Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBrain
Open Access

Direct Visualization of Anatomic Subfields within the Superior Aspect of the Human Lateral Thalamus by MRI at 7T

M. Kanowski, J. Voges, L. Buentjen, J. Stadler, H.-J. Heinze and C. Tempelmann
American Journal of Neuroradiology September 2014, 35 (9) 1721-1727; DOI: https://doi.org/10.3174/ajnr.A3951
M. Kanowski
aFrom the Departments of Neurology (M.K., H.-J.H., C.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Voges
bStereotactic Neurosurgery (J.V., L.B.), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
cLeibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Buentjen
bStereotactic Neurosurgery (J.V., L.B.), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Stadler
cLeibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.-J. Heinze
aFrom the Departments of Neurology (M.K., H.-J.H., C.T.)
cLeibniz Institute for Neurobiology Magdeburg (J.V., J.S., H.-J.H.), Magdeburg, Germany
dGerman Center for Neurodegenerative Diseases (H.-J.H.), Magdeburg, Germany.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Tempelmann
aFrom the Departments of Neurology (M.K., H.-J.H., C.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Schaltenbrand G,
    2. Bailey P
    1. Hassler R
    . Anatomy of the thalamus. In: Schaltenbrand G, Bailey P, eds. Introduction to Stereotaxis with an Atlas of the Human Brain. Vol 1. Stuttgart, Germany: Thieme; 1959:230–90
  2. 2.↵
    1. Jones EG
    . The Thalamus. New York: Plenum Press; 1985
  3. 3.↵
    1. Morel A
    . Stereotactic Atlas of the Human Thalamus and Basal Ganglia. New York: Informa Healthcare; 2007
  4. 4.↵
    1. Spiegelmann R,
    2. Nissim O,
    3. Daniels D,
    4. et al
    . Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI. Stereotact Funct Neurosurg 2006;84:19–23
    PubMed
  5. 5.↵
    1. Yovel Y,
    2. Assaf Y
    . Virtual definition of neuronal tissue by cluster analysis of multi-parametric imaging (virtual-dot-com imaging). Neuroimage 2007;35:58–69
    PubMed
  6. 6.↵
    1. Gringel T,
    2. Schulz-Schaeffer W,
    3. Elolf E,
    4. et al
    . Optimized high-resolution mapping of magnetization transfer (MT) at 3 Tesla for direct visualization of substructures of the human thalamus in clinically feasible measurement time. J Magn Reson Imaging 2009;29:1285–92
    CrossRefPubMed
  7. 7.↵
    1. Young GS,
    2. Feng F,
    3. Shen H,
    4. et al
    . Susceptibility-enhanced 3-Tesla T1-weighted spoiled gradient echo of the midbrain nuclei for guidance of deep brain stimulation implantation. Neurosurgery 2009;65:809–15
    CrossRefPubMedWeb of Science
  8. 8.↵
    1. Kanowski M,
    2. Voges J,
    3. Tempelmann C
    . Delineation of the nucleus centre median by proton density weighted magnetic resonance imaging at 3 T. Neurosurgery 2010;66(3 suppl operative):E121–23
    CrossRefPubMed
  9. 9.↵
    1. Bender B,
    2. Mänz C,
    3. Korn A,
    4. et al
    . Optimized 3D magnetization-prepared rapid acquisition of gradient echo: identification of thalamus substructures at 3T. AJNR Am J Neuroradiol 2011;32:2110–15
    Abstract/FREE Full Text
  10. 10.↵
    1. Traynor CR,
    2. Barker GJ,
    3. Crum WR,
    4. et al
    . Segmentation of the thalamus in MRI based on T1 and T2. Neuroimage 2011;56:939–50
    PubMed
  11. 11.↵
    1. Buentjen L,
    2. Kopitzki K,
    3. Schmitt FC,
    4. et al
    . Direct targeting of the thalamic anteroventral nucleus for deep brain stimulation by T1-weighted magnetic resonance imaging at 3 T. Stereotact Funct Neurosurg 2014;92:25–30
    PubMed
  12. 12.↵
    1. Holmes CJ,
    2. Hoge R,
    3. Collins L,
    4. et al
    . Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 1998;22:324–33
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Magnotta VA,
    2. Gold S,
    3. Andreasen NC,
    4. et al
    . Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 2000;11:341–46
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Behrens TE,
    2. Johansen-Berg H,
    3. Woolrich MW,
    4. et al
    . Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 2003;6:750–57
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Wiegell MR,
    2. Tuch DS,
    3. Larsson HB,
    4. et al
    . Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. Neuroimage 2003;19:391–401
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Deoni SC,
    2. Josseau MJ,
    3. Rutt BK,
    4. et al
    . Visualization of thalamic nuclei on high resolution, multi-averaged T1 and T2 maps acquired at 1.5 T. Hum Brain Mapp 2005;25:353–59
    PubMed
  17. 17.↵
    1. Abosch A,
    2. Yacoub E,
    3. Ugurbil K,
    4. et al
    . An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurgery 2010;67:1745–56
    CrossRefPubMedWeb of Science
  18. 18.↵
    1. Deistung A,
    2. Schäfer A,
    3. Schweser F,
    4. et al
    . Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage 2013;65:299–314
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Tourdias T,
    2. Saranathan M,
    3. Levesque IR,
    4. et al
    . Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 2014;84:534–45
    PubMed
  20. 20.↵
    1. Sussman MS,
    2. Vidarsson L,
    3. Pauly JM,
    4. et al
    . A technique for rapid single-echo spin-echo T2 mapping. Magn Reson Med 2010;64:536–45
    PubMed
  21. 21.↵
    1. Schaltenbrand G,
    2. Wahren W
    . Atlas for Stereotaxy of The Human Brain. 2nd ed. Stuttgart, Germany: Thieme; 1977
  22. 22.↵
    1. Mai KM,
    2. Assheuer J,
    3. Paxinos G
    . Atlas of the Human Brain. 2nd ed. Amsterdam, the Netherlands: Elsevier; 2004
  23. 23.↵
    1. Mai KM,
    2. Paxinos G
    1. Mai KM,
    2. Forutan F
    , Thalamus. In: Mai KM, Paxinos G, eds. The Human Nervous System. 3rd ed. Amsterdam, the Netherlands: Academic Press; 2012:618–77
  24. 24.↵
    1. Yagishita A,
    2. Nakano I,
    3. Oda M,
    4. et al
    . Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 1994;191:455–60
    PubMedWeb of Science
  25. 25.↵
    1. Hirai T,
    2. Jones EG
    . A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 1989;14:1–34
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Macchi G,
    2. Jones EG
    . Toward an agreement on terminology of nuclear and subnuclear divisions of the motor thalamus. J Neurosurg 1997;86:670–85
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Percheron G,
    2. François C,
    3. Talbi B,
    4. et al
    . The primate motor thalamus. Brain Res Brain Res Rev 1996;22:93–181
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Lemaire JJ,
    2. Sakka L,
    3. Ouchchane L,
    4. et al
    . Anatomy of the human thalamus based on spontaneous contrast and microscopic voxels in high-field magnetic resonance imaging. Neurosurgery 2010;66(3 suppl operative):E161–72
  29. 29.↵
    1. Dammann P,
    2. Kraff O,
    3. Wrede KH,
    4. et al
    . Evaluation of hardware-related geometrical distortion in structural MRI at 7 Tesla for image-guided applications in neurosurgery. Acad Radiol 2011;18:910–16
    CrossRefPubMed
  30. 30.↵
    1. Duchin Y,
    2. Abosch A,
    3. Yacoub E,
    4. et al
    . Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One 2012;7:e37328
    CrossRefPubMed
  31. 31.↵
    1. Maclaren J,
    2. Herbst M,
    3. Speck O,
    4. et al
    . Prospective motion correction in brain imaging: a review. Magn Reson Med 2013;69:621–36
    CrossRefPubMed
  32. 32.↵
    1. Maclaren J,
    2. Armstrong BS,
    3. Barrows RT,
    4. et al
    . Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain. PLoS One 2012;7:e48088
    PubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 35 (9)
American Journal of Neuroradiology
Vol. 35, Issue 9
1 Sep 2014
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Direct Visualization of Anatomic Subfields within the Superior Aspect of the Human Lateral Thalamus by MRI at 7T
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Direct Visualization of Anatomic Subfields within the Superior Aspect of the Human Lateral Thalamus by MRI at 7T
M. Kanowski, J. Voges, L. Buentjen, J. Stadler, H.-J. Heinze, C. Tempelmann
American Journal of Neuroradiology Sep 2014, 35 (9) 1721-1727; DOI: 10.3174/ajnr.A3951

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Direct Visualization of Anatomic Subfields within the Superior Aspect of the Human Lateral Thalamus by MRI at 7T
M. Kanowski, J. Voges, L. Buentjen, J. Stadler, H.-J. Heinze, C. Tempelmann
American Journal of Neuroradiology Sep 2014, 35 (9) 1721-1727; DOI: 10.3174/ajnr.A3951
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • In vivo super-resolution track-density imaging for thalamic nuclei identification
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire