Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
ReplyLETTER

Reply:

S. Kamalian and M.H. Lev
American Journal of Neuroradiology June 2012, 33 (6) E95; DOI: https://doi.org/10.3174/ajnr.A3154
S. Kamalian
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.H. Lev
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • References
  • PDF
Loading

We thank Drs Schramm and Klotz for their interest in our article and this important topic.1 They are indeed correct that based on our reported delay-insensitive CTP5 software package raw data, “one can reversely deduce that the average MTT of the normal brain … would have to be approximately 9 seconds … in total disagreement with basically all normal MTT values that can be found in the literature. …”

In brief, this discrepancy is explained by the fact that the CTP5 delay-insensitive postprocessing software used for our study—as noted in our “Materials and Methods” section—was a research version that required appropriate DICOM scaling of the raw data values if these were to be used for absolute quantitation of the CTP parameters; this scaling was not automatically performed by the Analyze third-party software package (Analyze 8.1; Analyze-Direct, Mayo Clinic, Rochester, Minnesota) used for our analyses. (The CTP5 beta software was intended for research use only and has since been replaced by the now commercially available CTP 4D software [http://www.gehealthcare.com/usen/ct/products/docs/CT_Clarity_062411_pg48-49.pdf], for which this scaling factor is not an issue).

For absolute quantification of the CTP5 MTT maps, the required scaling factor is 2, meaning that the correct “reversely deduced” average MTT value derived from our results is, in fact, approximately 4.5 seconds. This value is not only in agreement with the literature but is also smaller than the 4.8 seconds derived by using the delay-sensitive (CTP3) standard algorithm and is in keeping with the expected results as outlined in Drs Schramm and Klotz's letter. (Additionally, if we apply this scaling, our absolute quantitative delay-corrected MTT threshold for “true” ischemic penumbra becomes 6.75, rather than 13.5 seconds.)

Hence, the values we reported for MTT penumbral thresholds were specific to our postprocessing/analysis platforms and were not intended for use to “back-calculate” absolute quantitative MTT parameter values in clinically normal brain. Indeed, the most important conclusions of our article underscore this point—that the CTP threshold values reported in the literature are platform-specific, are not standardized, and hence are not necessarily generalizable to acquisition and postprocessing protocols other than those specifically under investigation (in our case, CTP3 and CTP5). Moreover, absolute quantification of CTP parameter values is highly variable and critically dependent on many factors, such as correct placement of a venous scaling region of interest and estimation of hematocrit. For these reasons, we favor the use of relative, rather than absolute, perfusion values for our clinical stroke work.

The aims of our study were the following: 1) to determine which CTP map or maps optimally distinguish benign oligemia from true “at-risk” penumbra, and 2) to confirm earlier reports suggesting that specific threshold values might vary according to the postprocessing platform used. Despite the considerations discussed above, we found—by using both the delay-sensitive and the delay-insensitive software—that both relative and absolute MTTs were the most accurate CTP maps for determining “critical” penumbra. This result was irrespective of the scaling factors required for absolute quantification or other potentially confounding technical differences between the commercial and beta versions of the software, which were outside the scope of our study (eg, the degree of image noise). In this regard, it was not our goal to compare the accuracy of the delay-sensitive-versus-delay-insensitive platforms. Had this been the case, we would have studied a more homogeneous highly selected patient cohort, all with significant proximal large-vessel occlusions (ICA and/or M1) so as to target the marked contrast arrival-time differences between regions with otherwise similar baseline cerebral blood flow.

We appreciate this opportunity to clarify our work, apologize for any confusion in the interpretation of our results, and again thank Drs Schramm and Klotz for helping to highlight these important issues.

Reference

  1. 1.↵
    1. Kamalian S,
    2. Kamalian S,
    3. Konstas AA,
    4. et al
    . CT perfusion mean transit time maps optimally distinguish benign oligemia from true “at-risk” ischemic penumbra, but thresholds vary by postprocessing technique. AJNR Am J Neuroradiol 2012;33:545–49
    Abstract/FREE Full Text
  • © 2012 by American Journal of Neuroradiology
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 33 (6)
American Journal of Neuroradiology
Vol. 33, Issue 6
1 Jun 2012
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Reply:
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Reply:
S. Kamalian, M.H. Lev
American Journal of Neuroradiology Jun 2012, 33 (6) E95; DOI: 10.3174/ajnr.A3154

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Reply:
S. Kamalian, M.H. Lev
American Journal of Neuroradiology Jun 2012, 33 (6) E95; DOI: 10.3174/ajnr.A3154
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Reference
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Comments on an Article by Kamalian et al
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Pattern Recognition in Mitochondrial Leukodystrophies is Hampered by the Peculiarities of Mitochondrial Genetics
  • Callosal Angle Narrowing in Research Data Bases of the Cognitively Impaired
  • Reply:
Show more Letters

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2021 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2022 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire