage deviation of Gd-rCBV from
MION-rCBV for any correction permutation, but there was significantly reduced variance by using
P�C� (22-fold), P�C� (32-fold), and P�C� (267-fold) compared with P�C�. P�C� provided signif-
icant additional variance reduction compared with P�C� (12-fold) and P�C� (8-fold). Linear regres-
sion of Gd-rCBV versus MION-rCBV revealed P�C� to have the closest slope and intercept compared
with the ideal, substantially better than P�C�.

CONCLUSIONS: Preload and postprocessing correction significantly reduced the variance of Gd-rCBV
estimates, and bias reduction approached significance. Postprocessing correction provide significant
benefit beyond preload alone.

ABBREVIATIONS: C� � without leakage correction algorithm applied; C� � with leakage correc-
tion algorithm applied; CI � confidence interval; DSC � dynamic susceptibility contrast; Gd �
gadolinium; K2 � linear coefficient in the fitting algorithm used to correct for contrast agent
extravasation in CBV estimates as defined in References 21 and 22; MION � monocrystalline iron
oxide nanoparticle intravascular contrast agent; P� � without administration of preload contrast
agent dose; P� � with administration of preload contrast agent dose; rCBV � relative cerebral
blood volume

When confined to the intravascular space, paramagnetic
contrast agents (eg, Gd-diethylene triamine pentaacetic

acid) produce T2*-weighted signal intensity loss in the ex-
travascular space, and DSC-MRI rCBV maps are computed by
integrating the transverse relaxivity changes (�R2*) that occur

dynamically over a first-pass injection.1,2 There has been ex-
tensive clinical application of rCBV mapping during the past
decade to the imaging of gliomas, including grading3-7 and
prognosis8-10 at initial diagnosis; targeting biopsy11,12 and pro-
viding intraoperative guidance;13 predicting low-grade to
high-grade transformation;14,15 and monitoring response to
treatment,16,17 including the distinction of tumor recurrence
and posttreatment-related enhancement due to radiation ne-
crosis18 and pseudoprogression.19,20

In enhancing high-grade gliomas with substantial blood-
brain barrier breakdown, typical Gd-based contrast agents ex-
travasate, reducing T2* DSC-MRI signal intensity loss by sig-
nal intensity increase in regions where T1 effects are
significant.21,22 In such instances, rCBV will be underesti-
mated and may even be “negative” in highly permeable lesions
with rapid contrast extravasation where T1 effects overwhelm
the intravascular T2* effects, severely blunting or even elimi-
nating any perceived first-pass susceptibility bolus effect. Con-
versely, T2* effects due to susceptibility differences between
extravasated contrast in the extracellular space and tumor cells
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can increase �R2*.23 Due to this complex interplay of T1- and
T2-weighted effects, contrast agent leakage can lead to either
underestimation or overestimation of rCBV in enhancing tu-
mors unless specifically corrected for.23-25 Because clinical de-
cisions for the applications mentioned above increasingly rely
on rCBV quantitation for analysis of temporal trends and ab-
solute thresholds, it is paramount that the DSC technique be
optimized to prevent or correct these inaccuracies and ensure
that rCBV measurements are accurate and precise.

Whereas early studies neglected leakage-effect contamina-
tion,26 more recent studies have acknowledged this pitfall,
with most correction schemes focusing on the T1 effects. Gen-
erally speaking, T1 leakage-correction schemes can be broadly
classified into 3 groups (Table 1): image acquisition (low flip
angle, long TE gradient-echo;11,16 double-echo T2*-
weighted27,28), contrast agent selection (loading dose of con-
trast agent before DSC-MRI to minimize subsequent changes
in T1;3,21 intravascular agents such as ferumoxytol20), and
postprocessing techniques (parametric modeling such as
�-variate fit;1,4 baseline subtraction;29 limited integration;30

and mathematic leakage-correction models21-23,25,31,32).
A robust mathematic leakage-correction model was pro-

posed by Weisskoff et al,21,22,31 which uses linear fitting to
determine the voxelwise deviation from nonleaky reference
tissue and, by removing the leakage term, generates corrected
rCBV values and first-order estimates of vascular permeabil-
ity. This postprocessing technique is appealing because it does
not require nonstandard imaging sequences or contrast agent
injection schemes; however, though it theoretically improves
rCBV estimation, there is only anecdotal evidence for its effec-
tiveness. For instance, rCBV maps generated with a prebolus
loading dose of contrast plus the correction scheme of Weiss-
koff et al significantly correlate with glioma tumor grade,
whereas uncorrected maps do not.22,24 To our knowledge,
there has been no formal validation of the preload and post-
processing correction techniques against a criterion standard.
The purpose of this study was to determine the degree to
which Gd-based rCBV estimates, by using this increasingly
common combination of leakage-correction techniques,
match criterion standard rCBV measured with a purely intra-
vascular contrast agent (MION; Massachusetts General Hos-
pital Center for Molecular Imaging Research, Charlestown,
Massachusetts). We hypothesized that correction schemes us-
ing both techniques would perform better than schemes using

only 1 or none, as measured by smaller variance of Gd/MION
rCBV ratios and reduced bias.

Materials and Methods

Intracranial Xenograft Transplantation in Rats
Seven male Fisher rats (Charles River Laboratories, Wilmington,

Massachusetts) were anesthetized and immobilized, and 105 9L glio-

sarcoma cells were injected through a 0.9-mm calvarial burr-hole (1

mm anterior and 2 mm lateral to the bregma) into the right frontal

lobe 3 mm deep to the dura.33 Care of rats followed the National

Institutes of Health Guide for the Care and Use of Laboratory Animals

(1996). The Institutional Animal Care and Use Committee at the

Medical College of Wisconsin approved all protocols.

MR Imaging
Fourteen days following tumor cell inoculation, MRI was performed

(3T Signa Excite; GE Healthcare, Milwaukee, Wisconsin; quadrature

birdcage coil; FOV � 4 cm, 4 sections, 2-mm section thickness). DSC-

MRI (gradient-echo EPI, TR � 1 second, TE � 34.5 ms, matrix �

64 � 64, 60 seconds before and 60 seconds after injection) was per-

formed with both MION (2.0 mg Fe/kg bolus) and gadodiamide

(Omniscan; GE Healthcare) in each rat, with randomly assigned or-

der. For gadodiamide-based DSC-MRI, we used a staged injection

technique (Fig 1). Dynamic imaging during an initial single-dose bo-

lus (0.1 mmol/kg) provided no preload (P�) rCBV data and served as

preload (P�) for subsequent DSC-MRI using a double-dose (0.2

mmol/kg) bolus. Single-dose (P�) and double-dose (P�) injections

were separated by 10 minutes. Finally, T1-weighted spin-echo images

(TE/TR � 12/450 ms, 256 � 256 matrix, NEX � 16) were acquired to

delineate enhancing tumor.

rCBV Computation
Using custom AFNI-based34 postprocessing software (Bloomington,

Illinois), we converted signal intensity time curves to relaxivity time

curves (�R2*[t]) for each voxel by using a standard technique. For

initial (P�) and secondary (P�) injection data, we estimated Gd-

Table 1: Techniques for reducing T1 leakage effects

Category Technique Examples
Image acquisition Low flip angle, long TE, Knopp et al,11 Cha et al38

double-echo T2*-
weighted

Vonken et al,27 Uematsu
et al28

Contrast agent Use of loading dosesa Donahue et al,3 Schmainda
et al,21 Simonsen et al35

Intravascular agents (eg,
ferumoxytol)

Gahramanov et al20

Postprocessing Linear fit � leakage
modela

Weisskoff et al,31

Schmainda et al21

Boxerman et al22

�-Variate fit Law et al4

Limited integration Wong et al30

Baseline subtraction Wetzel et al29

a Designates the 2 techniques investigated in this article.

Fig 1. Summary of Gd-based DSC methodology: staged injection technique. Gradient-echo
DSC-MRI (0.1-mmol/kg gadodiamide bolus) provides no preload (P�) rCBV data and serves
as a preload (P�) for subsequent DSC-MRI (0.2 mmol/kg bolus). Gd-rCBV without (C�) and
with (C�) application of postprocessing leakage correction are computed for both P� and
P� data, thereby testing P�C�, P�C�, P�C�, and P�C� permutations of the 2
leakage-correction techniques.
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rCBV without (C�) and with (C�) application of a leakage-correc-

tion algorithm based on the linear fit of uncorrected �R2*(t) to con-

stant functions derived from nonenhancing brain parenchyma,21,22

thereby testing all 4 permutations of the 2 leakage-correction tech-

niques (P�C�, P�C�, P�C�, and P�C�; see Fig 2A for examples

of P�C� and P�C� curves in tumor and reference brain). We gen-

erated rCBV maps for each permutation by using numeric trapezoidal

integration of �R2* (t) over all time points on a voxelwise basis. ROIs

of enhancing tumor and normal-appearing reference brain were de-

termined from the postcontrast T1-weighted spin-echo images and

coregistered to the rCBV maps for each rat (Fig 2B). Mean rCBV

values from the tumor ROI and the reference ROI were extracted, and

their ratio was computed, providing a normalized rCBV value for

each leakage-correction permutation in all rats.

We used MION, an intravascular agent with high T2 relaxivity, as

a criterion standard for tumor rCBV, because this agent does not

extravasate. Tumor MION-rCBV was estimated by computing the

ratio of the steady-state �R2* relaxivity value in tumor to that in

reference brain by using the same ROIs.35

Data Analysis and Statistical Methods
For each rat, Gd-rCBV estimates from each leakage-correction per-

mutation were normalized to the criterion standard MION-rCBV as a

percentage difference (Gd-rCBV � MION-rCBV / MION-rCBV).

Using a generalized estimating equation for normally distributed

data, we modeled the percentage differences as a function of preload

(P� versus P�), leakage correction (C� versus C�), and their inter-

action and tested whether each correction permutation reduced bias

and variance of Gd/MION-rCBV ratios by using Fmax statistics

(http://www.biology.ed.ac.uk/research/groups/jdeacon/statistics/table8.

htm) (Holm-adjusted P � .05 was considered significant when compar-

ing correction schemes with each other; unadjusted P values used when

comparing correction schemes with ideal or null values). The variances

for each correction permutation and covariances between them were

modeled by using sandwich estimators and assuming independent vari-

ances. The relationships between Gd-rCBV and MION-rCBV for each

correction permutation were determined by using another generalized

estimating equation that compared slopes and intercepts with the ideal

(zero intercept and unity slope) and, in the case of slopes, also with a null

of zero, indicating no relationship.

Results
Figure 3 compares the relative effects of preload and the post-
processing algorithm on individual relaxivity time curves. In
some tumors, the postprocessing algorithm without preload
had minimal corrective effect, whereas inclusion of preload
had substantial restorative effects (preload dominant, Fig 3A).
In other tumors, the opposite was true, with more substantial
corrective effect from the postprocessing algorithm (postpro-
cessing dominant; Fig 3B). These illustrations suggest a com-

Fig 2. Gd-rCBV for initial (P�) and second (P�) injection data was computed by using voxelwise trapezoidal integration of �R2* (t) without (C�) and with (C�) postprocessing leakage
correction. A, Examples of P�C� and P�C� curves in tumor and reference brain. B, The ratio of mean rCBV from tumor (gray) and contralateral brain (black) ROIs was computed for
all injections, providing normalized rCBV values.

Fig 3. Comparison of preload-dominant and postprocessing-dominant corrective effects on relaxivity time curves for 2 different tumors. A, Preload alone (solid gray line) eliminates most
of the T1 leakage contamination (dashed gray line with blunted peak relaxivity and negative �R2* values; shift between gray arrows), whereas postprocessing correction does not (dashed
black line; shift between black arrows). B, Postprocessing algorithm has more substantial corrective effect than preload in the tail portion of the curves (dashed black versus dashed gray
lines; shift between black versus gray arrows), but the converse is true during the first pass (solid versus dashed lines), demonstrating synergy between the 2 correction schemes. Combining
preload and postprocessing (solid black lines) yields the greatest peak �R2* without negative relaxivity values.
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plementary role of the 2 leakage-correction schemes. Combin-
ing preload and postprocessing algorithms (solid black lines)
yields the most robust relaxivity time curves, with the greatest
peak �R2* and the absence of negative relaxivity values.

Figure 4 compares the rCBV discrepancies ([Gd � MION]
/MION) for each of the 4 correction-scheme permutations
(mean, 95% CI). Without preload or leakage-correction algo-
rithms, Gd-rCBV estimates are very discordant, and 3 of the 7
Gd-rCBV values were negative before correction. Although
there was no statistically significant bias within or between
correction schemes, the mean discrepancy was closest to the
ideal of zero for P�C�, followed by P�C�, P�C�, and
P�C� (Table 2). There were substantial differences in the
variance of discrepancies for the different correction schemes;
compared with the variance for P�C�, the variance of dis-
crepancies was statistically significantly lower for P�C� (22-
fold, adjusted P � .003), P�C� (32-fold, adjusted P � .01),
and P�C� (267-fold, adjusted P � .0001). Although there
was no significant difference between the variances for P�C�
and P�C� (1.5-fold, adjusted P � .67), the use of both cor-
rection techniques (P�C�) further significantly reduced the
variance compared with that for each individually (12-fold
versus P�C�, adjusted P � .01; 8-fold versus P�C�, ad-
justed P � .02).

Because the interscheme differences in variance were so
striking, we examined the specific relationship between Gd-
rCBVs and MION-rCBVs for each correction permutation
(Table 2). The intercepts for P�C�, P�C�, and P�C� each
differed significantly from the ideal of zero, whereas the inter-
cept for P�C� did not. Although the slopes for P�C�,
P�C�, P�C�, and P�C� differed significantly from the
ideal of 1, P�C� (P � .03) and P�C� (P � .009) produced
statistically significant evidence of a greater-than-chance rela-
tionship between Gd-rCBV and MION-rCBV, whereas
P�C� and P�C� did not. In Fig 5, Gd-rCBV with preload
and with (P�C�) and without (P�C�) postprocessing cor-

rection is plotted against MION-rCBV. The linear fit for rCBV
data with postprocessing correction is much closer to identity
than the linear fit without, arguing that the use of both correc-
tion schemes outperforms the use of only 1.

Discussion
Our results offer strong evidence that the combination of pre-
load and postprocessing correction schemes significantly re-
duces the variance of Gd-rCBV measures relative to criterion
standard MION-rCBV compared with either technique alone
and no correction. The results also suggest that both tech-
niques may reduce the tendency toward bias observed without
correction. The practical implication is that the combined cor-
rection scheme improves the accuracy and precision of Gd-
rCBV measurements, which is important for clinical applica-
tions such as the evaluation of posttreatment gliomas that rely
on rCBV quantitation for analysis of temporal trends and ab-
solute thresholds.

Extravasated contrast shortens the extravascular-extracel-
lular compartment T1, counteracting the transient first-pass
susceptibility contrast-induced signal intensity drop used to
estimate tumor hemodynamics. Preload administration min-
imizes T1 leakage contamination by saturating the baseline
extravascular-extracellular compartment T1-weighted signal
intensity, thereby diminishing T1-induced signal intensity in-
creases during subsequent DSC-MRI. It may also reduce the
gradient of contrast efflux. The importance of the preload can-
not be overemphasized3 and may be the difference between an
indiscernible and robust signal intensity drop in very leaky
tumors. In some cases without preload, no signal intensity
drop is detectable in the signal intensity time curve; in such
cases, it may be impossible to “resurrect” legitimate DSC-MRI
data by using the postprocessing algorithm. Although the
postprocessing algorithm may provide sufficient leakage cor-
rection in cases with robust signal intensity drop in the ab-
sence of preload, our results suggest a synergistic effect be-
tween these 2 techniques, and we advocate their use in tandem.

Preload dose and other factors such as “incubation” time
between preload and secondary bolus may impact the ade-
quacy of preload leakage correction.36 Hu et al36 found that a
0.1-mmol/kg preload dose and a 6-minute incubation time
helped optimize discrimination of posttreatment-related en-
hancement and tumor progression compared with uncor-
rected rCBV measurement, and our use of a 0.1-mmol/kg pre-
load and 10-minute incubation time would certainly be in line
with that recommendation. We kept the preload dose and
incubation time constant to reduce preload-related variance
in Gd-rCBV.

The postprocessing algorithm used herein generates both
corrected rCBV maps and first-order estimates of vascular
permeability.22 In addition to signal intensity contamination
by competing T1 effects, contrast extravasation may also di-
minish �R2* by decreasing the magnetic susceptibility gradi-
ent between the intra- and extravascular spaces (��). How-
ever, susceptibility differences created between extravascular
contrast and tumor cells may increase �R2*, providing cell
attenuation sensitivity on DSC-MRI, which may help distin-
guish common enhancing malignant lesions.37 For example,
the postbolus plateau of the relaxivity time curves in Fig 3 does
not completely return to baseline, even after leakage correc-

Fig 4. Comparison of rCBV discrepancies ([Gd � MION] / MION) for each correction
scheme permutation (mean and 95% CI). Although there is no statistically significant
intrascheme or interscheme bias, mean discrepancy is closest to zero for P�C� (�1.8%),
followed by P�C� (�7.6%), P�C� (�38.3%), and P�C� (�142.8%). The variance of
rCBV discrepancies differed substantially between correction schemes, with P�C� (22-
fold), P�C� (32-fold), and P�C� (267-fold) all statistically significantly lower compared
with P�C�. The use of both correction techniques (P�C�) further significantly reduced
the variance compared with that for each individually (12-fold versus P�C�, 8-fold versus
P�C�).
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tion, representing extravasation-related residual T2* effects.
The complex interplay between T1- and T2*-weighted effects
on DSC-MRI signal intensity is an active area of
investigation.23-25

Other postprocessing correction techniques exist. �-vari-
ate fitting eliminates tail deviation of �R2*(t) due to extrava-
sation4,11 but would not correct first-pass amplitude reduc-
tion (Fig 3B), is nonlinear, is often unstable, and has SNR
deficiencies.2,38 Early bolus extravasation may be substantial
in high-grade tumors with high vascular permeability, and
ignoring first-pass amplitude reduction could yield large
rCBV inaccuracies. Considering only peak �R2* or only inte-
grating from bolus onset to peak �R2* (“limited integration
method”30) does not account for first-pass �R2* suppression
or late bolus �R2* effects. The “baseline subtraction
method”29 assumes that the �R2* (t) tail matches the initial
baseline, with homogeneous linear contamination through-
out the first pass. The postprocessing model used herein ap-
proximately corrects the entire relaxivity time curve by using a
stable linear fit, permitting numeric integration during the
entire first pass, with associated advantages in accuracy and
rCBV SNR.2

There are alternatives to preload with postprocessing cor-
rection for minimizing rCBV error. Double-echo T2*-
weighted DSC-MRI uses signal intensities at 2 different TEs
and an exponential model to compute �R2*(t) without T1

contamination.27,28 This may still have T2* contamination
but, if corrected for, significantly correlates with tumor grade,
performing on a par, in this sense, with the preload/postpro-
cessing correction scheme; these 2 methods appear to provide
the most robust rCBV estimation in the setting of contrast
agent extravasation.24 We think that addressing T1 leakage
correction remains important because preload/postprocess-
ing correction schemes are becoming commonplace and well
cited. Furthermore, residual T2* contamination effects can
still confound rCBV estimates, and to the extent that the post-
processing correction herein also addresses T2* contamina-
tion (included in the K2 term), the preload/postprocessing
correction technique provides some degree of comprehensive
leakage correction.

Similar to previously investigated iron oxide contrast
agents,39,40 high-molecular-weight intravascular iron-con-
taining agents with large susceptibility effects (eg, ferumoxy-
tol) would eliminate the need for any leakage correction en-
tirely.41,42 However, they may introduce practical issues with
regard to T1-weighted postcontrast imaging, given that ex-
travasation accounts for most enhancement associated with
conventional Gd-based agents. For example, in an intrapatient
comparison of gadoteridol and ferumoxytol in intracranial
tumors, ferumoxytol rCBV values were significantly larger
(P � .0016) than gadoteridol rCBV values43; this finding im-
plies a reduction of T1 leakage contamination.

We found that several Gd-rCBV estimates were negative
for the P�C� group, likely due to a predominance of negative
�R2* secondary to avid contrast enhancement; numeric inte-
gration through the tail in such instances can accumulate large
negative �R2*. This begs the question of how the temporal
limits of �R2* integration are selected. We collected images
for 60 seconds during and after bolus injection, typically yield-
ing 40 –50 images following the first pass. It could be argued
that an abbreviated integration strategy as previously dis-
cussed could minimize sensitivity to T1 leakage effects and
reduce the variance of rCBV estimates. However, our meth-
odology mimics that in previous publications documenting
significant correlation of rCBV with tumor grade.22,24 Fur-
thermore, the postprocessing correction technique extends
the useful observation time in the dynamic phase of the con-
trast bolus, potentially increasing the contrast-to-noise ratio
of the computed rCBV maps.2 The trend toward negative bias
for the P�C� case illustrates the fact that T1 contamination,
by affecting the first pass and/or tail of the relaxivity time
curve, tends to artificially lower rCBV estimates.

The second of our staged bolus injections (P� cases) was a
double-dose injection, compared with a single-dose injection
for P� cases, and this would certainly affect the relative SNR of
P� versus P� rCBV measures and consequently the relative

Table 2: Summary of discrepancy between Gd-rCBV and MION-rCBV for each correction scheme permutation

Scheme rCBV Discrepancy Intercept Slope

Mean (%) 95% CI (%) Mean 95% CI Mean 95% CI
P�C� �142.8 �471.5, �186.0 �1.4 �1.1, �1.6 �0.01 �0.04, �0.02
P�C� �38.3 �32.0, �108.6 �1.3 �0.8, �1.8 �0.16 �0.02, �0.31
P�C� �7.6 �50.1, �65.9 �1.0 �0.5, �1.5 �0.02 �0.29, �0.33
P�C� �1.8 �22.0, �18.3 �0.6 �0.2, �1.4 �0.58 �0.17, �1.00

Note:—rCBV discrepancy indicates (Gd-rCBV � MION-rCBV) / MION-rCBV (ideal equals zero); intercept and slope, the linear fit of MION-rCBV versus Gd-rCBV (ideal equals zero intercept
with unity slope).

Fig 5. Gd-rCBV with preload and with (P�C�) and without (P�C�) leakage correction is
plotted against MION-rCBV. The linear fit for P�C� data is much closer to the ideal line
of identity than the linear fit for P�C�, arguing that the use of both correction schemes
outperforms the use of only preload.
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group variances. This injection strategy mimics commonly
published techniques, though because of nephrogenic sys-
temic fibrosis risk and higher molar T1 relaxivity of newer
contrast agents (eg, gadobenate dimeglumine, MultiHance;
Bracco Imaging, Milan, Italy; gadobutrol, Gadovist; Bayer
Schering Pharma, Berlin-Wedding, Germany), we reduce the
preload at our institution to one-fourth dose followed by a
single-dose dynamic bolus. This experiment could be repeated
to confirm the suspected relevance of our conclusions at this
different dosing strategy. In any event, we demonstrated sig-
nificant variance reduction for P�C� compared with P�C�,
and P�C� compared with P�C�, both at the same dosing
protocols, suggesting the added benefit of postprocessing cor-
rection in both preload scenarios.

Because neovascularity in high-grade gliomas is character-
ized by disorganized large-scale microvessels,44 we used gradi-
ent-echo EPI because it has �R2* sensitivity to microvessels of
all sizes, contrary to spin-echo with peak �R2* sensitivity to
capillary-sized microvessels.45 Furthermore, gradient echo–
based rCBV is known to be a statistically significant predictor
of tumor grade,22 and gradient-echo EPI is probably the most
commonly used DSC technique. Nonetheless, we expect that
the results of this study should pertain to spin-echo– based
rCBV measures as well.

Limitations to our study include a relatively small sample
size and the single-versus-double-dose contrast boluses used
for P� and P� cases, respectively. Although multiple investi-
gators have used the postprocessing algorithm tested herein,
the limitations of this reference-correction method have been
identified, including sensitivity to MTT, whereby elevated tu-
mor MTT may cause rCBV underestimation due to incorrect
estimation of K2.25 This may affect comparative rCBV esti-
mates between tumor and reference tissue or between high-
and low-grade gliomas typically having relatively lower and
higher MTT, respectively. Bjornerud et al25 proposed a novel
postprocessing correction algorithm that is insensitive to
MTT variations, and the use of more sophisticated postpro-
cessing correction schemes may further improve the residual
variance in the P�C� scheme and the regression of Gd-rCBV
estimates versus MION-rCBV criterion standard.

Conclusions
The rat gliosarcoma model with MION provides a viable
model for testing T1 leakage-correction schemes against crite-
rion standard rCBV measures. Conventional single-dose
rCBV estimates without leakage correction correlate very
poorly with true rCBV and should not be trusted in high-grade
tumors. Both preload and the postprocessing correction algo-
rithms independently reduce the variance of Gd-rCBV esti-
mates, but there is an additional benefit when used in tandem.
It is an ongoing work in our laboratories to better understand
and reduce T2* and latent susceptibility components of rCBV
error; the MION rat model may be helpful for achieving this
goal.
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