Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Article CommentaryBrain
Open Access

Blood-Brain Barrier Disruption after Cardiac Surgery

J.G. Merino, L.L. Latour, A. Tso, K.Y. Lee, D.W. Kang, L.A. Davis, R.M. Lazar, K.A. Horvath, P.J. Corso and S. Warach
American Journal of Neuroradiology March 2013, 34 (3) 518-523; DOI: https://doi.org/10.3174/ajnr.A3251
J.G. Merino
aFrom the section on Stroke Diagnostics and Therapeutics (J.G.M., L.L.L., L.A.D., S.W.), National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
bJohns Hopkins Community Physicians (J.G.M., K.A.H.), Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.L. Latour
aFrom the section on Stroke Diagnostics and Therapeutics (J.G.M., L.L.L., L.A.D., S.W.), National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Tso
cDepartment of Neurology (A.T.), University of California San Francisco, San Francisco, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.Y. Lee
dDepartment of Neurology (K.Y.L.), Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.W. Kang
eAsan Medical Center (D.W.K.), Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.A. Davis
aFrom the section on Stroke Diagnostics and Therapeutics (J.G.M., L.L.L., L.A.D., S.W.), National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.M. Lazar
fDepartment of Neurology (R.M.L.), Columbia University College of Physicians and Surgeons, New York, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.A. Horvath
bJohns Hopkins Community Physicians (J.G.M., K.A.H.), Bethesda, Maryland
gCardiothoracic Surgery Research (K.A.H.), National Heart Lung and Blood Institute, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.J. Corso
hDepartment of Cardiac Surgery (P.J.C.), Washington Hospital Center, Washington, DC.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Warach
aFrom the section on Stroke Diagnostics and Therapeutics (J.G.M., L.L.L., L.A.D., S.W.), National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bendszus M,
    2. Reents W,
    3. Franke D,
    4. et al
    . Brain damage after coronary artery bypass grafting. Arch Neurol 2002;59:1090–95
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Restrepo L,
    2. Wityk RJ,
    3. Grega MA,
    4. et al
    . Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke 2002;33:2909–15
    Abstract/FREE Full Text
  3. 3.↵
    1. Knipp SC,
    2. Matatko N,
    3. Wilhelm H,
    4. et al
    . Evaluation of brain injury after coronary artery bypass grafting. A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging. Eur J Cardiothorac Surg 2004;25:791–800
    Abstract/FREE Full Text
  4. 4.↵
    1. Djaiani G,
    2. Fedorko L,
    3. Borger M,
    4. et al
    . Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery. Stroke 2004;35:e356–58
    Abstract/FREE Full Text
  5. 5.↵
    1. Floyd TF,
    2. Shah PN,
    3. Price CC,
    4. et al
    . Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence. Ann Thorac Surg 2006;81:2160–66
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Knipp SC,
    2. Matatko N,
    3. Schlamann M,
    4. et al
    . Small ischemic brain lesions after cardiac valve replacement detected by diffusion-weighted magnetic resonance imaging: relation to neurocognitive function. Eur J Cardiothorac Surg 2005;28:88–96
    Abstract/FREE Full Text
  7. 7.↵
    1. Jeon SB,
    2. Lee JW,
    3. Kim SJ,
    4. et al
    . New cerebral lesions on T2*-weighted gradient-echo imaging after cardiac valve surgery. Cerebrovasc Dis 2010;30:194–99
    CrossRefPubMed
  8. 8.↵
    1. Grieco G,
    2. d'Hollosy M,
    3. Culliford AT,
    4. et al
    . Evaluating neuroprotective agents for clinical anti-ischemic benefit using neurological and neuropsychological changes after cardiac surgery under cardiopulmonary bypass. Methodological strategies and results of a double-blind, placebo-controlled trial of GM1 ganglioside. Stroke 1996;27:858–74
    Abstract/FREE Full Text
  9. 9.↵
    1. Rinder C
    . Cellular inflammatory response and clinical outcome in cardiac surgery. Curr Opin Anaesthesiol 2006;19:65–68
    CrossRefPubMed
  10. 10.↵
    1. Cavaglia M,
    2. Seshadri SG,
    3. Marchand JE,
    4. et al
    . Increased transcription factor expression and permeability of the blood brain barrier associated with cardiopulmonary bypass in lambs. Ann Thorac Surg 2004;78:1418–25
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Okamura T,
    2. Ishibashi N,
    3. Zurakowski D,
    4. et al
    . Cardiopulmonary bypass increases permeability of the blood-cerebrospinal fluid barrier. Ann Thorac Surg 2010;89:187–94
    CrossRefPubMed
  12. 12.↵
    1. Wilkinson ID,
    2. Griffiths PD,
    3. Hoggard N,
    4. et al
    . Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging. Stroke 2000;31:848–51
    Abstract/FREE Full Text
  13. 13.↵
    1. Dechambre SD,
    2. Duprez T,
    3. Grandin CB,
    4. et al
    . High signal in cerebrospinal fluid mimicking subarachnoid haemorrhage on FLAIR following acute stroke and intravenous contrast medium. Neuroradiology 2000;42:608–11
    CrossRefPubMed
  14. 14.↵
    1. Mamourian AC,
    2. Hoopes PJ,
    3. Lewis LD
    . Visualization of intravenously administered contrast material in the CSF on fluid-attenuated inversion-recovery MR images: an in vitro and animal-model investigation. AJNR Am J Neuroradiol 2000;21:105–11
    Abstract/FREE Full Text
  15. 15.↵
    1. Köhrmann M,
    2. Struffert T,
    3. Frenzel T,
    4. et al
    . The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid. Stroke 2012;43:259–61
    Abstract/FREE Full Text
  16. 16.↵
    1. Mathews VP,
    2. Caldemeyer KS,
    3. Lowe MJ,
    4. et al
    . Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 1999;211:257–63
    CrossRefPubMed
  17. 17.↵
    1. Latour LL,
    2. Kang DW,
    3. Ezzeddine MA,
    4. et al
    . Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56:468–77
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Rozanski M,
    2. Ebinger M,
    3. Schmidt WU,
    4. et al
    . Hyperintense acute reperfusion marker on FLAIR is not associated with early haemorrhagic transformation in the elderly. Eur Radiol 2010;20:2990–96
    CrossRefPubMed
  19. 19.↵
    1. Henning EC,
    2. Latour LL,
    3. Hallenbeck JM,
    4. et al
    . Reperfusion-associated hemorrhagic transformation in SHR rats: evidence of symptomatic parenchymal hematoma. Stroke 2008;39:3405–10
    Abstract/FREE Full Text
  20. 20.↵
    1. Henning EC,
    2. Latour LL,
    3. Warach S
    . Verification of enhancement of the CSF space, not parenchyma, in acute stroke patients with early blood-brain barrier disruption. J Cereb Blood Flow Metab 2008;28:882–86
    CrossRefPubMed
  21. 21.↵
    1. Kidwell CS,
    2. Latour L,
    3. Saver JL,
    4. et al
    . Thrombolytic toxicity: blood brain barrier disruption in human ischemic stroke. Cerebrovasc Dis 2008;25:338–43
    CrossRefPubMedWeb of Science
  22. 22.↵
    1. Michel E,
    2. Liu H,
    3. Remley KB,
    4. et al
    . Perfusion MR neuroimaging in patients undergoing balloon test occlusion of the internal carotid artery. AJNR Am J Neuroradiol 2001;22:1590–96
    Abstract/FREE Full Text
  23. 23.↵
    1. Batra A,
    2. Latour LL,
    3. Ruetzler CA,
    4. et al
    . Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast FLAIR after experimental stroke. J Cereb Blood Flow Metab 2010;30:1188–99
    CrossRefPubMed
  24. 24.↵
    1. Warach S,
    2. Latour LL
    . Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke 2004;35:2659–61
    Abstract/FREE Full Text
  25. 25.↵
    1. Barr TL,
    2. Latour LL,
    3. Lee KY,
    4. et al
    . Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010;41:e123–28
    Abstract/FREE Full Text
  26. 26.↵
    1. Wardlaw JM,
    2. Doubal F,
    3. Armitage P,
    4. et al
    . Lacunar stroke is associated with diffuse blood-brain barrier dysfunction. Ann Neurol 2009;65:194–202
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Murata Y,
    2. Rosell A,
    3. Scannevin RH,
    4. et al
    . Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008;39:3372–77
    Abstract/FREE Full Text
  28. 28.↵
    1. Sood RR,
    2. Taheri S,
    3. Candelario-Jalil E,
    4. et al
    . Early beneficial effect of matrix metalloproteinase inhibition on blood-brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008;28:431–38
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Nagel S,
    2. Su Y,
    3. Horstmann S,
    4. et al
    . Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 2008;1188:198–206
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Trzepacz PT,
    2. Baker RW,
    3. Greenhouse J
    . A symptom rating scale for delirium. Psychiatry Res 1988;23:89–97
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Batra A,
    2. Song SS,
    3. Merino JG,
    4. et al
    . Older patients are at higher risk for blood-brain barrier disruption following treatment with IV-TPA, independent of impaired kidney function. Stroke 2011;42:e253
  32. 32.↵
    1. Rosenberg GA,
    2. Estrada EY,
    3. Dencoff JE
    . Matrix metalloproteinases and TIMPS are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998;29:2189–95
    Abstract/FREE Full Text
  33. 33.↵
    1. Altinbas A,
    2. van Zandvoort MJ,
    3. van den Berg E,
    4. et al
    . Cognition after carotid endarterectomy or stenting: a randomized comparison. Neurology 2011;77:1084–90
    CrossRef
  34. 34.↵
    1. Sheng X,
    2. Thomas A,
    3. Warach S,
    4. et al
    . Acute cortical lesions “disappear” on MRI but are associated with cortical atrophy in stroke patients: implications for brain aging and vascular cognitive impairment. Stroke 2010;41:e14
  35. 35.↵
    1. Alvarez-Sabín J,
    2. Delgado P,
    3. Abilleira S,
    4. et al
    . Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 2004;35:1316–22
    Abstract/FREE Full Text
  36. 36.↵
    1. van Harten AE,
    2. Scheeren TW,
    3. Absalom AR
    . A review of postoperative cognitive dysfunction and neuroinflammation associated with cardiac surgery and anaesthesia. Anaesthesia 2012;67:280–93
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Shlosberg D,
    2. Benifla M,
    3. Kaufer D,
    4. et al
    . Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 2010;6:393–403
    CrossRefPubMed
  38. 38.↵
    1. Biancari F,
    2. Mosorin M,
    3. Rasinaho E,
    4. et al
    . Postoperative stroke after off-pump versus on-pump coronary artery bypass surgery. J Thorac Cardiovasc Surg 2007;133:169–73
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. van Dijk D,
    2. Spoor M,
    3. Hijman R,
    4. et al
    . Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA 2007;297:701–08
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Deliganis AV,
    2. Fisher DJ,
    3. Lam AM,
    4. et al
    . Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia: the role of supplemental O2. Radiology 2001;218:152–56
    CrossRefPubMed
  41. 41.↵
    1. Anzai Y,
    2. Ishikawa M,
    3. Shaw DW,
    4. et al
    . Paramagnetic effect of supplemental oxygen on CSF hyperintensity on fluid-attenuated inversion recovery MR images. AJNR Am J Neuroradiol 2004;25:274–79
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 34 (3)
American Journal of Neuroradiology
Vol. 34, Issue 3
1 Mar 2013
  • Table of Contents
  • Index by author
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Blood-Brain Barrier Disruption after Cardiac Surgery
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Blood-Brain Barrier Disruption after Cardiac Surgery
J.G. Merino, L.L. Latour, A. Tso, K.Y. Lee, D.W. Kang, L.A. Davis, R.M. Lazar, K.A. Horvath, P.J. Corso, S. Warach
American Journal of Neuroradiology Mar 2013, 34 (3) 518-523; DOI: 10.3174/ajnr.A3251

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Blood-Brain Barrier Disruption after Cardiac Surgery
J.G. Merino, L.L. Latour, A. Tso, K.Y. Lee, D.W. Kang, L.A. Davis, R.M. Lazar, K.A. Horvath, P.J. Corso, S. Warach
American Journal of Neuroradiology Mar 2013, 34 (3) 518-523; DOI: 10.3174/ajnr.A3251
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Optimal Detection of Subtle Gadolinium Leakage in CSF with Heavily T2-Weighted Fluid-Attenuated Inversion Recovery Imaging
  • HARMless: Transient Cortical and Sulcal Hyperintensity on Gadolinium-Enhanced FLAIR after Elective Endovascular Coiling of Intracranial Aneurysms
  • Pericortical Enhancement on Delayed Postgadolinium Fluid-Attenuated Inversion Recovery Images in Normal Aging, Mild Cognitive Impairment, and Alzheimer Disease
  • Brain-Heart Interaction: Cardiac Complications After Stroke
  • Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke
  • Impact of Perioperative Infarcts After Cardiac Surgery
  • Intraoperative Magnesium Administration Does Not Improve Neurocognitive Function After Cardiac Surgery
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Evaluating the Effects of White Matter Multiple Sclerosis Lesions on the Volume Estimation of 6 Brain Tissue Segmentation Methods
  • Quiet PROPELLER MRI Techniques Match the Quality of Conventional PROPELLER Brain Imaging Techniques
  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire