HYDROGEL ADVANCED COILS

The clinical benefits of hydrogel NOW engineered with the softness of bare platinum on the V-Trak® Advanced Coil System.

- CLINICALLY STUDIED HYDROGEL
- EFFECTIVE
- ESTABLISHED SAFETY PROFILE
- SOFTER DESIGN

References
5. Data on file at MicroVention, Inc.
NOW AVAILABLE
BARRICADE COMPLEX FINISHING COIL

- Extremely soft profile of The Barricade Finishing coil now in a complex shape
- Excellent microcatheter stability for confident coil placement
- Available in a size range of 1mm-5mm

BARRICADE™ COIL SYSTEM
66% of Patients in MR CLEAN Were Treated with a Trevo® Stent Retriever

Trevo® PROVUE RETRIEVER

MR CLEAN®

First clinical evidence for intra-arterial treatment with stent retrievers

- **Largest** of the randomized AIS trials\(^2\), with over 500 patients enrolled
- The Trevo Retriever was the **#1** device used in the **MR CLEAN** Trial

\(^2\) MR CLEAN is the largest AIS Trial in which stent retrievers were used. http://www.mrclean-trial.org/

Copyright © 2015 Stryker NV00016092:AB

Stroke: Our Only Focus. Our Ongoing Promise.
From cervical to sacral we’ve got you covered.

Introducing the first PMMA indicated for treating pathological fractures of the sacrum.

Stryker set the bar in 2008 with the release of VertaPlex® HV, addressing specific viscosity and working time preferences for treating vertebral compression fractures. Now in 2015, VertaPlex® HV became the first PMMA to receive 510(k) clearance for the fixation of pathological fractures of the sacral vertebral body or ala using sacral vertebroplasty or sacroplasty.

strykerIVS.com

Products referenced with TM designation are trademarks of Stryker. Products referenced with ® designation are registered trademarks of Stryker.

The information presented in this overview is intended to demonstrate the breadth of Stryker product offerings. Always refer to the package insert, product label and/or user instructions before using any Stryker product. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.
Howard A. Rowley, MD, ASNR 2016 Program Chair/President-Elect
Programming developed in cooperation with …

American Society of Functional Neuroradiology (ASFNR)
Christopher G. Filippi, MD

American Society of Head and Neck Radiology (ASHNR)
Lindell R. Gentry, MD

American Society of Pediatric Neuroradiology (ASPNR)
Erin Simon Schwartz, MD

American Society of Spine Radiology (ASSR)
Gregory J. Lawler, MD

Society of NeuroInterventional Surgery (SNIS)
Charles J. Prestigiacomo, MD

American Society of Neuroradiology (ASNR) Health Policy Committee
Robert M. Barr, MD, FACR

Computer Science and Informatics (CSI) Committee
John L. Go, MD

Research Scientists Committee
Dikoma C. Shungu, PhD

ABSTRACT DEADLINE:
Friday, December 11, 2015
Please visit www.asnr.org/2016 for more information

ASNR 54TH ANNUAL MEETING
c/o American Society of Neuroradiology
800 Enterprise Drive, Suite 205
Oak Brook, Illinois 60523-4216
Phone: 630-574-0220
Fax: 630 574-0661
www.asnr.org/2016

Scan Now to visit our website
CALL FOR AJNR EDITORIAL FELLOWSHIP CANDIDATES

2016 Candidate Information and Requirements

GOALS
- Increase interest in “editorial” and publication-related activities in younger individuals.
- Increase understanding and participation in the AJNR review process.
- Incorporate into AJNR’s Editorial Board younger individuals who have previous experience in the review and publication process.
- Fill a specific need in neuroradiology not offered by other similar fellowships.
- Increase the relationship between “new” generation of neuroradiologists and more established individuals.
- Increase visibility of AJNR among younger neuroradiologists.

ACTIVITIES OF THE FELLOWSHIP
- Serve as Editorial Fellow for one year. This individual will be listed on the masthead as such.
- Review at least one manuscript per month for 12 months. Evaluate all review articles submitted to AJNR.
- Access to our electronic manuscript review system will be granted so that the candidate can learn how these systems work.
- Be involved in the final decision of selected manuscripts together with the Editor-in-Chief.
- Participate in all monthly Senior Editor telephone conference calls.
- Participate in all meetings of the Editors and Publications Committee during the annual meetings of ASNR and RSNA as per candidate’s availability. The Foundation of the ASNR will provide $2000 funding for this activity.
- Evaluate progress and adjust program to specific needs in biannual meeting or telephone conference with the Editor-in-Chief.
- Write at least one editorial for AJNR.
- Embark on an editorial scientific or bibliometric project that will lead to the submission of an article to AJNR or another appropriate journal as determined by the Editor-in-Chief. This project will be presented by the Editorial Fellow at the ASNR annual meeting.
- Serve as liaison between AJNR and ASNR’s Young Professionals Network and the 3 YPs appointed to AJNR as special consultants. Participate in meetings and telephone calls with this group. Design one electronic survey/year polling the group regarding readership attitudes and wishes.
- Recruit trainees as reviewers as determined by the Editor-in-Chief.
- Participate in Web improvement projects.

* Invite Guest Editors for AJNR’s News Digest to cover a variety of timely topics.

QUALIFICATIONS
- Be a fellow in neuroradiology from North America, including Canada (this may be extended to include other countries).
- Be a junior faculty neuroradiology member (< 3 years) in either an academic and private environment.
- Be an “in-training” or member of ASNR in any other category.

APPLICATION
- Include a short letter of intent with statement of goals and desired research project. CV must be included.
- Include a letter of recommendation from the Division Chief or fellowship program director. A statement of protected time to perform the functions outlined is desirable.
- Applications will be evaluated by AJNR’s Senior Editors and the Chair of the Publications Committee prior to the ASNR meeting. The name of the selected individual will be announced at the meeting.
*Applications should be received by March 4, 2016 and sent to Ms. Karen Halm, AJNR Managing Editor, electronically at khalm@asnr.org.
Applications are being accepted in any area of research related to neuroradiology. Applications should describe the unique nature of the research effort independent of existing research efforts, and should have well-defined goals for the funding period of the grant. The two-year scholarship will provide $150,000 ($75,000 per year); it requires a minimum fifty percent time commitment.

Eligibility

- Applicant must be a member of both ARRS and ASNR at the time of application and for the duration of the award.
- Applicant must hold a full-time faculty position in a department of radiology, radiation oncology, or nuclear medicine within a North American educational institution at the time of application.
- Applicant must be within 5 years of initial faculty appointment with an academic rank of instructor or assistant professor (or equivalent).
- Applicant must have completed advanced training and be certified by the American Board of Radiology (ABR) or on track for certification.
- Applicant must have completed neuroradiology training in an accredited ACGME neuroradiology fellowship program.

The deadline for receipt of applications is **November 23, 2015**.

Log onto www.arrs.org/RoentgenFund/Scholarships/ARRS_ASNR.aspx or foundation.asnr.org for more information.

This scholarship is funded by The Roentgen Fund® in conjunction with The Foundation of the American Society of Neuroradiology. To support this and other important scholarships with a generous tax-deductible contribution, visit roentgenfund.arrs.org.
Aneurysm The

ENHANCED CONTROL TO MAXIMIZE COIL PERFORMANCE

The V-Trak® Advanced Coil System, the next generation to power the performance of our most technically advanced line of coils. Offering the optimal combination of support and flexibility.

INDICATIONS FOR USE:
The HydroCoil® Embolic System (HES) is intended for the endovascular embolization of intracranial aneurysms and other neurovascular abnormalities such as arteriovenous malformations and arteriovenous fistulae. The HES is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation and for arterial and venous embolizations in the peripheral vasculature. The device should only be used by physicians who have undergone pre-clinical training in all aspects of HES procedures as prescribed by MicroVention.

MICROVENTION, V-Trak, HydroCoil, HydroFrame, HydroFill and HydroSoft are registered trademarks of MicroVention, Inc. Scientific and clinical data related to this document are on file at MicroVention, Inc. Refer to Instructions for Use, contraindications and warnings for additional information. Federal (USA) law restricts this device for sale by or on the order of a physician. © 2015 MicroVention, Inc. 9/15
INTENDED USE / INDICATIONS FOR USE
Target® Detachable Coils are intended to embolize and/or exclude blood flow in vascular abnormalities of the neurovascular, peripheral and/or extracranial vasculature.

Target® Detachable Coils are indicated for endovascular embolization of:
- Intracranial aneurysms
- Other neurovascular abnormalities such as arteriovenous malformations and/ or fistulae models.
- Arterial and venous embolizations in the peripheral vasculature

CONTRAINDICATIONS
None known.

POTENTIAL ADVERSE EVENTS
Potential complications include, but are not limited to: allergic reaction, aneurysm perforation and rupture, artherithy, death, edema, embolus, headache, hemorrhage, infection, ischemia, neurological/intracranial sequelae, post-embolization syndrome (fever, increased white blood cell count, discomfort), TIA/stroke, vasospasm, vessel occlusion or closure, vessel perforation, dissection, trauma or damage, vessel rupture, vessel thrombosis. Other procedural complications including but not limited to: anesthetic and contrast media risks, hypertension, hypotension, access site complications.

WARNINGS
- Content supplied STERILE using an ethylene oxide (ETO) process. Do not use if sterile barrier is damaged. If damage is found, call your Stryker Neurovascular representative.
- For single use only. Do not reuse, reprocess or resterilize. Reuse, reprocessing or resterilization may compromise the structural integrity of the device and/or end to device failure which, in turn, may result in patient injury, illness, vascular injury, or death. Reuse, reprocessing or resterilization may also create a risk of contamination of the device and/or cause patient infection or cross-infection, including, but not limited to, the transmission of infectious diseases from one patient to another. Contact of the device may lead to injury, illness or death of the patient.
- After use, dispose of product and packaging in accordance with hospital, administrative and/or local governmental policy.
- This device should only be used by physicians who have received appropriate training in interventional neuroradiology or interventional radiology and procedural training on the use of this device as established by Stryker Neurovascular.
- Patients with hyperammonemia or any condition that would provide an allergic reaction to this implant should be avoided.
- MR temperature testing was not conducted in peripheral vasculature, arteriovenous malformations or fistulae models.
- The safety and performance characteristics of the Target Detachable Coil System | Target Detachable Coils, InZone Detachment System, delivery systems and accessories have not been demonstrated with other manufacturer’s devices (whether coils, coil delivery devices, coil detachment systems, catheters, guidewires, and/or other accessories). Due to the potential incompatibility of non Stryker Neurovascular devices with the Target Detachable Coil System, the use of other manufacturer’s device(s) with the Target Detachable Coil System is not recommended.
- To reduce risk of coil migration, the diameter of the first and second coil should never be less than the width of the ostium.
- In order to achieve optimal performance of the Target Detachable Coil System and reduce the risk of thromboembolic complications, it is critical that a continuous infusion of appropriate flush solution be maintained between the InZone Detachment System and the 2-tip microcatheter and guiding catheter. To the 2-tip microcatheter and guiding catheter, and of the 2-tip microcatheter and Stryker Neurovascular guidewire and delivery wire. Continuous flush also reduces the potential for thrombus formation, and crystallization of infusion into, the detachment zone of the Target Detachable Coil.
- Do not use the product after the “Use By” date specified on the package.
- Reuse of the flush port/dispenser coil or use with any coil other than the original coil may result in contamination of, or damage to, the coil.
- Utilization of damaged coils may affect coil delivery in, and stability inside, the vessel or aneurysm, possibly resulting in coil migration and/or stretching.
- The flush-saver marker is designed for use with a Rotating Hemostatic Valve (RHV). If used without an RHV, the distal end of the coil may be beyond the alignment mark when the flush-saver marker reaches the microcatheter hub.
- If the flush-saver marker is not visible, do not advance the coil without fluoroscopy.
- Do not irrigate delivery wire during or after delivery of the coil. Rotating the Target Detachable Coil delivery wire may result in a stretched coil or premature detachment of the coil from the delivery wire, which could result in coil migration.
- Verify there is no coil loop protrusion into the parent vessel after coil placement and prior to coil detachment. Coil loop protrusion after coil placement may result in thromboembolic events of the coil is detached.
- Verify there is no movement of the coil after coil placement and prior to coil detachment. Movement of the coil after coil placement may indicate that the coil could migrate once it is detached.
- Failure to properly close the RHV compression fitting over the delivery wire before attaching the InZone® Detachment System could result in coil movement, aneurysm rupture or vessel perforation.
- Verify repeatedly that the distal shaft of the catheter is not under stress during coil deployment. As axial compression or tension forces could be stored in the 2-tip microcatheter causing the tip to move during coil delivery. Microcatheter tip movement could cause the aneurysm or vessel to rupture.
- Advancing the delivery wire beyond the microcatheter tip across the aneurysm could result in coil migration.
- The long term effect of this product on extravascular tissues has not been established so care should be taken to retain this device in the intravascular space.

COMPATIBILITY
Compatibility of the Retriever with other microcatheters has not been established so care should be taken to retain this device in the intravascular space.

PRECAUTIONS
- Prescription only – device restricted to use by or on the order of a physician.
- Store in cool, dry, dark place.
- Do not use open or damaged packaged.
- Use by “Use By” date.
- Exposure to temperatures above 54°C (130°F) may damage equipment and/or devices. Do not autoclave.
- Do not expose Retrievers to solvents.
- Use Retrievers in conjunction with fluoroscopic visualization and proper anti-coagulation agents.
- To prevent thrombus formation and contrast media crystal formation, maintain a constant pressure to properly guide catheter and Microcatheter and between Microcatheter and Retriever.
- Do not attach a torque device to the shaped proximal end of DOC® Compatible Retrievers. Damage may occur, preventing ability to attach DOC® Guide Wire Extension.

CONTRAINDICATIONS
None known.

POTENTIAL ADVERSE EVENTS
Potential complications include, but are not limited to: allergic reaction, aneurysm perforation and rupture, artherithy, death, edema, embolus, headache, hemorrhage, infection, ischemia, neurological/intracranial sequelae, post-embolization syndrome (fever, increased white blood cell count, discomfort), TIA/stroke, vasospasm, vessel occlusion or closure, vessel perforation, dissection, trauma or damage, vessel rupture, vessel thrombosis. Other procedural complications including but not limited to: anesthetic and contrast media risks, hypertension, hypotension, access site complications.

WARNINGS
- Contents supplied STERILE using an ethylene oxide (ETO) process. Do not use if sterile barrier is damaged. If damage is found, call your Stryker Neurovascular representative.
- For single use only. Do not reuse, reprocess or resterilize. Reuse, reprocessing or resterilization may compromise the structural integrity of the device and/or end to device failure which, in turn, may result in patient injury, illness, vascular injury, or death. Reuse, reprocessing or resterilization may also create a risk of contamination of the device and/or cause patient infection or cross-infection, including, but not limited to, the transmission of infectious diseases from one patient to another. Contact of the device may lead to injury, illness or death of the patient.
- After use, dispose of product and packaging in accordance with hospital, administrative and/or local governmental policy.
- This device should only be used by physicians who have received appropriate training in interventional neuroradiology or interventional radiology and procedural training on the use of this device as established by Stryker Neurovascular.
- Patients with hyperammonemia or any condition that would provide an allergic reaction to this implant should be avoided.
- MR temperature testing was not conducted in peripheral vasculature, arteriovenous malformations or fistulae models.
- The safety and performance characteristics of the Target Detachable Coil System | Target Detachable Coils, InZone Detachment System, delivery systems and accessories have not been demonstrated with other manufacturer’s devices (whether coils, coil delivery devices, coil detachment systems, catheters, guidewires, and/or other accessories). Due to the potential incompatibility of non Stryker Neurovascular devices with the Target Detachable Coil System, the use of other manufacturer’s device(s) with the Target Detachable Coil System is not recommended.
- To reduce risk of coil migration, the diameter of the first and second coil should never be less than the width of the ostium.
- In order to achieve optimal performance of the Target Detachable Coil System and reduce the risk of thromboembolic complications, it is critical that a continuous infusion of appropriate flush solution be maintained between the InZone Detachment System and the 2-tip microcatheter and guiding catheter. To the 2-tip microcatheter and guiding catheter, and of the 2-tip microcatheter and Stryker Neurovascular guidewire and delivery wire. Continuous flush also reduces the potential for thrombus formation, and crystallization of infusion into, the detachment zone of the Target Detachable Coil.
- Do not use the product after the “Use By” date specified on the package.
- Reuse of the flush port/dispenser coil or use with any coil other than the original coil may result in contamination of, or damage to, the coil.
- Utilization of damaged coils may affect coil delivery in, and stability inside, the vessel or aneurysm, possibly resulting in coil migration and/or stretching.
- The flush-saver marker is designed for use with a Rotating Hemostatic Valve (RHV). If used without an RHV, the distal end of the coil may be beyond the alignment mark when the flush-saver marker reaches the microcatheter hub.
- If the flush-saver marker is not visible, do not advance the coil without fluoroscopy.
- Do not irrigate delivery wire during or after delivery of the coil. Rotating the Target Detachable Coil delivery wire may result in a stretched coil or premature detachment of the coil from the delivery wire, which could result in coil migration.
- Verify there is no coil loop protrusion into the parent vessel after coil placement and prior to coil detachment. Coil loop protrusion after coil placement may result in thromboembolic events of the coil is detached.
- Verify there is no movement of the coil after coil placement and prior to coil detachment. Movement of the coil after coil placement may indicate that the coil could migrate once it is detached.
- Failure to properly close the RHV compression fitting over the delivery wire before attaching the InZone® Detachment System could result in coil movement, aneurysm rupture or vessel perforation.
- Verify repeatedly that the distal shaft of the catheter is not under stress during coil deployment. As axial compression or tension forces could be stored in the 2-tip microcatheter causing the tip to move during coil delivery. Microcatheter tip movement could cause the aneurysm or vessel to rupture.
- Advancing the delivery wire beyond the microcatheter tip across the aneurysm could result in coil migration.
- The long term effect of this product on extravascular tissues has not been established so care should be taken to retain this device in the intravascular space.

COMPATIBILITY
Compatibility of the Retriever with other microcatheters has not been established so care should be taken to retain this device in the intravascular space.

PRECAUTIONS
- Prescription only – device restricted to use by or on the order of a physician.
- Store in cool, dry, dark place.
- Do not use open or damaged packaged.
- Use by “Use By” date.
- Exposure to temperatures above 54°C (130°F) may damage equipment and/or devices. Do not autoclave.
- Do not expose Retrievers to solvents.
- Use Retrievers in conjunction with fluoroscopic visualization and proper anti-coagulation agents.
- To prevent thrombus formation and contrast media crystal formation, maintain a constant pressure to properly guide catheter and Microcatheter and between Microcatheter and Retriever.
- Do not attach a torque device to the shaped proximal end of DOC® Compatible Retrievers. Damage may occur, preventing ability to attach DOC® Guide Wire Extension.
Smooth and Stable

Whether you are framing, filling or finishing, Target Detachable Coils deliver consistently smooth deployment and exceptional microcatheter stability. Focused on design, Target Coils feature a host of advantages to ensure the high-powered performance you demand.

For more information, please visit www.strykerneurovascular.com/Target or contact your local Stryker Neurovascular sales representative.
Cystic pituitary adenomas vs. Rathke cleft cysts
Hyperintense dentate and repeat gadolinium administration
Intrasaccular flow disrupters for aneurysm treatment

Official Journal ASNR • ASFNR • ASHNR • ASPNR • ASSR
PERSPECTIVES S. Mukherjee

EDITORIAL

1794 We Are Not Alone S. Mirbagheri, et al.

REVIEW ARTICLE

INTERVENTIONAL

RESEARCH PERSPECTIVES

1803 Hot Topics in Research: Preventive Neuroradiology in Brain Aging and Cognitive Decline C.A. Raji, et al.

ADULT BRAIN

EDITORIAL PERSPECTIVES

1810 Subspecialty Virtual Impact Factors within a Dedicated Neuroimaging Journal A.F. Choudhri, et al.

SOCIAL MEDIA VIGNETTE

1814 Social Media in Medical Education R.T. Fitzgerald, et al.

GENERAL CONTENTS

1839 Significance of Development and Reversion of Collaterals on MRI in Early Neurologic Improvement and Long-Term Functional Outcome after Intravenous Thrombolysis for Ischemic Stroke M. Ichijo, et al.

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1853</td>
<td>MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and Quantitative Analysis</td>
<td>E. Mormina, et al.</td>
<td>ADULT BRAIN</td>
</tr>
<tr>
<td>1859</td>
<td>Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration</td>
<td>M.E. Adin, et al.</td>
<td>ADULT BRAIN</td>
</tr>
<tr>
<td>1866</td>
<td>Differentiation between Cystic Pituitary Adenomas and Rathke Cleft Cysts: A Diagnostic Model Using MRI</td>
<td>M. Park, et al.</td>
<td>ADULT BRAIN</td>
</tr>
<tr>
<td>1874</td>
<td>Cognitive and White Matter Tract Differences in MS and Diffuse Neuropsychiatric Systemic Lupus Erythematosus</td>
<td>B. Cesar, et al.</td>
<td>ADULT BRAIN</td>
</tr>
<tr>
<td>1884</td>
<td>Cytotoxic Edema in Posterior Reversible Encephalopathy Syndrome: Correlation of MRI Features with Serum Albumin Levels</td>
<td>B. Gao, et al.</td>
<td>ADULT BRAIN</td>
</tr>
<tr>
<td>1890</td>
<td>Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI</td>
<td>R.D. Bharath, et al.</td>
<td>FUNCTIONAL</td>
</tr>
<tr>
<td>1912</td>
<td>Progressive versus Nonprogressive Intracranial Dural Arteriovenous Fistulas: Characteristics and Outcomes</td>
<td>S.W. Hetts, et al.</td>
<td>INTERVENTIONAL</td>
</tr>
<tr>
<td>1920</td>
<td>Additional Value of Intra-Aneurysmal Hemodynamics in Discriminating Ruptured versus Unruptured Intracranial Aneurysms</td>
<td>J.J. Schneiders, et al.</td>
<td>INTERVENTIONAL</td>
</tr>
<tr>
<td>1934</td>
<td>Stent-Assisted Coiling of Wide-Neck Intracranial Aneurysms Using Low-Profile LEO Baby Stents: Initial and Midterm Results</td>
<td>K. Aydin, et al.</td>
<td>INTERVENTIONAL</td>
</tr>
<tr>
<td>1947</td>
<td>Combined Use of Mechanical Thrombectomy with Angioplasty and Stenting for Acute Basilar Occlusions with Underlying Severe Intracranial Vertebralbasilar Stenosis: Preliminary Experience from a Single Chinese Center</td>
<td>F. Gao, et al.</td>
<td>INTERVENTIONAL</td>
</tr>
<tr>
<td>1964</td>
<td>Dynamic Angiography and Perfusion Imaging Using Flat Detector CT in the Angiography Suite: A Pilot Study in Patients with Acute Middle Cerebral Artery Occlusions</td>
<td>T. Struffert, et al.</td>
<td>INTERVENTIONAL</td>
</tr>
<tr>
<td>1971</td>
<td>MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compression</td>
<td>A. Hatt, et al.</td>
<td>EXTRACRANIAL</td>
</tr>
<tr>
<td>1978</td>
<td>Diagnostic Accuracy of 4 Commercially Available Semiautomatic Packages for Carotid Artery Stenosis Measurement on CTA</td>
<td>J. Borst, et al.</td>
<td>EXTRACRANIAL</td>
</tr>
<tr>
<td>1988</td>
<td>Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact</td>
<td>W. Wuest, et al.</td>
<td>HEAD & NECK</td>
</tr>
</tbody>
</table>
ONLINE FEATURES

LETTERS

E65 Standardized Brain Tumor Imaging Protocol for Clinical Trials
 G.V. Goldmacher, et al.

E67 ERRATUM

Region of interest outlined on the left in yellow, with the viscoelastic property maps for G' and G'' shown at the right, in kilopascals. Stiffer tissues are shown in warmer colors.
The word “alien” is frequently used to describe the amazing and unusual geologic landscape at Trona Pinnacles in California. One can recognize the pinnacles from numerous Hollywood movies that have been shot here including Star Trek V: The Final Frontier and Planet of the Apes. This landscape is dominated by numerous tufas (made of calcium carbonate), which were formed underwater 10,000 to 100,000 years ago in the Searles lake bed basin. This long-exposure image gives the streaky effect to the clouds over the tufas that enhances the unreal appearance of the surreal landscape.

Sugoto Mukherjee, Assistant Professor of Neuroradiology, Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
We Are Not Alone
S. Mirbagheri, K. Yousem, and D.M. Yousem

While numerous recent US studies indicate a decline in medical malpractice suits across many medical specialties in the past decade, medicolegal concerns facing radiologists have conversely increased.1-4 A 2013 report on diagnostic radiologists indicated that 30.9% (2600 of 8401) of all US radiologists have been sued.4 A subsequent 2014 study of neuroradiologists found that 449/904 (49.7%) American Society of Neuroradiology members had been sued, and of these, nearly 50% were sued multiple times.3 The level of concern over malpractice suits was reported as moderate in severity by practicing neuroradiologists in the United States, and most respondents, despite substantial contradictory evidence on the outcomes of malpractice trials favoring defendants, thought that the medicolegal system was weighted against them.3 We are scared.

Have we exported malpractice suits as readily as we have exported Kentucky Fried Chicken and Subway outlets across the globe? With the exception of the European Union, few countries outside the United States report malpractice lawsuit rates. We, therefore, created an informal survey, which was sent via e-mail to 96 neuroradiologists worldwide, representing 49 countries, to gain a sense of whether the American experience and anxiety over being sued are unique or universal. The survey results were sent to 60 officers of those national radiology society boards to confirm the data.

The data from this informal survey are presented in the Table.

The following are the 8 countries with the highest rates of radiologic malpractice suits, shown with average radiologist salaries and annual malpractice premium rates (presented respectively in parentheses):

- United States, government and private (46%, $340,000, $21,000)3
- Italy, government (50%, $300,000, $3000)
- Ireland, government (35%, $235,000, $8000)
- Germany, government and private (30%, $300,000, $1670)
- Spain, government (10%, $65,000, $550)
- Sweden, government (10%, $130,000, $550)
- Saudi Arabia, government (10%, $300,000, $8500)
- Chile, government (10%, $120,000, $1000).

The responses generally revealed a moderate level of concern about malpractice that is a global phenomenon. The impact on our collective practice of medicine varies from mild to moderate across countries. As to Americans’ fear of malpractice lawyers, WE ARE NOT ALONE.

REFERENCES
<table>
<thead>
<tr>
<th>Country</th>
<th>Average Radiologist Salary</th>
<th>Radiologist/Practice Pays for Insurance</th>
<th>Average Insurance Premium</th>
<th>Radiology Malpractice Rate</th>
<th>Representative Radiologist Sued for Malpractice</th>
<th>Fear of Being Sued*</th>
<th>Practices Defensive Medicine*</th>
<th>Malpractice Affects Practice*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td>$50,000</td>
<td>No</td>
<td>Null</td>
<td>5%</td>
<td>No</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Americas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>$37,000</td>
<td>Yes</td>
<td>$1200</td>
<td>5%</td>
<td>Yes</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Brazil</td>
<td>$130,000</td>
<td>Yes</td>
<td>$660</td>
<td>1%</td>
<td>No</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Canada</td>
<td>$300,000</td>
<td>No</td>
<td>$3000</td>
<td>5%</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chile</td>
<td>$120,000</td>
<td>Yes</td>
<td>$1000</td>
<td>10%</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Guatemala</td>
<td>$35,000</td>
<td>No</td>
<td>Null</td>
<td>1%</td>
<td>No</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>United States</td>
<td>$340,000</td>
<td>Yes</td>
<td>$21,000</td>
<td>46%</td>
<td>No</td>
<td>4</td>
<td>4</td>
<td>Null</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>$60,000</td>
<td>Yes</td>
<td>$300</td>
<td>0%</td>
<td>Yes</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Japan</td>
<td>$100,000</td>
<td>Yes</td>
<td>$70</td>
<td>1%</td>
<td>Yes</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Malaysia</td>
<td>$190,000</td>
<td>Yes</td>
<td>$8400</td>
<td>0%</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Philippines</td>
<td>$21,000</td>
<td>No</td>
<td>Null</td>
<td>2%</td>
<td>No</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Singapore</td>
<td>$200,000</td>
<td>Yes</td>
<td>$1750</td>
<td>5%</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>South Korea</td>
<td>$200,000</td>
<td>Yes</td>
<td>$5000</td>
<td>3%</td>
<td>Yes</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>$12,000</td>
<td>No</td>
<td>Null</td>
<td>0%</td>
<td>No</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Taiwan</td>
<td>$120,000</td>
<td>Yes</td>
<td>$600</td>
<td>3%</td>
<td>Yes</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Australia/Oceania</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>$450,000</td>
<td>Yes</td>
<td>$5000</td>
<td>5%</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>New Zealand</td>
<td>$240,000</td>
<td>Yes</td>
<td>$1300</td>
<td>0.1%</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>$300,000</td>
<td>No</td>
<td>Null</td>
<td>1%</td>
<td>No</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Bosnia/Herzegovina</td>
<td>$17,000</td>
<td>No</td>
<td>Null</td>
<td>2%</td>
<td>No</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Croatia</td>
<td>$25,000</td>
<td>No</td>
<td>Null</td>
<td>2%</td>
<td>Null</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Cyprus</td>
<td>$84,000</td>
<td>Yes</td>
<td>Null</td>
<td>5%</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Denmark</td>
<td>$100,000</td>
<td>No</td>
<td>Null</td>
<td>10%</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Finland</td>
<td>$100,000</td>
<td>No</td>
<td>Null</td>
<td>1%</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>$180,000</td>
<td>Yes</td>
<td>$1360</td>
<td>5%</td>
<td>Yes</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Germany</td>
<td>$300,000</td>
<td>Yes</td>
<td>$1670</td>
<td>30%</td>
<td>Yes</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Greece</td>
<td>$30,000</td>
<td>No</td>
<td>$750</td>
<td>1%</td>
<td>No</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ireland</td>
<td>$235,000</td>
<td>Yes</td>
<td>$8000</td>
<td>35%</td>
<td>No</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Italy</td>
<td>$300,000</td>
<td>Yes</td>
<td>$3000</td>
<td>50%</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Lithuania</td>
<td>$14,000</td>
<td>No</td>
<td>Null</td>
<td>3%</td>
<td>No</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>$365,000</td>
<td>No</td>
<td>Null</td>
<td>1%</td>
<td>No</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Norway</td>
<td>$200,000</td>
<td>Yes</td>
<td>$70</td>
<td>1%</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Portugal</td>
<td>$150,000</td>
<td>Yes</td>
<td>$2000</td>
<td>1%</td>
<td>Yes</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Spain</td>
<td>$65,000</td>
<td>Yes</td>
<td>$550</td>
<td>10%</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sweden</td>
<td>$130,000</td>
<td>No</td>
<td>$550</td>
<td>10%</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>$40,000</td>
<td>Yes</td>
<td>$300</td>
<td>3%</td>
<td>No</td>
<td>3</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>$175,000</td>
<td>Yes</td>
<td>$1700</td>
<td>2%</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Middle East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>$36,000</td>
<td>Yes</td>
<td>$400</td>
<td>4%</td>
<td>Yes</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Iraq</td>
<td>$19,200</td>
<td>No</td>
<td>Null</td>
<td>0%</td>
<td>Yes</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Israel</td>
<td>$12,000</td>
<td>Yes</td>
<td>$330</td>
<td>2%</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lebanon</td>
<td>$120,000</td>
<td>Yes</td>
<td>$200</td>
<td>1%</td>
<td>Yes</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>$300,000</td>
<td>Yes</td>
<td>$8500</td>
<td>10%</td>
<td>Yes</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: —Null indicates no response/not applicable.
*1 = never, 2 = rarely, 3 = sometimes, 4 = often, 5 = always.
Intracranial aneurysms are abnormal focal dilations of the cerebral vasculature with a prevalence approximating 2%–5%. Intracranial aneurysms include mass effect on adjacent structures—cranial nerves, brain stem, and so forth—and rupture, the most severe and frequent complication. The estimated incidence of this latter complication is approximately 1% per aneurysm and per year. With short-term mortality from rupture ranging from 35% to 50% and with almost half of survivors having moderate-to-severe long-term disability, neurosurgical and endovascular treatment could potentially be advocated for all unruptured intracranial aneurysms. However, these treatments are associated with approximate mortality rates of 3% and 2% and long-term disability rates of 15% and 5%, respectively, so their use remains controversial. Current guidelines for recommending treatment are based on aneurysm size, location, and patient age. The Unruptured Cerebral Aneurysm Study suggests treating small aneurysms in locations associated with high risk of rupture and observing larger ones, up to 10 mm, in locations associated with a low risk of rupture (internal carotid, middle cerebral arteries). The Population, Hypertension, Age, Size of Aneurysm, Earlier Subarachnoid Hemorrhage from Another Aneurysm, and Site of Aneurysm (PHASES) score allows the calculation of a 5-year rupture risk, depending on multiple factors. This score allows a better assessment of the benefits versus risks of treatment in daily practice. However, for aneurysms considered at low risk of rupture, additional criteria are needed to discriminate those that may rupture and therefore should be treated and those that just require surveillance.

Aneurysm wall motion has been suggested to potentially provide predictive information on the risk of rupture. Numerous studies reported the detection of wall motion through different imaging techniques, such as phase-contrast MRA, transcranial power Doppler ultrasonography, 4D-CTA, and 3D rotational angiography (Table). Among these studies, some have reported an association between rupture status and wall motion. Structurally speaking, the heterogeneous thickness of the aneurysm wall and its infiltration by inflammatory cells have also been reported; whether and how these factors can modify wall motion is not understood.

This article reviews the current knowledge of the association between aneurysm wall motion and rupture, the structural changes that could explain the wall motion patterns, and imaging techniques able to analyze wall motion.
RUPTURE ASSOCIATION BETWEEN WALL MOTION AND RUPTURE

Meyer et al\(^{26}\) first suggested a possible association between wall motion patterns and aneurysm rupture. These authors retrospectively compared the flow dynamics of 6 ruptured and 10 unruptured aneurysms by using cine phase-contrast MRA. They observed that the volume of ruptured aneurysms increased more from diastole to systole than did the volume of unruptured aneurysms (51.0 \(\pm\) 10.0% versus 17.6 \(\pm\) 8.9%, \(P < .005\)), independent of aneurysm size. This study, however, is limited in its conclusions. First, it is outdated, because MR imaging has improved considerably during these past 2 decades, and cine phase-contrast MRA would not be the technique of choice today. Moreover the postprocessing technique is also outdated with regard to current standards. Second, phase-contrast techniques are prone to flow artifacts and might, therefore, mistake slow flow for wall motion. Third, this study was based on a small number of patients and was retrospective with regard to rupture status. Therefore, caution is needed in the interpretation of its results.

Using 4D-CTA, Hayakawa et al\(^{18}\) observed aneurysm wall motion in 4 of 23 patients with ruptured aneurysms. During surgical clipping performed in 2 of these 4 patients, they observed that the rupture site matched the position of the wall motion detected by 4D-CTA. Ishida et al\(^{19}\) studied 30 patients by using the same 4D-CTA technique and observed a pulsating bleb in 7 of 29 unruptured aneurysms and in 2 of 5 ruptured ones. Again, during surgical clipping performed in these 2 ruptured aneurysms, these authors observed that the rupture site matched the position of the pulsating bleb. These 2 studies are interesting but focused on the detection of blebs and their motion. They showed some ability to detect the rupture site when blebs ruptured but did not investigate the relation between motion and rupture. Other limitations include the following: the limited number of patients, especially in the ruptured group of the study of Ishida et al\(^{19}\); the subjective assessment of the rupture point by the neurosurgeon not relying on precise spatial correlation; and apparent motion artifacts of immobile bone structures, possibly due to gantry rotation as emphasized by Matsumoto et al\(^{35}\) in a letter to the authors. Ishida et al replied that more work was needed to validate 4D-CTA for aneurysm dynamics visualization and that this work was just a step along the path.

Oubel et al\(^{32}\) introduced the concept of differential pulsation, defined as the aneurysm wall motion corrected for the wall motion of the parent artery and its diameter. Using high-frame-rate DSA, these authors measured aneurysm wall motion in 18 patients with 7 ruptured aneurysms and reported a statistically significant association between this differential pulsation and the rupture status. Kuroda et al\(^{23}\) found no significant difference in cardiac cycle–related volume changes between unruptured aneurysms and normal arteries assessed by 4D-CTA in 18 patients, suggesting that the differential pulsation may be a more useful indicator than the wall motion magnitude or the cardiac cycle–related volume changes to discriminate aneurysms at high-versus-low risk of rupture.

These studies suggest a possible association between aneurysm wall motion and rupture, but they share 2 limitations: the small numbers of patients studied and the aneurysms being considered retrospectively after rupture instead of prospectively considering those likely to rupture. A recent study indeed showed that aneurysm characteristics can be different before and after rupture and suggests caution with the interpretation of such results.\(^{36}\) These limitations support the need for a larger study, prospective with regard to rupture status, to test whether the outcome (rupture, growth of the aneurysm, and so forth) depends on the type of wall motion. Ideally, unruptured aneurysms should be followed without treatment until they rupture, but this plan would be unethical except with patients who refuse treatment.

<table>
<thead>
<tr>
<th>Previous work on aneurysm wall motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors and Year of Publication</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Wardlaw and Cannon (1996)(^{14})</td>
</tr>
<tr>
<td>Wardlaw et al (1999)(^{15})</td>
</tr>
<tr>
<td>Hoskins et al (1998)(^{16})</td>
</tr>
<tr>
<td>Kato et al (2004)(^{17})</td>
</tr>
<tr>
<td>Hayakawa et al (2005)(^{18})</td>
</tr>
<tr>
<td>Ishida et al (2005)(^{19})</td>
</tr>
<tr>
<td>Yaghmai et al (2007)(^{20})</td>
</tr>
<tr>
<td>Krings et al (2009)(^{21})</td>
</tr>
<tr>
<td>Hayakawa et al (2011)(^{22})</td>
</tr>
<tr>
<td>Kuroda et al (2012)(^{23})</td>
</tr>
<tr>
<td>Firouzian et al (2013)(^{24})</td>
</tr>
<tr>
<td>Hayakawa et al (2014)(^{25})</td>
</tr>
<tr>
<td>Meyer et al (1993)(^{26})</td>
</tr>
<tr>
<td>Karmonik et al (2010)(^{27})</td>
</tr>
<tr>
<td>Dempere-Marco et al (2006)(^{28})</td>
</tr>
<tr>
<td>Oubel et al (2007)(^{29})</td>
</tr>
<tr>
<td>Zhang et al (2009)(^{30})</td>
</tr>
<tr>
<td>Zhang et al (2009)(^{31})</td>
</tr>
<tr>
<td>Oubel et al (2010)(^{31})</td>
</tr>
<tr>
<td>Zhang et al (2011)(^{33})</td>
</tr>
<tr>
<td>Zhang et al (2011)(^{35})</td>
</tr>
</tbody>
</table>

Note:—No. indicates number of patients; PD-US, power Doppler ultrasonography; PC-MRA, phase-contrast MR angiography; 3D RA, 3D rotational angiography; U, unruptured; R, ruptured; NA, not applicable.

\(^{a}\) Authors focused on bleb detection only. Pulsating bleb was found in 10 of the 15 cases.
ASSOCIATION BETWEEN ANEURYSM WALL CHANGES AND RUPTURE
The differences in wall motion between ruptured and unruptured aneurysms suggest differences in wall architecture or composition, including inflammatory and atherosclerotic changes and structural matrix proteins.

Wall Architecture
The aneurysm wall is histologically characterized by a loss or disruption of internal elastic lamina, intimal hyperplasia, disorganization of smooth-muscle fibers, loss of cell components, and infiltration by inflammatory cells. Disruption of the internal elastic lamina seems to occur early during aneurysm formation, whereas other changes (eg, de-endothelialization, luminal thrombosis, smooth-muscle cell proliferation, T-cell and macrophage infiltration) are associated with rupture. Frösen et al identified 4 wall types associated with rupture: type A with an endothelialized wall with linearly organized smooth-muscle cells; type B with a thickened wall with disorganized smooth-muscle cells; type C with a hypocellular wall with either intimal hyperplasia or organizing luminal thrombus; and type D with an extremely thin, thrombosis-lined hypocellular wall. The rupture rate increased from type A to D. These authors suggested that these 4 types are most likely consecutive stages of wall degeneration leading to rupture. In addition, there was usually a type A-to-D gradient from the neck to the fundus. This illustrates the heterogeneity of the wall, which can be seen as a global vascular disease with focal progression leading to rupture. Whether these wall types relate to wall motion modification is not fully understood. However, Costalat et al described 3 kinds of aneurysm wall biomechanical properties—rigid, intermediate, and soft—the latter was only seen in ruptured or preruptured aneurysms. This latter study supports the hypothesis of a motion of greater magnitude in ruptured and preruptured aneurysms. Moreover, the elastic modulus at the aneurysm fundus being 30%-50% lower than that at the neck has been described; the fundus wall is therefore more distensible.

Inflammatory and Atherosclerotic Changes in the Aneurysm Wall
Inflammatory changes in the aneurysm wall are characterized by leukocyte infiltration, leading to smooth-muscle cell proliferation and fibrosis. Smooth-muscle cells and macrophages produce matrix metalloproteinases, mostly matrix metalloproteinase-1, -2, and -9, which degrade extracellular matrix components. Early on, matrix metalloproteinases are balanced by tissue inhibitor of metalloproteinase-1 and -2, but not in late-stage aneurysms, in which the expression of matrix metalloproteinases is increased; this change leads to extracellular matrix damage, growth of the aneurysm, and rupture.

Atherosclerotic changes seem to be present in most aneurysms, and their extent correlates with aneurysm growth. Small aneurysms have atherosclerotic lesions characterized by intimal thickening due to proliferating smooth-muscle cells with few macrophages and lymphocytes, whereas large aneurysms have more advanced lesions with more cellular infiltrates and mature smooth-muscle cells. In addition, aneurysm smooth-muscle cells acquire a dedifferentiated phenotype similar to that in smooth-muscle cells in atherosclerotic plaques. Most interesting, atherosclerosis is associated with chronic inflammation, which might explain, at least in part, the inflammatory changes.

Structural Matrix Proteins
Collagen. Collagen content is lower in aneurysm walls than in normal arteries. In addition, the number of cross-links between collagen fibers is lower, and collagenase and elastase activities are higher in ruptured aneurysms than in unruptured ones. These comparisons raise the hypothesis that elevated collagenolytic and elastolytic activities could be predisposing factors for rupture. Additionally, while expression of collagen III and IV is lower in all (unruptured and ruptured) aneurysms than in normal arteries, collagen IV expression is lower in ruptured aneurysms than in unruptured ones.

Laminin and Fibronectin. Laminin and fibronectin are thought to maintain the structural integrity of the vessel wall by anchoring endothelial cells to the internal elastic lamina and smooth-muscle layers. Laminin is more cohesive than fibronectin and is predominant in mature vessels, whereas fibronectin is predominant in immature ones. While the expression of laminin is lower in both unruptured and ruptured aneurysms than in normal arteries, the expression of fibronectin is only higher in ruptured aneurysms, raising the hypothesis that an increased fibronectin-to-laminin ratio might contribute to rupture.

Alpha-Smooth-Muscle Actin. Alpha-smooth-muscle actin expression is lower in aneurysm walls than in normal arteries and even lower in ruptured aneurysms than in unruptured ones. In addition, and in contrast to normal arteries and unruptured aneurysms, the myocytes in ruptured aneurysms are loose and no longer arranged in tightly compacted functional bands. Changes in structural matrix proteins raise the hypothesis that collagen III, collagen IV, and α-smooth-muscle actin are involved in aneurysm formation and that an increase in the fibronectin-to-laminin ratio could contribute to rupture. Because the expression of collagen IV and laminin is maximal in mature vessels whereas fibronectin is usually found in immature ones, aneurysm formation and rupture seem to be associated with an angiogenically immature vessel wall. It was hypothesized that an increase in immature collagen, lower collagen content, or a less structured wall could lead to a more distensible behavior.

IMAGING ANEURYSM WALL MOTION
The imaging of wall motion has multiple challenges. First, the motion itself is 3-fold: the global pulsation of the aneurysm, potential movements of focal parts of the wall (eg, blebs), and global cerebral vasculature motion during the cardiac cycle. Second, the magnitude of motion is small, and the timeframe is short; thus, techniques with high spatial and temporal resolutions are needed. Third, depending on the technique, artifacts can impair the results and they must be kept to a minimum. The radiation dose must also be considered when using dynamic x-ray-based imaging modalities. Six imaging techniques can detect aneurysm wall motion, but only 4 (Table) are used in living humans. The other 2 are based on laser displacement sensor and flat...
panel volumetric CT. Laser displacement sensor has been used to detect aneurysm wall motion of an ex vivo animal model and a silicone phantom in 2 studies.51,62 Flat panel volumetric CT has been used to image posttreatment rabbit aneurysm pulsation, but though promising, this tool has never been used to image aneurysm wall motion in humans.53,64

The 4 techniques applied in living humans are transcranial power Doppler ultrasonography, phase-contrast MRA, 3D rotational angiography, and 4D-CTA.

Transcranial Power Doppler Ultrasonography
Transcranial power Doppler ultrasonography was developed as a tool to image blood flow in intracranial vessels. With a higher sensitivity to blood flow than color Doppler, power Doppler is more appropriate for small-vessel imaging. This technique was used by the same group of investigators to detect aneurysm pulsation in 2 in vivo studies and 1 in vitro study. The pulsation was quantified by comparing the aneurysm cross-sectional area between systole and diastole, measured by using the sonography device algorithm.14-16 Aneurysm pulsation was detected in both in vivo studies, but its magnitude was much larger than that usually seen with other techniques and during neurosurgery. In the in vitro study revealed that pulsation as seen on power Doppler depended on the device settings, introducing dependency on the operator and raising concerns about its reproducibility.16 Moreover, some of the observed pulsation may be related to very slow intra-aneurysmal blood flow during part of the cardiac cycle, leading to the absence of a Doppler signal and hence exaggerating apparent wall motion.

Other limitations of transcranial power Doppler ultrasonography are limited acoustic windows due to bone structures; additionally, 20% of patients have poor or absent acoustic windows and limited spatial resolution, especially with low-frequency transducers that are required to image deep arteries. Temporal and spatial resolutions are indeed dependent on the frequency of the transducer and the depth of the structure of interest. Axial resolution is half the spatial pulse length, which is the product of the number of cycles in a pulse and the wavelength. Lateral resolution depends on the wavelength and the width of the transducer and can be improved by focusing ultrasounds; temporal resolution of Doppler depends on the pulse length, the depth of the structure of interest, and the size of the color box.66 Since these studies were published, progress has been made in transcranial Doppler imaging, which now shows good agreement with CTA as demonstrated for intracranial vessel localization.67 Transcranial power Doppler ultrasonography could, therefore, be re-evaluated for intracranial aneurysm imaging.

Cine Phase-Contrast MRA
Phase-contrast MRA is based on the measurement of the phase shift of blood flowing through a magnetic field gradient; the sign of the phase shift is determined by the direction of the flow. Because phase-contrast sequences are only sensitive to a given range of blood velocities that must be determined a priori, the optimal sequence must be tuned for each patient. Nevertheless, even with optimal velocity-encoding, the signal within the aneurysm could be impaired because of the highly heterogeneous intrasaccular flow. Although this technique has the advantage of not exposing the patient to ionizing radiation or contrast material, it is limited by a low sensitivity for motion depiction. Coupled with gadolinium-enhanced MRA, this technique provides information on morphologic and flow characteristics, while the temporal resolution of MRA alone is insufficient to assess aneurysm wall motion.68 Two studies showed that aneurysm wall motion could be detected and quantified with this technique. Quantification of motion was achieved either by volume quantification for each phase or by measuring the distance between the aneurysm wall and the center of the aneurysm to avoid taking global artery motion into account.27 Meyer et al26 showed that volume modification during the cardiac cycle was larger in ruptured aneurysms than in unruptured ones. Focusing on unruptured aneurysms, Karmonik and et al27 showed that in addition to outward and inward wall displacement during the cardiac circle, there was local heterogeneity within the aneurysm wall, consisting of out-of-phase movements of some parts compared with others.

Phase-contrast MRA has several limitations. First, because of the lack of standardized blood-velocity values, acquisition time is too long for clinical use. Second, its spatial resolution is low but could be improved with high-field MR imaging scanners.72 Third, motion (of cerebral arteries during the cardiac cycle or of the patient) and flow artifacts from out-of-range velocities can decrease image quality. The current best techniques are probably conventional gradient echo–based cine imaging sequences (eg, gradient-recalled acquisition in steady state [GRASS], true fast imaging with steady-state precession [trueFISP], true spin tagging with alternating radiofrequency [trueSTAR]).69,70 These methods have high spatial resolution (up to 1 mm voxels or 0.86 × 0.86 × 2 mm voxels) and high temporal resolution (50–100) and have a higher SNR than phase-contrast sequences, making them promising tools to image wall motion. Moreover, increasing the magnetic field strength from 1.5T to 3T or using a gadolinium-based contrast agent could enhance SNR as reported for cardiac investigations.71 Usual dynamic contrast-enhanced MRA techniques that rely on parallel imaging, partial k-space sampling, or half-Fourier would not be appropriate for wall motion imaging because the temporal resolutions are not sufficient (500–1500 ms).72

3D Rotational Angiography
3D rotational angiography is an x-ray-based projection imaging technique in which both the source and the detector rotate around approximately 200°. In clinical setting, this technique is based on acquisition of a sequence of 2D images that are used to reconstruct an isotropic 3D image, but 2D images can also be used to retrieve dynamic information and detect wall motion. Using this technique, several authors succeeded in detecting and quantifying wall motion.29-33 Quantification was achieved through either an optical flow method for image registration or, later, free-form deformations with B-spline interpolation.29,31,32 In 3 articles reporting the data from 18 patients, Dempere-Marco et al28 and Oubel et al,29,32 demonstrated the ability to detect and quantify wall motion with this technique. During the same period, Zhang et al30,31,33 applied this technique on in silico models,
on in vitro samples, and in vivo, but only in 2 patients. This technique has high spatial and temporal resolutions (respectively, 0.2 mm and from 35 to 165 ms, depending on vessel configuration). However, this technique is invasive, exposes the patient to ionizing radiation, and requires injection of iodinated contrast material. It is also challenging to ensure homogeneous contrast distribution inside the aneurysm during the acquisition. Because 3D rotational angiography is the most invasive technique among the 4 discussed in this review, it should probably be reserved for a subset of selected patients that still needs to be defined (eg, patients already programmed for a catheter-injected angiography could benefit from this dynamic technique).

4D-CTA

Faster gantry rotation and multidetector rows are major developments in CT technology, which have led to increased spatial and temporal resolutions. In addition, with an effective scan width of >20 and ≤160 mm, scanners with ≥64 detector rows allow continuous acquisition without table movement and subsequent 4D reconstructions. Several studies used 4D-CTA and reported successful detection of aneurysm wall motion in phantoms and in patients. Although most studies were based on electrocardiogram-gated 4D-CTA, some reported that pulsatility imaging was also possible without gating. The analysis of wall motion was either qualitative with visual assessment by multiple readers or quantitative. For quantitative analysis, some authors chose to convert the original matrix into an easier-to-process “black and white” matrix. Hounsfield units that were out of a predetermined range (approximately 100–900 HU) were substituted for 1. This matrix could then be analyzed through segmentation of the aneurysm sac and the calculation of the aneurysm volume for each frame. Other authors used nonrigid B-spline registration to obtain a motion-compensated multiphase 3D image and a deformation field for each phase. The deformation field could then be combined with aneurysm segmentation to determine wall deformation. Two studies investigated the motion of cerebral arteries and showed their 2-type motion: pulsation consisting of changes in vessel volume and a positional change of the whole vessel during the cardiac cycle. Moreover, the direction and the amplitude of these movements differed from one artery to another in the same subject. 4D-CTA has several advantages. First, scanners are available in almost all hospitals in developed countries. Second, the duration of the examination is very short because its acquisition lasts just a few seconds. Third, while of the same order of magnitude as the analyzed motion, its spatial resolution is high (0.25 mm for high-resolution CT scans and from 0.60 to 0.80 mm for standard CT scans) and its temporal resolution ranges between 75 and 150 ms. Nevertheless, this technique has limitations. First, although rarely addressed in the clinical studies discussed here, the radiation dose for dynamic acquisitions can be very high. Second, intravenous iodine contrast injection is needed. Third, images can be impaired by reconstruction artifacts that are reduced with multidetector row CT scanners.

To reduce these reconstruction artifacts, one could analyze wall motion by using the raw data (ie, the sinogram). The registration technique used with 3D rotational angiography is extended and adapted to 4D-CTA. Using the sinogram instead of reconstructed images would improve both spatial and temporal resolution appropriate for detecting small-amplitude motion.

CONCLUSIONS

Guidelines for treatment of intracranial aneurysms need to include better tools to appropriately predict aneurysm rupture. The PHASES score provides useful information about the outcome, but other tools might help refine the rupture risk. The analysis of aneurysm wall motion seems promising for this purpose. Multiple retrospective clinical studies have shown an association between wall motion and rupture status, but there is a lack of prospective studies to assess this relationship. The hypothesis that a difference in wall motion patterns is associated with an increased risk of rupture is also theoretically supported by the demonstration of histologic alterations of the aneurysm wall, most notably thinning and loss of mural cells in the most advanced stages leading to a more distensible behavior predominantly at the fundus. This could explain why the largest motion amplitude is usually seen at the fundus. Up to now, no study has investigated the relationship between histologic changes and biomechanical properties of the wall.

With regard to imaging modalities, there is no consensus on the best available technique, but 3D rotational angiography and 4D-CTA seem the most promising because they are the least subject to flow artifacts; however, the radiation dose should not be neglected, especially in young patients. For patients who need conventional angiography anyway, dynamic 3D rotational angiography would be the best available technique. Finally, the lack of standardization in imaging protocols and reconstruction algorithms should be resolved to ensure that research data are comparable.

ACKNOWLEDGMENTS

The authors thank Pierre Alain Gevenois, MD, PhD, for his invaluable assistance in preparing the manuscript and Nathalie Nagy, MD, for her valuable advice on the histology of intracranial aneurysms.

REFERENCES

5. van Rooij WJ, Sluzewski M. Unruptured large and giant carotid ar-
43. Kim C, Kikuchi H, Hashimoto N, et al. Involvement of internal elas-
A specific area where preventive neuroradiology is having an impact is in the area of age-related cognitive decline. As populations age, the burden of age-related cognitive decline is rising. Globally, the number of older individuals (60 years of age or older) is expected to more than double, from 841 million in 2013 to >2 billion in 2050, with rates of dementia expected to increase from an estimated 44 million worldwide in 2013 to an estimated 75.6 million in 2030, and 136 million in 2050.

The expected precipitous rise in rates of age-related cognitive decline has not, to date, been met with a substantial expansion in treatment options. In fact, current pharmacologic therapies for the most common form of dementia, Alzheimer disease (AD), appear to provide some symptomatic relief but do not influence the underlying pathophysiology. This problem signifies the need to focus on increasing our understanding of preventive lifestyle modifications and their neurobiologic underpinnings of the disease. For example, with AD, a recent study has highlighted the important role of risk-factor reduction for decreasing prevalence. Barnes and Yaffe explored the role of 7 potentially modifiable AD risk factors: diabetes, midlife hypertension, midlife obesity, smoking, depression, low educational attainment, and physical inactivity. They determined that these factors contributed to up to half of AD cases globally (17.2 million), and a 10%–25% reduction in all risk factors could potentially prevent as many as 1.1–3.0 million cases. An emerging literature currently explores the effect of these risk factors on neurobiology factors. Other lifestyle factors that have been found to reduce the risk of AD include mind-body exercise (eg, yoga, tai chi, qi gong), conventional physical activity (eg, aerobic, strength training), nutritional supplements (eg, ω-3 fatty acids, flavonols), stress-reduction techniques (eg, Mindfulness-Based Stress Reduction), and

SUMMARY: Preventive neuroradiology is a new concept supported by growing literature. The main rationale of preventive neuroradiology is the application of multimodal brain imaging toward early and subclinical detection of brain disease and subsequent preventive actions through identification of modifiable risk factors. An insightful example of this is in the area of age-related cognitive decline, mild cognitive impairment, and dementia with potentially modifiable risk factors such as obesity, diet, sleep, hypertension, diabetes, depression, supplementation, smoking, and physical activity. In studying this link between lifestyle and cognitive decline, brain imaging markers may be instrumental as quantitative measures or even indicators of early disease. The purpose of this article is to provide an overview of the major studies reflecting how lifestyle factors affect the brain and cognition aging. In this hot topics review, we will specifically focus on obesity and physical activity.

ABBREVIATIONS: AD = Alzheimer disease; APOE = Apolipoprotein E; BMI = body mass index; MCI = mild cognitive impairment
sleep-modification strategies, and dietary interventions (e.g., fish consumption, Mediterranean diet).

Classic risk-factor studies in dementia are hampered by the difficult phenotyping of the disease with large heterogeneity in severity and presentation, and by the fact that once symptomatic, irreversible brain damage is already present. The paradigm shift in medicine from cure toward prevention calls for identification of potentially modifiable factors that affect disease in an earlier stage. During the past decades, brain imaging has proved instrumental as a means of studying brain changes in aging and age-related cognitive decline. Many new imaging markers have been identified that either serve as quantifiable intermediate factors in the pathway of lifestyle and age-related cognitive decline or could even indicate disease in an early stage. For example, the hippocampal structure has been shown to be affected both positively and negatively by lifestyle factors by using structural, functional, and molecular forms of neuroimaging. Neuroradiology as a discipline is hence highly important in better understanding the role of these lifestyle factors in positively or negatively affecting structural, functional, and molecular radiologic correlates.

In this hot topics in research review, we explore the potential role for “preventive neuroradiology” in the risk reduction of neuropsychiatric disorders, by using age-related cognitive decline as an example.

OBESITY AND AGE-RELATED COGNITIVE DECLINE

Insights from Clinical Trials and Epidemiology

There is evidence of an association between midlife obesity and increased risk of dementia. The Barnes and Yaffe model suggests a pooled relative risk estimate of 1.60 (95% CI, 1.34–1.92) and approximately 2% (677,000) of AD cases worldwide are potentially attributable to midlife obesity. A recent systematic review identified 10 prospective studies that examined the association between various measures of body weight and dementia, of which 7 were suitable for inclusion in a meta-analysis. Three of 4 studies found that body mass index (BMI) (as a continuous measure) was associated with an increased risk of all-cause dementia; 2 of 5 studies indicated that obesity (BMI ≥ 30) was associated with an increased risk of all-cause dementia; and 2 of 3 studies found that obesity was associated with an increased risk for AD.

Insights from Neurobiology

Commonly proposed mediators for the relationship between higher body tissue adiposity and brain structure at any age include hypercortisolemia, reduced exercise, impaired respiratory function, inflammation, oxidative stress, cardiovascular disease, hypertension and/or hyperlipidemia, and type 2 diabetes mellitus. The co-occurrence of at least 3 of the following cardiovascular factors including large waist circumference (or adiposity), increased triglycerides, elevated blood pressure, and fasting hyperglycemia has been referred to as “the metabolic syndrome.” Adiposity is also associated with insulin resistance and subsequent type 2 diabetes, hypertension, dyslipidemia, cardiovascular disease, degenerative joint disease, cancer, and lung disease. Moreover, an elevated BMI is significantly correlated with a reduction in neuronal fiber bundle length, which is believed to contribute to brain atrophy. Finally, greater brain atrophy may occur in people with central leptin insufficiency, a marker of obesity.

Insights from Neuroradiology: Structural Imaging

Volumetric MR Imaging. Several studies have investigated the relationship between BMI and brain atrophy. In an early study, tensor-based morphometry was used to examine gray matter and white matter volume differences in 94 elderly subjects who remained cognitively healthy for at least 5 years after their scan. When controlling for age, sex, and race, subjects with obesity with a high BMI (BMI of >30) showed atrophy in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus compared with individuals with a normal BMI (18.5–25). Overweight subjects (BMI of 25–30) had atrophy in the basal ganglia and corona radiata of the WM. Overall brain volume did not differ between overweight and obese persons. In a similar study, Bobb et al explored 5-year longitudinal associations between change in BMI and gray matter with time, in a cohort of 247 former heavy-metal workers and community controls. Higher baseline BMI was associated with greater decline in temporal and occipital GM ROI volumes. Change in BMI during the 5-year period was only associated with a change in hippocampal volume and not other ROIs. Overall, higher BMI was associated with declines in volume in temporal and occipital GM with time.

A recent study explored the associations among physical activity, BMI, and brain structure in normal aging, mild cognitive impairment (MCI), and AD dementia. This study included 963 participants from the multisite Cardiovascular Health Study including healthy controls (n = 724), patients with Alzheimer dementia (n = 104), and individuals with MCI (n = 135). Physical activity was independently associated with greater whole-brain and regional brain volumes and reduced ventricular dilation. Those with higher BMI had lower whole-brain and regional brain volumes. A physical activity–BMI conjunction analysis showed brain preservation with physical activity and volume loss with increased BMI in overlapping brain regions (Fig 1).

A study by Driscoll et al explored the influence of midlife obesity on brain atrophy. In this study, associations between global (BMI) and central (waist circumference) midlife obesity and subsequent trajectories of regional brain atrophy in 152 individuals [M (age) = 69 ± 7.8 years] were examined. After follow-up, 21 individuals became cognitively impaired. Results suggest that midlife obesity may be an important modifier of brain atrophy in individuals who are developing cognitive impairment and dementia, while it has little effect on structural brain integrity in older adults without dementia.

Brain Tissue Integrity. MR imaging advancements such as diffusion tensor imaging have more recently been used to quantify subtle changes in WM tract microstructure and connectivity in senescent and developing adolescent brains. Furthermore, the use of tractography and diffusion pattern statistical analyses is instrumental in determining the spatial definition of individual tracts. Research has shown that cerebral WM integrity is decreased in the aging brain, particularly affecting the prefrontal regions.

A recent study by Stanek et al examined the association between BMI and WM integrity. The authors used a diffusion
This study classified 103 adult participants between 21 and 86 years of age without a history of neurologic, medical, or psychiatric illness according to BMI. Individuals with obesity demonstrated lower fractional anisotropy than healthy and overweight persons for all WM indexes, but no fractional anisotropy differences emerged between overweight and healthy individuals.

Functional Imaging. Functional MR imaging may provide an efficacious method for assessing the impact of adiposity in cognitively intact middle-aged adults because it can identify altered brain activation patterns indicative of cognitive vulnerability.\(^\text{27}\) Prior work has identified changes in brain activation during cognition in association with elevated BMI.\(^\text{28-30}\) One recent study explored how a centralized distribution of adiposity relates to brain activation during a working memory task in a cognitively intact middle-aged sample.\(^\text{31}\) Seventy-three adults, 40–60 years of age, completed a verbal working memory task during fMRI. Central adiposity was assessed with waist circumference. Larger waist circumference was associated with a diminished working memory–related blood oxygen level–dependent response in the right superior frontal gyrus and left middle frontal gyrus. Reduced task-related activation in the right superior frontal gyrus and left middle frontal gyrus was related to slower reaction time on the task, controlling for age and education.

A recent meta-analysis\(^\text{33}\) examined the efficacy of exercise on cognition in older adults with MCI. MCI was diagnosed based on documented criteria or via the Mini-Mental State Examination. Fourteen randomized controlled trials with 1695 participants 65–95 years of age were used. These studies had a duration of 6–52 weeks. Overall, 42% of effect sizes were potentially clinically relevant (effect size of \(\geq 0.20\)) with only 8% of cognitive outcomes statistically significant. The meta-analysis revealed negligible but significant effects of exercise on verbal fluency (effect size: \(0.17\) [range, 0.04–0.30]). No significant benefit was found for additional executive measures, memory, or information processing. The authors critically appraised randomized controlled trial methods and concluded that they had moderate quality, with most trial samples being too small for sufficient power. They suggested that there is clearly some effect of exercise at moderate-to-high levels of exertion.

Physical activity is on a continuum with physical inactivity. Worldwide, approximately 13% (nearly 4.3 million) of AD cases may be attributable to physical inactivity.\(^\text{5}\) A recent systematic review and meta-analysis identified 16 prospective studies on the association between physical activity and dementia that included 163,797 older adults without dementia at baseline and 3219 individuals with dementia at follow-up.\(^\text{34}\) The combined relative risk in the highest-versus-lowest physical activity groups was 0.72 for...
all-cause dementia and 0.55 for AD. The previously mentioned Barnes and Yaffe model suggests a relative risk of 1.82 for AD.

Insights from Neurobiology

The biologic mechanisms by which cognition is enhanced through physical exercise remain to be completely elucidated, though the number of studies that have tried to identify these mechanisms has increased in the past 10 years. For the most part, the studies that support the notion that physical exercise has an impact on brain functions have focused on the direct biologic effects of exercise by using both animal and human models. However, exercise may enhance cognition indirectly by improving health conditions (ie, stress, sleep), reducing chronic diseases (ie, coronary heart disease) that impact neurocognitive functions, and offering psychological and social effects. The molecular mechanisms by which exercise induces angiogenesis, neurogenesis, and synaptogenesis have received growing attention in recent years.

From a mechanistic perspective, sedentary behaviors may contribute to the risk of AD and dementia by 2 main factors. First, they are associated with an increased risk of cardiometabolic risk factors—diabetes, hypertension, obesity—that are associated with an increased risk of dementia. Second, sedentary behaviors appear to have direct effects on neurobiologic processes. A recent review outlines evidence to suggest that sedentary behaviors may have detrimental effects on the brain via reducing neurogenesis, synaptic plasticity, neurotrophin production, and angiogenesis and by increasing inflammation. Most important however, no studies have integrated objective measures of both sedentary behavior and physical activity with angiogenesis and by increasing inflammation. Most important, no studies have integrated objective measurements of both sedentary behavior and physical activity with measures of cognition or potential mechanistic outcomes such as neurogenesis and synaptic plasticity, regional fat deposits including visceral fat and pericardial fat, disrupted glucose metabolism, and/or inflammation.

Insights from Neuroradiology: Structural Brain Imaging

Volumetric MR Imaging. Imaging studies corroborate the findings of the beneficial effects of exercise on brain structure and function. Higher gray and white matter cortical volumes were present on MR volumetric imaging in individuals with and without dementia with better aerobic fitness (maximal oxygen consumption, maximal oxygen uptake, peak oxygen uptake, or maximal aerobic capacity). MR imaging studies in elderly populations without dementia also found that bilateral hippocampal volumes are better maintained in fit individuals, with resultant superior performance in tasks related to spatial memory. A cross-sectional study by Makizako et al examined associations between light- and moderate-intensity physical activity (measured with accelerometers), total duration of physical activity, hippocampal volume, and memory in older adults with MCI. Moderate physical activity was associated with hippocampal volume after controlling for age, but light and total physical activity were not. Both light and moderate physical activity groups were not associated with memory performance. Structural equation modeling demonstrated that moderate physical activity was not directly associated with memory but significantly contributed to hippocampal volume; hippocampal volume loss was significantly and directly associated with poor memory performance. This finding suggests that the benefits of moderate physical activity on memory among older adults with MCI may be mediated by hippocampal volume. Most intriguing, reversal of age-related hippocampal volume loss by 2%, equivalent to 1–2 years of volume loss, was observed after exercise training during late adulthood; this finding was accompanied by a concomitant increased serum brain-derived neurotropic factor and improved memory function.

Randomized controlled trials have demonstrated the neuroprotective effects of exercise on brain aging in elderly populations, including in those with dementia, leading to positive effects on brain structure and cognitive performance. Some studies also suggested that these effects may be dependent on the duration, quality, and variety of exercise.

No studies have examined the relationship between sedentary behavior and brain structure. We hypothesize that sedentary behaviors are associated with atrophy of numerous brain regions, particularly the hippocampus. Faster rates of hippocampal volume decay are associated with MCI and AD.

Functional Imaging. We are aware of 1 study exploring hippocampal physiology (blood flow) in sedentary older adults. In this study, investigators used resting hippocampal cerebral blood flow measures (via arterial spin-labeling MR imaging) and sedentary time/physical activity (via accelerometry) on 33 cognitively healthy adults (52–81 years of age), 9 of whom were Apolipoprotein E (APOE) e4 carriers. Results indicated that the relationship between sedentary time and cerebral blood flow in the left hippocampus differs by APOE status, whereby APOE e4 carriers show higher cerebral blood flow as a function of longer sedentary time compared with noncarriers, possibly suggesting a cerebral blood flow regulatory response to compensate for metabolic alterations in dementia risk. These data suggest that the relationship between cerebral blood flow and sedentary time is different in APOE e4 carriers and noncarriers and that sedentary time may act as a behavioral risk factor for cerebral blood flow dysregulation in those at genetic risk for developing AD.

Types of physical activity other than cardiovascular have also been shown to help improve cognitive function. Strength training frequency of at least once per week was associated with greater cerebrovascular perfusion in older women compared with those who those who did not engage in strength-training activities. A 12-month long, twice-weekly resistance training program in elderly women found functional changes in the regions of the cerebral cortex, most strikingly in the left middle temporal gyrus and the left anterior insula to the lateral orbital frontal cortex, associated with improved hemodynamics and response inhibition based on the Flanker test performance. In addition, a 12-month randomized trial of exercise, including both cardiovascular and coordination training, in older adults showed that improved motor fitness was associated with retained or improved hippocampal volumes.

Brain Tissue Integrity. Life-long aerobic fitness in a small number of elderly athletes was also associated with findings of reduced white matter hyperintensities by 83% compared with sedentary individuals and higher fractional anisotropy within multiple
White matter hyperintensities are a marker of vascular damage. Active exercise in the elderly is associated with lower mean diffusivity in the cingulate cortex and medial temporal lobe, suggestive of improved microstructural integrity within memory and executive function networks.4,5 A 1-year exercise program showed a promising association between improved fitness and increased white matter integrity in the frontal and temporal lobes and improved short-term memory, though the cognitive improvements were not independently associated with imaging findings.3,5 Improvements in temporal lobe connectivity are associated with changes in levels of serum growth factors such as brain-derived neurotropic factor, vascular endothelial growth factor, and insulin-like growth factor-1; these molecules may serve as biomarkers for neurologic function and may underlie the biochemical regulation of white matter plasticity.4,5

Molecular Imaging

Emerging evidence suggests that higher levels of physical exercise/fitness are associated with reduced amyloid Ab burden and potentially lowered intracellular ¯ protein; however, there are some null findings.6,6 A recent study aimed to see if plasma Ab and Ab brain deposition were associated with physical activity levels and whether these associations differed between carriers and noncarriers of the APOE ε4 allele. Five-hundred forty-six cognitively intact participants (60–95 years of age) were included in these analyses, with physical activity assessed by questionnaire. A subgroup (n = 116) underwent 11C Pittsburgh compound-B positron-emission tomography scanning to quantify brain amyloid load. After stratification of the cohort based on APOE ε4 allele carriage, it was evident that only noncarriers received the benefit of reduced plasma Ab from physical activity. Conversely, lower levels of Pittsburgh compound-B were observed in higher exercising APOE ε4 carriers. Lower plasma Ab1–42/1–40 and brain amyloid were observed in those reporting higher levels of exercise.6,6

Another recent study explored whether engagement in physical activity might favorably alter the age-dependent evolution of AD-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. In this study, 317 enrollees underwent an MR imaging acquisition; a subset also underwent 11C Pittsburgh compound-B PET (n = 186) and [18F] fluorodeoxyglucose PET (n = 152). There were significant age × physical activity interactions for Ab burden, glucose metabolism, and hippocampus volume. This finding suggested that with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive ones.

DISCUSSION

Summary

Overall, the results from this work highly suggest that the effects of lifestyle factors on cognitive function in aging act through impact on brain structure and function. Neuroimaging studies increasingly reveal structural and functional brain changes in relation to lifestyle factors that translate to measurable cognitive differences. This finding implies that these quantitative neuroimaging metrics may be effective surrogate markers that can be utilized in trials or can help identify novel pathways for intervention.

Clinical and Public Health Implications

There are some more immediate clinical implications for this field. Two relevant areas include rapid, automated quantitation of brain volume.6 This provides a relatively inexpensive means to track brain atrophy and the effects of lifestyle interventions; the lower cost compared with analysis by neuroradiologists may make this more available to the community. Additionally, the need for lifestyle modification advice and interventions for adult and late-life individuals is highly relevant to this field, given their noted effects on the brain. The global mental health implications of neuroscience were more broadly outlined recently.64

Future Directions

In this review, we have focused on obesity and physical activity and their effects on the brain. We are aware of a number of other lifestyle factors that require investigation across the neuroimaging modalities. For example, more recent studies have begun to parse out the potential effects of aerobic, resistance, and coordinative exercises and dual-task interventions in improving structural, functional, and cognitive aspects of aging.65 Other lifestyle factors that may positively affect the brain include mind-body therapies (eg, yoga, qi gong, tai chi), supplements (eg, ω-3 fatty acids,66 flavonols67), stress-reduction techniques (eg, Mindfulness-Based Stress Reduction68), sleep-modification strategies,9 and dietary interventions (eg, fish consumption69, Mediterranean diet68). Other lifestyle factors that impact the brain include smoking, alcohol consumption, sleep, and hypertension. Continuing this work is critical for the development of treatment plans and may affect health care policy and personal philosophies on preventive and therapeutic lifestyle modification. By taking a multifaceted approach to lifestyle modification, one may reap additive or synergistic benefits, even at an early age.

Future studies may help elucidate the mechanism underlying cognitive improvements and identify target populations in which a longitudinal regimen of nonpharmacologic lifestyle modifications may yield significant health benefits. Furthermore, the lifestyle modification may be tailored to individuals with specific illnesses or genetic predispositions with a feasible, preventive goal in mind. Most important, there are coexisting lifestyle factors and a relative lack of premorbid conditions associated with a healthy lifestyle that may act as confounds. These must be carefully considered in future studies.

Developing literature is exploring the role of preventive neuroradiology in other psychiatric disorders. In depression, a meta-analysis confirmed a direct correlation between increasing depressive episode numbers and decreased hippocampal volume.69 The hippocampus is, therefore, a potential target for preventive interventions. In schizophrenia, a group of ultra-high-risk subjects was followed longitudinally with structural MR imaging.70 This study found both groups of subjects who subsequently developed psychosis (schizophrenia and affective psychosis) showed reductions in the frontal cortex relative to ultra-high-risk subjects who did not develop psychosis. The subgroup that subsequently developed schizophrenia also showed smaller volumes in the pa-
rential cortex and, at trend level, in the temporal cortex, whereas those who developed an affective psychosis had significantly smaller subgenual cingulate volumes. This finding also raises targets for preventive interventions.

In preventive neuroradiology, imaging doctors act as actionable information consultants to both referring physicians and their patients in delivering the added value of quantitative neuroimaging. For example, if a neuroradiologist can provide quantitative measurements of hippocampal volume to a geriatric psychiatrist, thereby identifying significant hippocampal volume decrease in a patient with subtle memory loss, it gives that referring physician improved confidence as to the potential etiology of patient symptoms and subsequent management. Such actionable information can also be used to engage patients in brain-directed lifestyle programs that can then be reassessed with a combination of clinical evaluations and follow-up quantitative neuroimaging. In such a new clinic model, neuroradiologists can act as visible team members for improving patient outcomes. This assessment:

REFERENCES

21. Poirier P, Després JP, Bertrand OF. Identifying which patients with diabetes should be tested for the presence of coronary artery disease—the importance of baseline electrocardiogram and exercise testing. Can J Cardiol 2006;22(suppl A):9A–15A
30. Volkow ND, Wang GJ, Telang F, et al. Inverse association between...

63. Rathakrishnan BG, Doraiswamy PM, Petrella JR. Science to practice: translating automated brain MRI volumetry in Alzheimer’s disease from research to routine diagnostic use in the work-up of dementia. Front Neurol 2014;4:216

Subspecialty Virtual Impact Factors within a Dedicated Neuroimaging Journal
A.F. Choudhri and M. Castillo

ABSTRACT

BACKGROUND AND PURPOSE: The growing number of subspecialties within neuroradiology compete for pages in neuroradiology journals. We performed a bibliometric analysis of the American Journal of Neuroradiology to identify the virtual Impact Factor of different journal subsections and article topics.

MATERIALS AND METHODS: Original Research and Review Articles published in American Journal of Neuroradiology during 2010–2012 were evaluated. The journal section for each article was recorded, and the number of citations was evaluated by using the Web of Science database. Numbers of citations within the first 2 years after publication were evaluated, normalized to the 2013 journal Impact Factor (for American Journal of Neuroradiology, 3.675), and used to calculate a virtual Impact Factor for different journal subsections.

RESULTS: One thousand forty-nine Original Research and Review Articles were published during this time, which obtained an average of 6.59 citations each within their first 2 years after publication; 91.8% of articles obtained at least 1 citation. Expedited Publications had the greatest number of citations, averaging 43.7 citations each (virtual Impact Factor, 24.39), followed by Review Articles averaging 9.39 citations each (virtual Impact Factor 5.23). Virtual Impact Factors for other sections were the following: Interventional, 4.54; Brain, 3.70; Pediatrics, 2.91; Functional, 2.74; Head & Neck, 2.24; and Spine, 1.86. Virtual Impact Factors for article topics were the following: Interventional, 4.75; functional/advanced, 3.79; brain, 3.66; pediatrics, 2.99; head and neck, 2.46; and spine, 2.32.

CONCLUSIONS: Citation patterns of Original Research and Review Articles in American Journal of Neuroradiology varied widely on the basis of subsections. Understanding the citation patterns of specific topics and subsections of a journal may aid authors and editors in evaluating the appropriate balance among various topics and allow authors to determine whether their articles are being cited at a level expected for similar ones in a journal.

ABBREVIATIONS: JIF = journal Impact Factor; VIF = virtual Impact Factor

Citation analysis is an important means of evaluating the performance of journals and of authors, with implications regarding promotions, grant funding, advertising sales, and library selections.1–3 The growing number of subspecialties within neuroradiology compete for journal pages, and citation profiles of these different subsections have not been evaluated. We performed a bibliometric analysis of American Journal of Neuroradiology (AJNR) to identify citation patterns based on subsections and article topics.

Neuroradiology encompasses evaluation of the brain, head and neck, spine, and peripheral nervous system, including minimally invasive diagnostic and therapeutic techniques in these areas. Several journals dedicated to neuroradiology exist; however, neuroradiologic articles are also included in general radiology journals and in radiology subspecialty journals such as those dedicated to pediatric radiology. While there is a growing body of bibliometric analyses in the radiology literature,4–7 few studies have focused on neuroradiology topics to date.8–10

We hypothesized that the citation characteristics of a journal are heterogeneous among journal subsections and varying topics. We undertook a bibliometric analysis to evaluate the citation characteristics of neuroradiology articles within a neuroradiology
Table 1: Citation characteristics of journal sections (2010–2012) based on the first 2 years of citations

<table>
<thead>
<tr>
<th>Journal Category</th>
<th>No.</th>
<th>Mean</th>
<th>SD</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Median</th>
<th>% with Citations in First 2 Years</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedited Pub</td>
<td>11</td>
<td>43.73</td>
<td>31.94</td>
<td>13</td>
<td>116</td>
<td>36</td>
<td>1.000</td>
<td>24.38</td>
</tr>
<tr>
<td>Review</td>
<td>53</td>
<td>9.38</td>
<td>7.95</td>
<td>0</td>
<td>38</td>
<td>7</td>
<td>0.981</td>
<td>5.23</td>
</tr>
<tr>
<td>Interventional</td>
<td>232</td>
<td>8.13</td>
<td>9.91</td>
<td>0</td>
<td>83</td>
<td>5</td>
<td>0.948</td>
<td>4.54</td>
</tr>
<tr>
<td>Brain</td>
<td>321</td>
<td>6.64</td>
<td>6.18</td>
<td>0</td>
<td>61</td>
<td>5</td>
<td>0.941</td>
<td>3.70</td>
</tr>
<tr>
<td>Extracranial</td>
<td>9</td>
<td>6.33</td>
<td>5.96</td>
<td>0</td>
<td>19</td>
<td>5</td>
<td>0.889</td>
<td>3.53</td>
</tr>
<tr>
<td>Vascular Pediatrics</td>
<td>98</td>
<td>5.22</td>
<td>4.99</td>
<td>0</td>
<td>36</td>
<td>4</td>
<td>0.949</td>
<td>2.91</td>
</tr>
<tr>
<td>Other</td>
<td>68</td>
<td>5.12</td>
<td>6.18</td>
<td>0</td>
<td>31</td>
<td>3</td>
<td>0.868</td>
<td>2.85</td>
</tr>
<tr>
<td>Functional</td>
<td>34</td>
<td>4.91</td>
<td>3.75</td>
<td>0</td>
<td>17</td>
<td>4</td>
<td>0.941</td>
<td>2.74</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>131</td>
<td>4.02</td>
<td>4.63</td>
<td>0</td>
<td>34</td>
<td>3</td>
<td>0.824</td>
<td>2.24</td>
</tr>
<tr>
<td>Spine</td>
<td>92</td>
<td>3.33</td>
<td>3.13</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>0.848</td>
<td>1.85</td>
</tr>
<tr>
<td>Noncategorized</td>
<td>77</td>
<td>1.91</td>
<td>3.92</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0.403</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Note: —Pub indicates Publication.

a Other includes Patient Safety (n = 33), Pharmacology Vignette (n = 10), Research Perspectives (n = 9), Practice Perspectives (n = 7), Health Care Reform Vignette (n = 6), and Methodologic Perspective (n = 5).

b While the citation characteristics for these noncategorized items (editorials, letters to the editor, and so forth) are presented here, they were not considered in the formula for determining the VIF correction factor.

Materials and Methods

Article Selection

Only Original Research and Review Articles published in AJNR from 2010 to 2012 were evaluated. Full-text versions of all articles were obtained as PDF downloads and reviewed for topic. This study did not directly involve patient information and met the criteria for institutional review board exemption.

Journal Section Categorization

The journal section for each article (eg, Brain, Head & Neck, Pediatrics, Spine, Functional) was recorded. Additional journal subcategorizations, such as “Fellows’ Journal Club” or “Editor’s Choice” were also recorded.

Article Topic Categorization

The PDF of each article was evaluated to identify included topics, regardless of the initial categorization by the journal. While an article has only 1 category, as designated in the journal, there may be more than 1 topic that applies. For example, an article in the Pediatrics section of the journal on a head and neck topic will be assigned a topic of both pediatrics and head and neck, and a spine intervention article in the Interventional section would be assigned to the spine and interventional topics.

Citation Analysis

Each selected article was evaluated by using the Web of Science (Thompson Reuters, New York, New York) database for its number of citations. The number of citations within the first 2 calendar years after their publication was recorded and normalized to the 2013 AJNR journal Impact Factor (JIF, 3.675). This ratio was used to calculate a virtual Impact Factor (VIF) for each journal subsection. For instance, if a journal has a JIF of 5, and the articles received, on average, 8 citations, then a journal subsection that received an average of 4 citations would have a VIF of 2.5.

Citations from noncategorized items, including letters to the editor, editorials, and errata, were not included in the VIF calculation. Each article selected for analysis was reviewed in the Web of Science database to determine how many citations it received. While we could find no existing bibliometric reports formally documenting this methodology, we believe that using the average number of citations for each journal subsection is a valid extension of the reported methodology of the JIF.11-14

Statistics

Data were collected in a spreadsheet (Excel; Microsoft, Redmond, Washington), and statistics were calculated by using SPSS Version 21 (IBM, Armonk, New York) and Excel. Discrete variables (number of articles with zero versus greater than 1 citation) were compared using the Fisher exact test. Continuous variables (number of citations, VIF) were compared with a Student t test when there was a Gaussian distribution of data and otherwise with the nonparametric Wilcoxon rank sum test. P values < .05 were considered significant.

Results

One thousand forty-nine Original Research and Review Articles were published in AJNR during the 3 years evaluated. An additional 77 uncategorized items, including editorials, letters to the editor, and errata, were excluded from analysis. The 1049 categorized articles accumulated 6.59 ± 8.53 (range, 0–116; median, 4) citations within their first 2 years after publication, and 91.8% of articles had at least 1 citation. On the basis of a JIF of 3.675, the VIF for a given section was determined as (Number of Citations / (6.59 / 3.675)).

Citations by Journal Section

Expedited Publications had the most citations with 11 articles averaging 43.7 ± 31.9 (range, 13–116; median, 36) citations each (VIF, 24.39). Review Articles had the next highest number of citations, with 53 articles averaging 9.38 ± 7.95 (range, 0–38; median, 7) citations each (VIF, 5.23), and 52 (98.1%) of these articles received at least 1 citation within 2 years of publication. VIFs for other sections ranged from 4.54 for Interventional (the highest) to 1.86 for Spine (the lowest) (Table 1). Articles selected as “Editor’s Choices” had a VIF of 5.14, and those selected for the “Fellows’ Journal Club” had a VIF of 3.83.

Citations by Article Topic

When we evaluated the citation characteristics by article topic as opposed to journal-assigned categories, interventional articles had the highest citation numbers, averaging 8.52 ± 12.54 (range, 0–116; median, 5) citations with a VIF of 4.75, which was similar to the journal category of Interventional (P = .69) (Table 2). Articles related to the spine were cited 4.16 ± 3.69 (range, 0–19;
The resultant quality of articles in a journal is a factor of the quality of work being performed in a given area, the alternative outlets for publication that a given author may choose, and the quality of the editorial review process. It is possible that areas such as interventional, in which many reviewers practice for a large percentage of their careers, receive higher quality reviews because the reviewers want to simultaneously select the best articles and provide the best feedback to the authors during the review process to improve the articles. In contrast, a smaller number of radiologists have most of their practice in head and neck and likely even fewer have their practice and academic interests primarily in spine.

Beyond neuroradiology journals, there are spine-focused journals in neurosurgery and orthopaedic surgery (e.g., Journal of Neurosurgery–Spine, and Spine). These 2 journals have JIFs of 2.355 and 2.447, respectively, very similar to the 2.319 VIF for articles with a spine topic in AJNR. Comparisons such as this may help determine whether subsections and/or topics are being cited like those in journals with a potentially overlapping focus.

Knowledge of subsection VIF may allow prediction of the influence on the JIF, with reallocation of journal pages between sections. Page allotment limitations from print journals may be mitigated as they shift toward on-line publications.

Because the financial and logistic barriers for creating larger new journals has decreased, it may be tempting for physicians with a narrow area of interest to contemplate creation of a focused journal on a given topic, and understanding citation trends may provide evidence that a narrowly focused journal may or may not have the ability to survive. For example, it is clear from our investigation that for subspecialties such as spine and head and neck...
imaging, creating their own freestanding journals may be difficult and physicians are better served by remaining within a larger journal with a higher JIF than they would in independent journals dedicated to their specialty. In addition, authors of articles with a given topic may be able to better recognize the expected citations of their article and whether submitting to a specific journal such as AJNR is best for them. For instance, the author of a diagnostic spine imaging article in AJNR, which will have fewer citations than the average article in the journal, may be less discouraged if they know their article has been cited more than other diagnostic spine articles in the same or other journals. Thus, encouraging all journals to calculate and publish their virtual JIF by sections may be useful to prospective authors.

CONCLUSIONS

Understanding the citation expectations of specific topics and subsections of a journal may aid editors in evaluating the appropriate balance among various topics and allow authors to determine whether their article is being cited at a level expected for similar topics in a journal.

REFERENCES

According to a 2011 survey, 94% of medical students and 79.4% of residents in the United States are active online social media users. Social media represent a relatively simple technique to provide educational material in a format that is adapted to the learning styles preferred by the “millennial” generation. Evidence suggests that most incoming medical students are receptive to online learning tools even in the absence of prior exposure to such methods for educational purposes. However, despite all of the attention social media have received in medical education circles, it remains unclear how social media use can be optimized to educate communities of learners through information sharing and knowledge dissemination.

Those of us engaged in the education of medical students, residents, and fellows have witnessed a transition in recent years from print textbooks, journals, and syllabi to predominantly electronic media. At many medical schools across the country, learning experience has in part shifted from classrooms into online platforms, commonly accessed through mobile devices. For instance, Stanford Medical School saw an increase in class attendance from 30% to 80% after transitioning much of the traditionally didactic classroom lessons into concise online sessions, and reserving classroom time for interactive discussions and problem solving. Similarly, many radiology programs, such as the program at the University of Arkansas for Medical Sciences, now use Web-based educational activities as an adjuvant to traditional didactic lectures. Advantages of electronic educational resources, or e-learning, include ease of access and physical transport, searchability, and the potential for interaction among trainees as well as between trainees and educators. Dissemination of electronic educational resources via social media leverages one of this format’s strengths: information flow is based largely on relative value as judged by users. For example, popular or particularly valuable resources will be posted, “liked,” retweeted, and “favorited” more often, thus gaining a wider audience than resources that are deemed less valuable.

As of 2011, most health professional students prefer to receive educational material online. Even beyond formal training, practicing physicians now have access to an increasing array of online resources for continuing medical education (CME) such as the American Society of Neuroradiology’s eCME course catalog (http://members.asnr.org/ecme/) and American Academy of Neurology’s online CME site (https://cme.neurology.org/s/catalog). Social media represent an ideal way for professional organizations to disseminate new or updated online CME material to their members. Furthermore, social media also allow professional organizations to meaningfully interact with their members, collect feedback, and respond purposefully in a way that was not possible with traditional methods of member-organization communication.

In their review of social media use in medical education, Cheston et al. report that the introduction of social media-based content favorably impacts learner satisfaction and knowledge. Social media succeed in accomplishing this in a number of ways. For educators, links to reading assignments or “case of the week” installments can be efficiently distributed to a group of followers using platforms such as Twitter. Hashtags can serve to archive current and past assignments, and to manage online group discussions on a particular topic. Tweet chats during and after lectures and journal clubs offer trainees the opportunity to ask questions and have discussions, or provide the group with links to related material in real time. Through such interactivity, social media channels promote knowledge sharing, rather than consumption of the material that is “pushed” to target audiences. In addition, participants in social media forums often have a variety of experiences and abilities, thus diversifying and enriching conversations.

The potentials of social media for medical education are only recently being realized, and robust evidenced-based data on this subject are lacking. In the coming years with the anticipated continuing shift of student preferences toward online content, increased interconnectivity, and peer-to-peer knowledge sharing, social media have the potential to substantially impact and dis-
rupt medical education. The radiology community would be well served by leading this charge.

REFERENCES
Accuracy of Parenchymal Cerebral Blood Flow Measurements Using Pseudocontinuous Arterial Spin-Labeling in Healthy Volunteers

K. Ambarki, A. Wåhlin, L. Zarrinkoob, R. Wirestam, J. Petr, J. Malm, and A. Eklund

ABSTRACT

BACKGROUND AND PURPOSE: The arterial spin-labeling method for CBF assessment is widely available, but its accuracy is not fully established. We investigated the accuracy of a whole-brain arterial spin-labeling technique for assessing the mean parenchymal CBF and the effect of aging in healthy volunteers. Phase-contrast MR imaging was used as the reference method.

MATERIALS AND METHODS: Ninety-two healthy volunteers were included: 49 young (age range, 20–30 years) and 43 elderly (age range, 65–80 years). Arterial spin-labeling parenchymal CBF values were averaged over the whole brain to quantify the mean pCBF ASL value. Total CBF was assessed with phase-contrast MR imaging as the sum of flows in the internal carotid and vertebral arteries, and subsequent division by brain volume returned the pCBF PCMRI value. Accuracy was considered as good as that of the reference method if the systematic difference was less than 5 mL/min/100 g of brain tissue and if the 95% confidence intervals were equal to or better than ±10 mL/min/100 g.

RESULTS: pCBF ASL correlated to pCBF PCMRI (r = 0.73; P < .001). Significant differences were observed between the pCBF ASL and pCBF PCMRI values in the young (P = .001) and the elderly (P < .001) volunteers. The systematic differences (mean ± 2 standard deviations) were −4 ± 14 mL/min/100 g in the young subjects and 6 ± 12 mL/min/100 g in the elderly subjects. Young subjects showed higher values than the elderly subjects for pCBF PCMRI (young, 57 ± 8 mL/min/100 g; elderly, 54 ± 7 mL/min/100 g; P = .05) and pCBF ASL (young, 61 ± 10 mL/min/100 g; elderly, 48 ± 10 mL/min/100 g; P < .001).

CONCLUSIONS: The limits of agreement were too wide for the arterial spin-labeling method to be considered satisfactorily accurate, whereas the systematic overestimation in the young subjects and underestimation in the elderly subjects were close to acceptable. The age-related decrease in parenchymal CBF was augmented in arterial spin-labeling compared with phase-contrast MR imaging.

ABBREVIATIONS: ASL = arterial spin-labeling; HE = healthy elderly; HY = healthy young; pCASL = pseudocontinuous ASL; pCBF = parenchymal CBF; PCMRI = phase-contrast MRI; VA = vertebral artery

Using well-established perfusion imaging techniques, such as PET, SPECT, or other techniques such as perfusion CT, cerebral blood flow can be quantified within parenchymal tissue and expressed in milliliters per minute per 100 g of brain tissue (mL/min/100 g). These methods require injection of a contrast agent or a radioactive tracer. However, radiotracers are associated with exposure to ionizing radiation, CT contrast agents are nephrotoxic, and perfusion studies of this kind cannot be repeated until the contrast medium or tracer disappears. Using arterial spin-labeling (ASL) MR imaging,1 it is possible to assess parenchymal CBF (pCBF) noninvasively. Recent developments have enabled quantitative assessment of whole-brain perfusion with ASL within a few minutes.2,3 The accuracy of pCBF estimates obtained by using ASL, however, is still a subject of discussion.4 Age- and sex-related differences in pCBF have been found by using ASL, PET, and SPECT.5–10 However, these effects are still not fully understood, and no consensus has been established from previously published data.1,12

Total CBF is defined by the 4 arteries that supply the brain (ie, the internal carotid arteries and the vertebral arteries [VAs]). The blood flow of these arteries, and thus the total CBF, can be measured with good accuracy at the level of the foramen magnum by
using 2D phase-contrast MR imaging (PCMRI). Using high-resolution morphologic MR imaging data and postprocessing software, the total volume of the brain parenchymal tissue can be assessed. Total CBF can be obtained accurately with PCMRI (shown here as pCBFPCMRI values), and brain parenchymal volume can be measured accurately from the T1 sequence. Dividing flow by volume, pCBFPCMRI can be estimated with expected good accuracy and used as a reference to evaluate the accuracy of pCBF obtained via ASL (pCBFASL).

The aim of this study was to investigate the accuracy of a clinically implemented pseudocontinuous ASL method for assessing pCBF in 92 healthy individuals by using PCMRI as the reference method. The effects of aging and sex on pCBF were assessed by using both methods, and the results were compared.

MATERIALS AND METHODS

Subjects

A total of 111 subjects, recruited by advertisement in a daily newspaper, were included in this prospective study. The subjects were defined as healthy if they had no neurologic or cardiac disease, hypertension, peripheral vascular disease, or renal disease. Eleven subjects were excluded after the physical examination because of a Mini-Mental State Examination score of <28 points (n = 3), 16 electrocardiogram changes (n = 1), a blood pressure of >160/90 mm Hg (n = 1), or neurologic issues (n = 6). After the MR imaging examination, 8 subjects were excluded because of claustrophobia (n = 3) or technical problems or missing MR imaging data (n = 5). The remaining 92 healthy subjects were categorized in 1 of 2 different age groups (ie, 49 subjects in the healthy young [HY] group [age range, 20–30 years; mean age, 23 years; 23 women] and 43 subjects in the healthy elderly [HE] group [age range, 65–80 years; mean age, 71 ± 4 years; 23 women]). In addition, the 92 subjects were classified according to sex (ie, the study group included 50 healthy women and 42 healthy men). The research protocol used in this study was approved by the ethical review board of Umeå University. Each patient provided oral and written informed consent.

MR Imaging

Each subject was scanned by using a 3T MR imaging unit (Discovery MR 750; GE Healthcare, Milwaukee, Wisconsin) supplied with a 32-channel head coil.

Three-dimensional time-of-flight angiography was performed to visualize the ICAs and the VAs. TOF angiography was used to position a perpendicular PCMRI plane at the cervical (C1–C2) level. The 2D PCMRI data were acquired with the following parameters: TR, 9 ms; TE, 5 ms; section thickness, 5 mm; flip angle, 15°; FOV, 180 × 180 mm2; acquisition matrix, 512 × 512; in-plane resolution, 0.35 × 0.35 mm2; views per segment, 6; velocity encoding, 70 cm/s; and NEX, 2. Thirty-two velocity-coded and magnitude images throughout the entire cardiac cycle were collected. A peripheral pulse signal was used for retrospective cardiac gating. The acquisition time of the PCMRI was approximately 2 minutes 30 seconds, depending on the subject’s heart rate.

Whole-brain perfusion data were obtained by using a 3D pseudocontinuous ASL (pCASL) method implemented by the manufacturer (Appendix). In summary, the pCASL was applied, followed by an interleaved 3D stack of spiral fast spin-echo readout with background suppression. The pCASL parameters were as follows: sampling points on 8 spirals, 512; FOV, 240 × 240 mm2; true in-plane resolution, 3.75 mm17-19; reconstructed matrix, 128 × 128; TR, 4674 ms; TE, 10 ms; NEX, 3; section thickness, 4 mm; labeling plane positioned at the base of the cerebellum; labeling duration, 1500 ms; postlabeling delay, 1525 ms; sections covering the whole brain, 40–44; control/label pairs, 30; and acquisition time, 4 minutes 31 seconds.

High-resolution T1-weighted data for assessing brain parenchymal volume were collected by using a sagittal 3D fast-spoiled gradient-echo sequence to image the whole brain with 176 sections, a section thickness of 1 mm, a TR of 7 ms, a TE of 2 ms, a flip angle of 10°, a FOV of 250 × 250 mm, an acquisition matrix of 256 × 256, and an acquisition time of 5 minutes 20 seconds.

MR Imaging Data Postprocessing and Analysis

Brain Parenchymal Tissue Segmentation. The T1-weighted data were processed by using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) and default parameters of SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/) by using Matlab R2013b (MathWorks, Natick, Massachusetts). The segmentation method of VBM8 is based on an adaptive maximum a posteriori approach, and tissue compartments were classified into gray matter, white matter, and CSF. GM and WM segmentations were inspected visually to ensure quality of the segmentation. No severe missegmentation of brain parenchymal tissue was observed, and therefore no data were omitted from the analysis. However, in a few of the elderly subjects, the periventricular WM was misclassified as GM, but the segmentation did not alter the whole-brain segmentation, and no manual correction had to be performed.

ASL Measurement of Parenchymal Cerebral Blood Flow. The pCASL pCBF maps (in mL/min/100 g) were computed by the postprocessing FuncTool software (version 10.4.04; GE Healthcare) that was based on a general kinetic model for ASL. The details of the manufacturer’s implementation method to quantify the pCBF maps are shown in the Appendix.

Using the SPM8 software, GM and WM masks were co-registered to the ASL data and down-sampled to the same pixel size as that of the reconstructed ASL data. The GM and WM masks were then smoothed in-plane with a Gaussian kernel (3.25 × 3.25 mm2 full width at half maximum) to create a resolution identical to the true spatial resolution of ASL. Erosion was applied to exclude the 2 outer pixel layers from the brain mask (GM and WM) to avoid ASL artifacts and inclusion of the skull. Each pixel in the brain mask contains the volume fractions of GM (FGM) and WM (FWM). The brain parenchymal volume was calculated as the sum of the GM and WM volumes. The mean pCBF from the ASL data (pCBFASL) was estimated by using equation 1:

\[
pCBF_{\text{ASL}} = \frac{\sum_{i=1}^{n} \text{CBF}(i)}{\sum_{i=1}^{n} (F_{\text{GM}}(i) + F_{\text{WM}}(i))}
\]
where F_{GM} and F_{WM} are the volume fractions of GM and WM, respectively, CBF(i) is the cerebral blood flow (mL/min/100 g of brain tissue) within the ith ASL pixel, and n is the number of pixels that contain brain tissue ($F_{GM} + F_{WM} > 0$%). Our aim was to estimate the perfusion in the entire parenchymal tissue. No partial volume correction was thus necessary to separate perfusion signal from individual WM and GM voxels.

PCMRI Measurement of Vessel Velocity and Parenchymal Cerebral Blood Flow. PCMRI data were analyzed by using Segment software version 1.8 (Medviso, Lund, Sweden). The magnitude images were used to delineate manually the cross-section areas of the ICAs and VAs. The positions and sizes of the cross-section areas were kept constant during the cardiac cycle. For each vessel, the flow rate was computed as the mean velocity multiplied by the cross-section area.

The blood flow rates of the bilateral ICAs and VAs were summed, and the derived blood flow rate was averaged over the cardiac cycle to estimate the total CBF (reported in milliliters per minute). Thereafter, the parenchymal cerebral blood flow from PCMRI (pCBFPCMRI) was calculated in milliliters per minute per 100 g of brain tissue by using equation 2:

$$pCBF_{PCMRI} = \frac{tCBF \times BPV}{\rho \times 100},$$

where $tCBF$ is total CBF, BPV is brain parenchymal volume, and ρ is the brain tissue density (1.05 g/mL).

Furthermore, the velocity of blood in the labeling plane directly affects the labeling efficiency of the pCASL and thus also the pCBF quantification. To investigate the effect of the mean velocity of the bilateral ICAs and VAs on the ASL data, mean velocities were computed and correlated to the difference between pCBFPCMRI and pCBFASL.

Comparison of pCBFPCMRI and pCBFASL with respect to age and sex

<table>
<thead>
<tr>
<th>Subjects</th>
<th>pCBFPCMRI (Mean ± SD) (mL/min/100 g)</th>
<th>pCBFASL (Mean ± SD) (mL/min/100 g)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HY (n = 49)</td>
<td>57 ± 8</td>
<td>61 ± 10</td>
<td><.05*</td>
</tr>
<tr>
<td>HE (n = 43)</td>
<td>54 ± 7</td>
<td>48 ± 10</td>
<td><.001*</td>
</tr>
<tr>
<td>HW (n = 50)</td>
<td>58 ± 8</td>
<td>58 ± 12</td>
<td>.94</td>
</tr>
<tr>
<td>HM (n = 42)</td>
<td>53 ± 6</td>
<td>51 ± 11</td>
<td>.16</td>
</tr>
<tr>
<td>All (n = 92)</td>
<td>56 ± 8</td>
<td>55 ± 12</td>
<td>.34</td>
</tr>
</tbody>
</table>

Note: - HY indicates healthy women; HM, healthy men.
* Value is significant.

Statistical Analysis

SPSS Statistics version 18 (IBM, Armonk, New York) was used to perform statistical analysis. Variables were expressed as means ± standard deviation. The Shapiro-Wilk test was used to test the normal distribution of the measured parameters. Differences between the groups were investigated by using the unpaired Student t test. For the comparison between pCBFASL and pCBFPCMRI values, linear regression analysis and Bland-Altman plots were used. Differences between the pCBFPCMRI and pCBFASL values were tested by using the paired Student t test. The accuracy was defined as the systematic bias and the random difference (mean difference ± 2 standard deviations) between the 2 methods. We considered the accuracy of ASL-based pCBF measurement to be good if the systematic difference against the reference method was < 5 mL/min/100 g and if the randomized difference was less than or equal to ± 10 mL/min/100 g, which corresponds to the limits of agreement previously shown for repeated measurements with PCMRI and for repeated measurements with ASL. A P value of < .05 was considered statistically significant.

RESULTS

Comparison of PCMRI and ASL

The pCBF values obtained by PCMRI and ASL are shown in the Table, and a comparison between the pCBFPCMRI and pCBFASL values is displayed in the Figure. There was a significant correlation between pCBFPCMRI and pCBFASL values ($r = 0.73; P < .001$). Corresponding correlation coefficients (r) when the HY and HE groups were compared separately were 0.73 ($P < .001$) and 0.78 ($P < .001$), respectively. As shown in the Table, there was a significant difference between pCBFASL and pCBFPCMRI for HE ($P < .001$) and HY ($P = .001$) subjects but not for the whole group ($P = .34$). For all subjects, the mean bias and the limits of agreement between the 2 methods were 1 ± 16 mL/min/100 g (mean ± 2 standard deviations). The mean bias (pCBFPCMRI − pCBFASL) showed an underestimation by ASL in HE subjects (6 ± 12 mL/min/100 g) and an overestimation in HY subjects (− 4 ± 14 mL/min/100 g), whereas it was similar for healthy men and women (2 ± 19 and 0 ± 16 mL/min/100 g, respectively; $P = .256$).

The difference between pCBFPCMRI and pCBFASL showed significant corre-
lation with the mean velocities of the VAs \((r = -0.47; P < .001; \text{On-line Fig 2})\) and ICAs \((r = -0.35; P = .001)\).

Dependence of \(pCBF_{ASL}\) and \(pCBF_{PCMRI}\) on Age and Sex

\(pCBF_{ASL}\) values were significantly higher in HY than in HE subjects \((P < .001; \text{Table})\). A similar pattern emerged for \(pCBF_{PCMRI}\) values, but the difference was less evident \((P = .05; \text{Table})\). Therefore, the percent decrease of the mean \(pCBF\) with aging was lower in \(pCBF_{PCMRI}\) \((<5\%)\) than in \(pCBF_{ASL}\) \((<21\%)\). The \(pCBF_{PCMRI}\) and \(pCBF_{ASL}\) values were significantly higher in women \((pCBF_{PCMRI} 9\% \left(P = 4 \times 10^{-4}\right)\); \(pCBF_{ASL} 12\% \left(P = .002\right)\)).

DISCUSSION

Methods for assessing cerebral perfusion by using ASL are available on most modern MR imaging scanners, but their accuracy is still not fully established. Using high-spatial-resolution PCMRI as the reference method, the accuracy of ASL was investigated in this study, and the dependencies on age and sex were quantified and compared. A good correlation was found between the reference method and ASL, but a significant difference between the mean values was observed for both HE (approximately \(-11\%)\) and HY (5\%) subjects. Consequently, the observed effect of aging on \(pCBF\) was estimated as much lower in values obtained from PCMRI than in those from ASL (5\% vs 21\%). Because of ASL overestimation in HY subjects and underestimation in HE subjects, no significant difference between \(pCBF_{PCMRI}\) and \(pCBF_{ASL}\) values was observed in the group as a whole (Table).

In this study, high-resolution PCMRI with an in-plane resolution of 0.35 mm was used, which represents \(>8\) pixels per diameter for the internal carotid and vertebral arteries. With high spatial resolution \((>4\) pixels per diameter\) and by using similar MR imaging parameters \((\text{velocity encoding, TE, TR, and section thickness})\) as in the present study, it was shown previously that PCMRI can accurately \((<10\%)\) measure the blood flow in ICAs and VAs and thus can be considered a criterion-standard technique for measuring total CBF.\(^{14}\)

The ASL sequence used in this study had a short MR imaging acquisition time \((<5\) minutes for whole-brain coverage\), and we used a pseudocontinuous arterial-labeling scheme with 3D segmented readout and background suppression, which is considered one of the best ASL approaches for assessing \(pCBF\). It is important to emphasize that in this study, the ASL data were obtained with a commercially available ASL sequence, and the CBF estimates were quantified by using the manufacturer’s postprocessing software without any additional corrections, as was also done in previous studies.\(^{19,25}\) It should be mentioned that the CBF quantification model used in this study was slightly different than the model proposed in a recent consensus article concerning ASL for clinical applications (Appendix).\(^{2}\)

Jain et al\(^{26}\) reported results from a group of children that were similar to ours \((\text{ie, a significant correlation of } pCBF\text{ values determined by PCMRI and ASL})\). Other studies have found moderate to good correlations \((r = 0.4–0.8)\) between pseudocontinuous ASL and PET imaging for \(pCBF\) measurements.\(^{4,27,28}\) On the contrary, Henriksen et al\(^{29}\) showed a large underestimation of \(pCBF\)-based \(pCBF\) \((75\%)\) compared with the estimation by PCMRI and no correlation between the 2 methods. One explanation for this result might be that they used a model-free pulsed-ASL method.

The results of our study further support the use of pseudocontinuous ASL. PET is most likely a good method for comparison with ASL, because it is possible to perform intermodal comparisons of global and regional brain perfusion measurements. A recent study found a relatively low correlation between ASL and PET for measuring \(pCBF\) in GM at resting state,\(^{4}\) but it is not feasible to repeat such a study with a large number of volunteers.

In accordance with the results of our study, previous ASL studies found a difference of mean \(pCBF\) \((17\%)\) or perfusion in GM \((20\%–30\%)\) between HY and HE subjects.\(^{5,6,10}\) In these previous ASL studies, no age-specific postlabeling delay was used, and the postlabeling delays that were used ranged from 800 to 1700 ms. PET and SPECT studies have revealed similar results.\(^{9,10}\) Our findings confirm that \(pCBF\) decreases with age in healthy adults. However, the magnitude of the decline in \(pCBF\) as determined by ASL was approximately 4 times larger than that determined by PCMRI, and these results bring into question previous observations regarding the magnitude of decrease in ASL-derived \(pCBF\) that is associated with healthy aging. Aging causes general brain atrophy and cortical thinning, which may increase the partial volume effects,\(^{30,31}\) and aging also leads to increased arterial transit time.\(^{32}\) Potentially, such changes influence the accuracy of ASL.\(^{5}\) Increasing the postlabeling delay for elderly subjects could remedy some ASL inaccuracies.\(^{2}\) Furthermore, the CBF quantification model used in our study (see Appendix and equation 3) assumes that the longitudinal relaxation time of gray matter \((T1_{GM})\) and the brain-to-blood partition coefficient \((\lambda)\) are constant. However, previous studies have provided no real consensus with regard to a possible effect of aging on \(T1_{GM}\).\(^{33,34}\) Furthermore, it is known that \(\lambda\) values are higher in the neonatal brain than in the adult brain.\(^{35}\) Hence, we cannot rule out the possibility that the brain-to-blood partition coefficient varies over a life span between 25 and 71 years of age.

Women had higher \(pCBF_{PCMRI}\) \((9\%)\) and \(pCBF_{ASL}\) \((12\%)\) values than the men in this study. Similar results have been reported, with \(pCBF\) values being \((6\%–9\%)\) higher in women.\(^{5,10,36}\) Because various imaging modalities have indicated the same relative difference, it can be regarded as reliable, and it indicates that the accuracy of the ASL method was not affected by differences related to sex. The \(T1\) relaxation of blood \((T1_b)\) can influence the accuracy of ASL perfusion measurements.\(^{26,37}\) Previous studies have shown higher mean \(T1_b\) values \((6\%–9\%)\) in women than in men, and the lower blood hematocrit level in women than in men may explain this observed sex difference in mean \(T1_b\).\(^{38,40}\) In a previous study, Piechnik et al\(^{40}\) found significantly higher mean \(T1_b\) values in women than in men \((1577 vs 1491\text{ ms})\). Using equation 3 in the Appendix and \(T1_b\) for men and for women, we estimated that the relative sex difference in \(pCBF_{ASL}\) values in our data decreased from \(12\%\) to approximately \(4\%\), which then is less than the PCMRI findings. In the same study, Piechnik et al\(^{40}\) found no differences in \(T1_b\) values between HY \((20–30\text{ years})\) and HE \((60–70\text{ years})\) subjects, which indicates that the \(T1_b\) effect is not the dominating factor in explaining the large effect of aging on \(pCBF_{ASL}\).

Motion artifacts during the ASL scan were not corrected, which might be a source of error in the \(pCBF_{ASL}\) estimates. Another factor that might influence the ASL perfusion accuracy is the location of the labeling plane. In the present study, the labeling plane was located at the base of the cerebellum and should be...
oriented perpendicularly to the cerebral feeding arteries. This placement was difficult to achieve; manually placing the labeling plane for ASL was not possible, because the current commercial implementation of pCASL does not allow it. Furthermore, the tortuosity of cerebral arteries increases with age, which may partly explain the underestimation of pCBFASL in HE subjects. For 5 HE subjects, pCBF values were unreasonably low (ie, of the order of 20–30 mL/min/100 g; Fig 1A). When we excluded these HE subjects from the analysis, we observed a minor increase (from 46 to 48 mL/min/100 g) in the mean pCBFASL in HE subjects, which did not change our main conclusions. Furthermore, we visually inspected the labeling-plane position in these 5 HE subjects with respect to the geometry of the feeding cerebral arteries by using TOF angiography. In 3 subjects, the labeling plane was close to parallel with the VAs, and ASL data showed a very low CBFASL in the posterior region (see example in On-line Fig 3). However, on 2 other HE subjects with a low pCBFASL, the labeling plane was close to perpendicular to both ICAs and VAs, and thus its position should not cause the low CBFASL that we observed in the posterior regions (On-line Fig 3). In future studies, it will be important to investigate in detail how the tortuosity of ICAs and VAs can alter the estimation of pCBF values with ASL.

The tortuosity of ICAs and VAs is also challenging for the PCMRI method, in which misalignment of the PCMRI plane can cause an underestimation of the total cerebral blood flow. In our study, this potential problem was partially avoided by careful manual placement of the PCMRI planes in the TOF angiogram. A potential source of nonuniform arterial transit time. If white matter pCBF shows a systematic bias, it would affect the mean whole-brain value.

CONCLUSIONS
For mean parenchymal cerebral blood flow, a high degree of correlation was found between the ASL and PCMRI (reference) methods. For HY adults, the accuracy of pCBF assessment determined by ASL was good with regard to the systematic difference, though the randomized difference against the PCMRI method was outside of the limits according to our criteria. There were both systematic underestimation and a similarly large randomized difference in results for the HE subjects. Consequently, age-related reductions in pCBF became augmented with ASL compared with the reference method.

APPENDIX
The true in-plane spatial resolution of the pCASL sequence was 3.75 mm. Background suppression pulses were achieved by saturating the imaged volume before labeling and by applying 4 nonselective inversion pulses at 1500 ms, 680 ms, 248 ms, and 57 ms before readout. A reference image was obtained 2000 ms after saturation in the same sequence as the rest of the ASL data.

The following description of the CBF quantification method was provided by the manufacturer of the MR imaging scanner:

$$\text{CBF} = 6000\lambda(1 - e^{-\frac{T_{\text{sat}}}{T_{\text{inc}}} - \frac{P_{\text{LD}} T_{\text{inc}}}{2\tau T_{1b}}\frac{e^{\tau T_{1b}}}{1 - e^{\tau T_{1b}}}}) S_0,$$

where PLD is the postlabeling delay time (1525 ms); r is the labeling duration (1500 ms); λ is a combination of inversion efficiency (0.8) and background suppression efficiency (0.75) resulting in an overall labeling efficiency of 0.6; λ is the tissue-to-blood partition coefficient (0.9 mL/g); T_{1b} and $T_{1\text{GM}}$ are the longitudinal relaxation times of blood (1600 ms) and GM (1200 ms), respectively; T_{sat} is the saturation time (2000 ms); S_0 is the reference image signal (obtained voxelwise); and ΔS is the ASL difference image signal. The scaling factor 6000 was used to convert to CBF units (mL/min/100 g). In our study, it was assumed that WM perfusion can be calculated by using the model described above and setting parameters. Compared with the quantification proposed by Alsop et al, a term for compensation of the imperfect relaxation in the reference image is added.

REFERENCES
8. Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. Neuroimage 2011;55:468–78 CrossRef Medline

1820 Ambarki Oct 2015 www.ajnr.org

Gray Matter Volume Reduction Is Associated with Cognitive Impairment in Neuromyelitis Optica

Q. Wang, N. Zhang, W. Qin, Y. Li, Y. Fu, T. Li, J. Shao, L. Yang, F.-D. Shi, and C. Yu

ABSTRACT

BACKGROUND AND PURPOSE: Whether gray matter impairment occurs in neuromyelitis optica is a matter of ongoing debate, and the association of gray matter impairment with cognitive deficits remains largely unknown. The purpose of this study was to investigate gray matter volume reductions and their association with cognitive decline in patients with neuromyelitis optica.

MATERIALS AND METHODS: This study included 50 patients with neuromyelitis optica and 50 sex-, age-, handedness-, and education-matched healthy subjects who underwent high-resolution structural MR imaging examinations and a battery of cognitive assessments. Gray matter volume and cognitive differences were compared between the 2 groups. The correlations of the regional gray matter volume with cognitive scores and clinical variables were explored in the patients with neuromyelitis optica.

RESULTS: Compared with healthy controls (635.9 ± 51.18 mL), patients with neuromyelitis optica (602.8 ± 51.03 mL) had a 5.21% decrease in the mean gray matter volume of the whole brain (P < .001). The significant gray matter volume reduction in neuromyelitis optica affected the frontal and temporal cortices and the right thalamus (false discovery rate correction, P < .05). The regional gray matter volumes in the frontal and temporal cortices were negatively correlated with disease severity in patients with neuromyelitis optica (Alphasim correction, P < .05). Patients with neuromyelitis optica had impairments in memory, information processing speed, and verbal fluency (P < .05), which were correlated with gray matter volume reductions in the medial prefrontal cortex and thalamus (Alphasim correction, P < .05).

CONCLUSIONS: Gray matter volume reduction is present in patients with neuromyelitis optica and is associated with cognitive impairment and disease severity in this group.

ABBREVIATIONS: BLV = brain lesion volume; EDSS = Expanded Disability Status Scale; GMV = gray matter volume; HC = healthy control; NMO = neuromyelitis optica; NMO-IgG = neuromyelitis optica immunoglobulin G; pr = partial correlation coefficient

Neuromyelitis optica (NMO) is an idiopathic, severe, demyelinating disease of the central nervous system that is characterized by optic neuritis and myelitis.1,2 Although the brain is traditionally considered to be spared in NMO,3 recent studies have identified brain lesions in 60% of patients with this condition.4 In 10% of patients with NMO, the site of brain lesions on MR imaging coincides with high concentrations of the water channel aquaporin 4,5,6 the target of NMO immunoglobulin G (NMO-IgG).

Although several investigations have revealed gray matter impairment in NMO by comparing intergroup differences in the regional homogeneity,7 amplitude of low-frequency fluctuation,8 diffusivity,9-11 perfusion,12 and magnetization transfer ratio,13 whether GM structural impairment is a feature of NMO is an ongoing debate. Several studies have identified reductions in GM volume (GMV)14-16 or cortical thickness17 in patients with NMO; however, 3 additional studies have failed to demonstrate reductions in the GMV18,19 or cortical thickness in patients.20 These conflicting outcomes may result from the low statistical power of the relatively small sample sizes (15–30 patients with NMO in previous studies). Studies with a large sample of patients with NMO may help clarify this issue.
Cognitive impairment has been repeatedly reported in patients with NMO and is characterized by deficits in multiple cognitive domains, including memory, attention, and speed of information processing. The neural correlates of the cognitive impairment in NMO have been attributed to focal reductions in white matter volume and integrity. A recent study found no correlation between cognitive impairment and cortical thinning in 23 patients with NMO. However, it remains unknown whether GMV reduction is associated with cognitive impairment in these patients.

By recruiting a large sample of patients with NMO (n = 50), we aimed to clarify the GMV changes in NMO and the correlations of GMV changes with cognitive impairment and clinical variables in these patients.

MATERIALS AND METHODS

Subjects

Fifty right-handed patients with NMO and 50 sex-, age-, handedness-, and education-matched healthy controls (HCs) were included (Table 1). All patients were enrolled from a single center (Department of Neurology, Tianjin Medical University General Hospital) by using a data base for patients with NMO who had visited our hospital for treatment during the past 5 years. During the recruitment phase, we invited these patients to return to our hospital to participate in this experiment. On accepting the invitation, they would be subjected to a series of screening procedures to confirm whether they met the inclusion criteria. The healthy controls were recruited by advertisements from the local community. The inclusion criteria for both patients and controls were age (18–70 years) and right-handedness. All patients also fulfilled the revised Wingerchuk diagnostic criteria for NMO, including the 2 absolute criteria of optic neuritis and acute myelitis and at least 2 of the following 3 supportive criteria: brain MR imaging findings negative or nondiagnostic for multiple sclerosis at onset, MR imaging evidence of a spinal cord lesion involving ≥3 vertebral segments, and a positive serologic test for NMO-IgG. The diagnostic basis for each patient with NMO is shown in On-line Table 1. The exclusion criteria for both patients and controls were the following: 1) contraindications against MR imaging; 2) serious visual, auditory, or motor impairment that would influence cognitive tests; 3) history of head trauma or other neuropsychiatric diseases; and 4) poor imaging quality (visible artifacts). Serum NMO-IgG was tested by using a cell-based assay with quantitative flow cytometry. The disease severity was assessed by the Expanded Disability Status Scale (EDSS) scores. All of the participants provided written informed consent that met the approval of the local Medical Research Ethics Committee, and the study was approved by the institutional review board.

Cognitive Assessment

A battery of cognitive tests was administered to all subjects by a professional psychologist within 1 month after the MR imaging examinations. The California Verbal Learning Test–Second Edition was used to assess verbal learning and memory function. In this test, immediate verbal memory was assessed by the Immediate Recall of Trial 2; short-delayed verbal memory was measured by the Short-Delay Free and Cued Recalls; and long-delayed verbal memory was evaluated by the Long-Delay Free and Cued Recalls. The Paced Auditory Serial Addition Tests were used to assess auditory processing speed and working memory. The Symbol Digit Technique Test was administered to measure visual spatial processing speed and working memory. The Controlled Oral Word Association Test was used to assess phonemic verbal fluency. The Wisconsin Card Sorting Test was used to evaluate executive function. A few subjects were excluded due to failure to complete some items of these cognitive tests, and the number of patients with NMO and HCs finally included in the cognitive-related analyses is displayed in On-line Tables 2–6.

MR Imaging Acquisition

MR imaging data were acquired by using a 3T MR imaging system (Discovery MR750; GE Healthcare, Milwaukee, Wisconsin). Tight but comfortable foam padding was used to minimize head motion; earplugs were used to reduce scanner noise. The T2-weighted images were acquired by using a fast spin-echo sequence with the following parameters: TR = 6816 ms; TE = 103 ms; flip angle = 142°; FOV = 240 × 240 mm; matrix = 512 × 512; section thickness = 6 mm; section gap = 1.5 mm; and 20 axial sections. Sagittal 3D T1-weighted images were acquired by a brain volume sequence with the following parameters: TR = 8.2 ms; TE = 3.2 ms; TI = 450 ms; flip angle = 12°; FOV = 256 × 256 mm; matrix = 256 × 256; section thickness = 1 mm; no gap; and 188 sagittal sections.

Analysis of Brain Lesions

Each brain lesion was identified by consensus of 2 neuroradiologists. According to the criteria of a prior study, the brain MR imaging presentation of each patient was classified into 4 categories: normal, nonspecific lesions, MS-like lesions, and atypical lesions. “MS-like lesions” were those that fulfilled the criteria of Barkhof et al27 for the diagnosis of multiple sclerosis. “Nonspecific lesions” were defined as deep white matter lesions with the following features: not ovoid, neither abutted nor perpendicular to the ventricles, or too few to fulfill the criteria of Barkhof et al for multiple sclerosis. “Atypical lesions” were defined as large confluent cerebral hemisphere lesions (>3 cm) and confluent diencephalic lesions (involving the thalamus and hypothalamus). The brain lesion volumes (BLVs) were independently measured by 2 neuroradiologists. For each patient, each brain lesion was

Table 1: Demographic and clinical characteristics of the subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Patients with</th>
<th>NMO</th>
<th>HCs</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>50</td>
<td>50</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sex (female/male)</td>
<td>42.8</td>
<td>43.7</td>
<td>.779</td>
<td></td>
</tr>
<tr>
<td>Age (yr)</td>
<td>47.4 (13.4)</td>
<td>49.8 (8.9)</td>
<td>.294</td>
<td></td>
</tr>
<tr>
<td>Education (yr)</td>
<td>11.2 (3.4)</td>
<td>12.1 (3.3)</td>
<td>.392</td>
<td></td>
</tr>
<tr>
<td>NMO-IgG (–)</td>
<td>32/18</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Brain lesion volumes (cm³)</td>
<td>3.3 (5.1)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Onset age (yr)</td>
<td>41.6 (14.1)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Relapsing frequency (times/yr)</td>
<td>0.8 (0.7)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>No. of attacks (times)</td>
<td>4.5 (5.1)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Disease duration (yr)</td>
<td>6.6 (6.7)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>EDSS score</td>
<td>3.8 (2.3)</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Note:—NA indicates not applicable.

*All values are expressed as mean (SD).

b Thirty-seven patients had visible brain lesions.
manually outlined section by section on T2-weighted images by using the MRlcro software program (http://www.mccauslandcenter.sc.edu/mricro/mricron/index.html). The BLV of the patient was then automatically estimated by the product of the lesion area and section thickness. The mean value of the BLV of each patient from the 2 investigators was considered the BLV of this patient.

GMV Calculation

The GMV was calculated by using the Statistical Parametric Mapping package (SPM8; http://www.fil.ion.ucl.ac.uk/spm/software/spm8). The structural MR images were segmented into GM, white matter, and CSF by using the standard unified segmentation model. After an initial affine registration of the GM concentration map into the Montreal Neurological Institute space, the GM concentration images were nonlinearly warped by using the Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra technique and then were resampled to a voxel size of 1.5 × 1.5 × 1.5 mm³. The GMV of each voxel was obtained by multiplying the GM concentration map by the nonlinear determinants derived from the spatial normalization step. Finally, the GMV images were smoothed with a Gaussian kernel of 6 × 6 × 6 mm³ full width at half maximum. After spatial preprocessing, the normalized, modulated, and smoothed GMV maps were used for statistical analysis.

Statistical Analysis

First, a general linear model was implemented to compare differences in the cognitive scores between the NMO and HC groups by using SPSS 18.0 (IBM, Armonk, New York) (P < .05). Second, voxel-based comparisons were performed to identify the brain regions with significant group differences in GMV by using a 2-sample 2-tailed t test, and the multiple comparisons were corrected by using the false discovery rate method (P < .05). Third, voxel-based partial correlation analysis was performed to test the relationships of the GMV with clinical parameters and cognitive scores within brain regions that exhibited significant group differences in GMV in the patients with NMO, and the correlation between GMV and BLV was investigated in 37 patients with NMO with abnormal brain MR imaging findings. For these voxel-based correlation analyses, multiple comparisons were corrected by the Alphasim method (single voxel P = .01, 5000 simulations, full width at half maximum = 6 mm, cluster connection radius = 2.5 mm, within a significant GM mask, which resulted in a corrected threshold of P < .05 and a cluster size threshold of >33 voxels). Age, sex, and years of education were entered as covariates of no interest. BLV was also added as an additional nuisance covariate to explore whether it would affect the correlation between GMV and the cognitive test results.

RESULTS

Demographic and Clinical Data of Subjects

Our sample included 50 patients with NMO (42 women and 8 men) and 50 HCs (43 women and 7 men) (Table 1). The mean age of the patients at the time of the study was 47.4 ± 13.4 years (range, 19–68 years). No significant differences were found in sex (χ² = 0.078, P = .779), age (t = −1.055, P = .294), and years of education (t = −1.312, P = 0.192) between the 2 groups. Thirty-two of the 50 patients (64%) were seropositive for NMO-IgG. The mean onset age of the patients was 41.6 ± 14.1 years (range, 15–66 years). The mean number of relapses per year was 0.8 ± 0.7 (range, 0–4). The mean EDSS score was 3.8 ± 2.3 (range, 0–9). Neuromyelitis optica was monophasic in 4 cases and multiphasic in the other 46 cases, with a mean number of relapses of 4.5 ± 5.1 (range, 1–30). Five patients had other autoimmune diseases (Sjogren syndrome, n = 1; rheumatoid arthritis, n = 2; desmosis, n = 2), 6 patients had endocrinopathy (diabetes mellitus, n = 3; hypothyroidism, n = 2; hyperthyroidism, n = 1), and 1 patient had hyperthyroidism with scleroderma.

Thirty-seven (74%) of these 50 patients with NMO had abnormal brain MRI findings. Brain MRI was categorized into 4 subgroups according to the criteria of a prior study: normal (13 patients, 26%), nonspecific lesions (6 patients, 12%), MS-like lesions (23 patients, 46%), and atypical lesions (8 patients, 16%). The mean BLV was 3.3 ± 5.1 cm³ (range, 0.02–18.67 cm³). Spinal cord MRI was collected at the initial diagnosis of the disease, and the results showed longitudinally extensive lesions (≥3 vertebral segments) on T2-weighted images in 47 of 50 patients (94%). The other 3 patients had a spinal cord lesion that involved fewer than 3 vertebral segments.

For each cognitive test, the sex, age, and years of education were matched (P > .05) between the patient and control groups (On-line Tables 2–6).

Group Differences in Cognitive Tests

The performance of neuropsychological tests is summarized in Table 2. Patients with NMO performed significantly worse on the Short-Delay Cued Recall (P = .030), Long-Delay Free (P = .017), and Cued (P = .007) Recalls of the California Verbal Learning Test–Second Edition, the Symbol Digit Technique Test (P = .018), and the Controlled Oral Word Association Test (P = .035) compared with the performance of the HCs. However, none of these differences was significant according to the Bonferroni correction (P < .05) for multiple comparisons. There were no significant differences in the Immediate Recall of Trial 2 (P = .075) and Short-Delay Free Recall (P = .176) of the California Verbal Learning Test–Second Edition, the Paced Auditory Serial Addition Test (P = .99), and the Controlled Oral Word Association Test (P = .83) compared with the performance of the HCs.
Tests (P < .152), and the Wisconsin Card Sorting Test (P = .245) between the 2 groups.

Group Differences in the GMV
The GMV of the whole brain of patients with NMO (602.8 ± 51.03 mL) was significantly reduced compared with that of HCs (635.9 ± 51.18 mL) (P = .002). Compared with the HCs, patients with NMO had reduced GMV in the medial prefrontal cortex, the left inferior temporal gyrus, and the right thalamus (false discovery rate correction, P < .05) (Fig 1). No significantly increased GMV was found in patients with NMO.

Subgroup Differences in the GMV
On the basis of the combination of the 3 supportive criteria (NMO-IgG, brain MR imaging, and spinal MR imaging) for NMO, we further divided patients into 4 diagnostic subgroups: NMO-IgG + spinal MR imaging (n = 21); brain MR imaging + spinal MR imaging (n = 18); NMO-IgG + brain MR imaging (n = 3); and NMO-IgG + brain MR imaging + spinal MR imaging (n = 8). Because the sample sizes of the latter 2 groups were too small to perform intergroup comparisons, we only investigated voxel-based GMV differences between each of the first 2 subgroups and the HC group. Compared with the HC group, only the first NMO subgroup (NMO-IgG + spinal MR imaging) had a significantly reduced false discovery rate correction (P < .05). The distribution of brain regions with GMV reductions in this subgroup (On-line Fig 1) was similar in the total patient population (Fig 1). However, we did not find any significant GMV differences between the second NMO subgroup (brain MR imaging + spinal MR imaging) and the HC group.

For each patient with NMO, we also extracted GMV values of brain regions that exhibited significant GMV reductions in the total patient population (Fig 1). Then, we used a 2-sample t test to compare the GMV differences in these regions between each NMO subgroup and the HC group. We found that both NMO subgroups (NMO-IgG + spinal MR imaging and brain MR imaging + spinal MR imaging) exhibited significantly reduced GMVs in all of these regions (Bonferroni correction, P < .05) (On-line Fig 2).

Correlation between the GMV and Clinical Parameters
Correlations between the GMV and clinical variables in the patients with NMO are shown in Fig 2. In the patients with NMO, the EDSS scores had a negative correlation (Alphasim correction, P < .05) with the GMV in the left inferior temporal gyrus (partial correlation coefficient $pr = -0.500$, $P = .001$) and the right medial prefrontal cortex ($pr = -0.465$, $P = .001$). No significant positive correlation between the GMV and EDSS scores was found in the patients with NMO. No significant correlations were observed for the relapsing frequency, disease duration, onset age, and GMV.

Correlation between the GMV and Cognitive Scores
Correlations between the GMV and cognitive scores are shown in Fig 3. Voxel-based analysis revealed that the patients with NMO had a significantly positive correlation (Alphasim correction, $P < .05$) between the Immediate Recall of Trial 2 and the GMV of the medial prefrontal cortex ($pr = 0.563$, $P < .001$). The Long-Delay ($pr = 0.420$, $P < .005$) and Short-Delay ($pr = 0.401$, $P < .007$) Free Recalls also had positive correlations with the GMV of the right thalamus. These cognitive scores did not show any negative correlations with the
regional GMV in patients with NMO. No significant correlations were observed between other cognitive scores and the GMV. Even after further controlling for the effect of BLV, these correlations remained significant (Fig 3).

Correlation between the GMV and BLV

Correlations between the GMV and BLV are demonstrated in Fig 4. Voxel-based analysis revealed that the patients with NMO exhibited significant negative correlations (Alphasim correction, \(P < .05\)) between BLV and GMV in the right thalamus (\(pr = -0.376, P = .022\)) and left inferior temporal gyrus (\(pr = -0.510, P = .001\)). When we excluded the 2 patients with visible lesions in these 2 regions, the correlations between BLV and GMV in the right thalamus (\(pr = -0.380, P = .024\)) and left inferior temporal gyrus (\(pr = -0.499, P = .002\)) remained significant. No positive correlations were found in the patients with NMO.

DISCUSSION

In a large sample of patients with NMO, we found GMV reductions in the frontal and temporal cortices and the right thalamus. Moreover, the frontal and temporal GMV reductions were associated with disease severity in the patients with NMO. Finally, we identified significant correlations between GMV reductions and cognitive reductions in the patients with NMO, suggesting that GM pathology is associated with cognitive impairment in NMO.

In this study, the diagnosis of NMO was strictly according to the Wingerchuk diagnostic criteria for NMO. All patients fulfilled the absolute criteria (optic neuritis and acute myelitis) and at least 2 of the 3 supportive criteria (contiguous spinal cord MR imaging lesion extending over \(\geq 3\) vertebral segments, brain MR imaging that did not meet the diagnostic criteria for multiple sclerosis, and NMO-IgG seropositive status). Only 64% of our
patients were seropositive for NMO-IgG, which is a lower incidence than those reported in previous studies. However, all patients with seronegative NMO-IgG fulfilled the other 2 supportive criteria for NMO (brain MR imaging that did not meet the diagnostic criteria for multiple sclerosis and a contiguous spinal cord MR imaging lesion extending over \(\geq 3 \) vertebral segments). Although 3 patients had a spinal cord lesion that involved fewer than 3 vertebral segments, they fulfilled the other 2 supportive criteria (NMO-IgG + and brain MR imaging that did not meet the diagnostic criteria for multiple sclerosis). Consistent with previous studies reporting the presence of other autoimmune diseases in a subset of patients with NMO, 6 of the patients with NMO in this study presented with autoimmune diseases. Although they fulfilled the diagnostic criteria for NMO, we cannot exclude the effects of comorbidities on the intergroup GMV differences. To reduce this possibility, we excluded the 6 patients and re-performed GMV comparisons. We found that the intergroup GMV differences were similar before and after excluding these patients (On-line Fig 3), suggesting that the impact of comorbidities on the intergroup GMV comparisons was not significant.

Consistent with prior findings, we also found cognitive impairment in the patients with NMO. The cognitive impairments in NMO were deficits in short- and long-term memory, speed of information processing, and verbal fluency on semantic stimuli. These impaired cognitive domains have frequently been reported in patients with NMO. However, inconsistent with previous studies that reported deficits in immediate memory, attention, and executive abilities, we did not find any significant changes in these 3 cognitive domains in the patients with NMO. This discrepancy may be related to variations in the sample size, demographic and clinical features, and cognitive scales used.

There is an ongoing debate on the abnormality of GM in NMO, especially for structural impairments. We found GMV reductions in the frontal and temporal lobes and thalamus, the range of which largely surpassed the brain regions connected to the spinal cord and optic nerves. Therefore, the mechanism of axonal degeneration secondary to the damage of the spinal cord and optic nerves cannot fully explain these extensive reductions in the GMV. We also found negative correlations between the

FIG 4. Correlations between the GMV and BLV in patients with NMO (Alphasim correction, \(P < .05 \)). A, Before removing 2 patients with thalamic and inferior temporal gyrus (ITG) lesions. B, After removing 2 patients with thalamic and ITG lesions.
GMVs of the right thalamus and left inferior temporal gyrus and the BLV, even after excluding patients with visible lesions in these regions. This finding suggests that the GMV reductions in these regions are secondary to brain lesions, which may be mediated by a mechanism of axonal degeneration. This inference is also supported by our subgroup analyses of the GMV differences. The subgroup (NMO-IgG + spinal MR imaging) that presented with an increased incidence of brain lesions also exhibited more significant GMV reductions than those in the subgroup (brain MR imaging + spinal MR imaging) that exhibited fewer brain lesions. However, the GMV reduction in the medial prefrontal cortex was not correlated with the brain lesion volume, indicating that the axonal degeneration mechanism cannot explain the medial prefrontal cortex reduction observed in NMO. This assertion is consistent with the findings of a pathologic study that revealed a substantial cortical neuronal loss in NMO spectrum disorders.32 Consequently, the primary neurodegenerative processes (neuronal loss) may at least partially account for the GMV reductions in patients with NMO. This hypothesis is confirmed by the results of a pathologic study that revealed a substantial cortical neuronal loss in NMO spectrum disorders.7,44

The frontal cortex and thalamus are closely associated with cognitive function.10,15,18,33–35 The GMV reductions in these regions may affect cognitive performance.33,35 In our study, a GMV reduction in the thalamus was correlated with deficits in delayed memory; this correlation was consistent with prior findings in multiple sclerosis in which a GMV reduction in the thalamus predicted many cognitive deficits.36 The positive association between several prefrontal regions and immediate memory supported prior findings that the prefrontal cortex played an important role in cognitive function.18,37 Taken together, our findings suggest that GMV reductions in the frontal cortex and thalamus are associated with cognitive impairment in patients with NMO.

We also found significant negative correlations between regional GMV reductions in the frontal and temporal cortices and EDSS scores. These findings suggest that reductions in the GMV are an important pathologic process in NMO, which may be related to disease severity. Our findings also suggest a potential role of GMV reductions in predicting the severity of the disorder.7,24,39

A limitation of this study is that a few of the subjects who underwent GMV analysis were excluded in the correlation analysis with cognitive scores because they did not successfully complete the cognitive assessments due to biliousness or other private reasons. However, we believe that our findings for these correlations are robust because the smallest group still included 34 patients with NMO. Another limitation is the cross-sectional design of our study. Further studies with a longitudinal design should be performed to determine the evolution of GMV changes in NMO.

CONCLUSIONS

We used a combination of structural brain MR imaging and neuropsychological tests to investigate GMV reductions and their association with cognitive impairment in a large sample of patients with NMO. We confirmed that GMV reductions are associated with NMO, and we revealed the distribution of regional GMV reductions in NMO. By investigating correlations between GMV reductions and BLV, we suggest that both neurodegeneration and axonal degeneration mechanisms may contribute to GMV reductions in NMO. We also found significant correlations between GMV reductions and cognitive impairments, indicating a role of GMV structural impairment in cognitive deficits in NMO.

ACKNOWLEDGMENTS

The authors thank the Tianjin Neuroimmunology laboratory team for conducting the detection of NMO-IgG and other autoantibodies.

Disclosures: Fu-Dong Shi—RELATED: Grant: National Basic Research Program of China [Grant 2013CB669002], the National Science Foundation of China [grant 8120028], the National Key Clinical Specialty Construction Program of China.* Money paid to the institution.

REFERENCES

CTP in Transient Global Amnesia: A Single-Center Experience of 30 Patients

ABSTRACT

BACKGROUND AND PURPOSE: Medial temporal lobe abnormalities on DWI and functional imaging are occasionally observed in patients with transient global amnesia. We used CTP to study these patients during or briefly after resolution of their amnesic syndrome.

MATERIALS AND METHODS: From 2002 onward, patients satisfying clinical criteria for transient global amnesia who underwent CTP were included. Patients with additional clinical features suggesting transient ischemic attack or stroke and those with an ischemic lesion on subsequent DWI were excluded. If deemed necessary by the clinician, DWI was performed within 10 days.

RESULTS: Thirty patients with transient global amnesia underwent CTP at a median latency of 5.9 hours (interquartile range, 4.3–9.7 hours) after symptom onset. All findings, except for those in 1 patient, were normal, including those in the 14 patients with well-imaged hippocampi. In the patient with abnormal findings, CTP and PWI showed hypoperfusion in both lentiform nuclei extending into the insulae, with normalization on the repeat CTP 6 days later. In 10 patients, DWI was performed at a median latency of 2 days (interquartile range, 0–9 days). Of these, 2 showed punctate hippocampal lesions, often seen in transient global amnesia. In 2 patients excluded because of mildly atypical transient global amnesia and ischemic lesions on subsequent DWI, acute CTP findings were also normal.

CONCLUSIONS: Patients with transient global amnesia had normal CTP findings in the acute phase with the exception of 1 patient with transient hypoperfusion in both basal ganglia. If imaging is performed for typical and atypical transient global amnesia, DWI should be the preferred method.

ABBREVIATION: TGA = transient global amnesia

Transient global amnesia (TGA) is characterized by the sudden onset of anterograde and retrograde amnesia that is often triggered by an acute emotional or physical event and spontaneously resolves within 24 hours. Repetitive questioning and anxiety are often present, but other focal neurologic disturbances are usually absent.1,2 Functional brain imaging with SPECT and PET shows local disturbances in regional blood flow (usually hypoperfusion, rarely hyperperfusion) and in oxygen/glucose metabolism, most frequently in 1 or both medial temporal lobes.3–5 Punctate signal hyperintensities appearing in 1 or both hippocampi on DWI were first described by Matsui et al6 in a classic TGA case in 2002 and then more systematically by Sedlaczek et al.7 Although the specific sites of impairment have been identified, the underlying etiology of TGA remains elusive.2

Images in a case series of patients with TGA who underwent PWI within 24 hours of symptom onset showed unilateral perfusion abnormalities in 4 of the 28 patients (1 in the anterior, 1 in the posterior, and 2 in the middle cerebral artery territory).8 However, the authors did not specify whether structures relevant for memory were involved. CTP is widely used for the early diagnosis of acute ischemic stroke and TIA, though its true value remains to be established by appropriate research.9 To our knowledge, results using CTP for acute TGA diagnosis have not been published. We, therefore, aimed to determine the frequency and localization of perfusion abnormalities in patients with acute TGA by using CTP to investigate its potential diagnostic value and to better elucidate the pathogenesis of this disorder.

MATERIALS AND METHODS

We included and retrospectively analyzed those patients admitted to the emergency department of the University Hospital of Laus-
anne from June 2002 to April 2014 who had a final diagnosis of TGA and underwent CTP within 24 hours of admission. CTP was part of the standard diagnostic protocol of the hospital to detect cerebral ischemia from June 2002 until April 2006, and had been performed at the discretion of the treating physician since April 2006. All patients underwent neurologic evaluation, and the diagnosis of TGA was made if the criteria of Hodges and Warlow were met. Additional examinations such as electroencephalography and DWI were performed as considered necessary by the treating physician. Exclusion criteria were poor-quality CTP and a proved ischemic lesion on DWI after an initial TGA diagnosis.

We collected the following parameters: demographics (age, sex); cerebrovascular risk factors, including hypertension, hyperlipidemia, diabetes mellitus, smoking history, atrial fibrillation, previous cerebrovascular event (stroke or transient ischemic attack) or TGA; high-risk alcohol consumption defined as exceeding 24 g/day; and the presence of a triggering event (emotional or physical). The duration of amnesia was determined by serial bedside testing of the capability to retain at least 4 words of a standardized 5-word list. Formal neuropsychological testing was performed, depending on the treating physician’s judgment.

CTP was performed on a LightSpeed 16 Advantage (16 detectors; GE Healthcare, Milwaukee, Wisconsin) until November 2005 and a LightSpeed VCT (64 detectors; GE Healthcare) thereafter, by using their commercially available software. The parameters for cerebral perfusion imaging were the following: 80 kV, 240 mA, and 0.4-second gantry rotation time; acquisition delay was 7 seconds after injection of 50 mL of iohexol, 300 mg/mL of iodine (Accupaque 300; Amersham, Oslo, Norway) with an injection rate of 5 mL per second into an antecubital vein by using a power injector (Stellant D CT Injection System; Medrad, Indiana, Pennsylvania). Two injections with acquisition of 8 or sixteen 5-mm sections each (four 10-mm sections before October 2005) were performed. The lowest CTP section level usually cut through the thalami before October 2005 and the midbrain thereafter; temporal lobes were therefore variably included. CTP data were transferred to a workstation and analyzed by using different versions of Philips Brain Perfusion software (Philips Medical Systems, Cleveland, Ohio) to create parametric maps of MTT, CBF, and CBV.

For MR imaging, we used both 1.5T (n = 6) and 3T (n = 5) MR imaging systems from different companies and with different acquisition systems. Patients who underwent MR imaging outside our clinic were analyzed either by 0.2T (n = 1) or 1.5T (n = 2) MR imaging systems.

This study was conducted under the auspices of the legislation of the Canton de Vaud, Switzerland, which does not require informed consent for the retrospective scientific analysis of data collected during routine clinical care. In addition, the President of the Ethics Commission for Research on Humans of the Canton and the Medical Director of the institution have granted the right to access medical records to coauthors not directly involved in the care of these patients.

RESULTS

Of 157 patients presenting with clinical symptoms compatible with a diagnosis of TGA between June 2002 and March 2014, 32 (20%) underwent CTP. All examinations were of good quality. Two patients were excluded because of acute ischemic lesions later shown on DWI. Of the remaining 30 patients with a final diagnosis of TGA, 60% were women and the median age was 64 years (interquartile range, 57–70 years). A triggering event (emotional or physical) was documented in 53% of patients. In 77% of the patients who underwent electroencephalography, transient epileptic amnesia was ruled out. In the remaining 23%, there was no clinical suspicion for this diagnosis. Other patient characteristics and the diagnostic tools used are summarized in the Table.

In all except 1 patient, CTP findings were normal, including those of 47% of patients with well-visualized hippocampi. Perfusion abnormalities were observed in a 43-year-old healthy patient with typical TGA presentation. The patient had anterograde and retrograde amnesia spanning several years, accompanied by repetitive questions and moderate anxiety but without identity loss. No triggering event was recorded in this patient. CTP performed at 2.5 hours after symptom onset showed decreased CBF, decreased CBV, and increased MTT in both lentiform nuclei, extending into the insulae but not into the hippocampi. PWI performed 4.0 hours after symptom onset showed findings similar to those of CTP (Fig 1). Acute electroencephalography findings obtained between CTP and MR imaging examinations were normal. When the patient woke up the next morning in the hospital 18 hours after symptom onset, all symptoms had disappeared and no headache, fever, or other symptoms emerged. A neuropsychological assessment performed at approximately 24 hours still showed mild amnestic features (recall difficulties) and a borderline
executive dysfunction. The patient was not reassessed with a neuropsychological examination. DWI performed at 4 days did not show any lesions, and repeat CTP findings at 6 days were normal. Overall, the frequency of abnormalities found by CTP was 3% in this case series. Low-resolution DWI was performed in 10 of our patients at a median delay of 2 days after symptom onset (interquartile range, 1–3 days). Three of these patients were examined between approximately day 2 and 3, and punctate lesions in the medial hippocampus were observed on DWI in 2 of them 45 and 64 hours after symptom onset, respectively (Fig 2). In the remaining 7 patients outside this time interval, no punctate lesions were detected.

DISCUSSION
We found that CTP investigation findings during or immediately after TGA were normal in all except 1 patient in this single-center case series. These results strongly suggest that CTP is not a suitable diagnostic tool to confirm TGA. This finding is also supported by the fact that 2 patients who fulfilled the TGA criteria but had ischemic lesions on MR imaging did not show perfusion abnormalities on CTP.13

Our data do not support widespread hypoperfusion in the mesiotemporal area or elsewhere as a cause of TGA in most patients or of the punctate hippocampal DWI lesions.2,7 Our single patient with CTP perfusion abnormalities showed an unexpected pattern involving both lentiform nuclei and extending into the insulae. We excluded an artifactual finding by confirming the hypoperfusion with an additional PWI within 2 hours and by validating normalization of the CTP 6 days later. These findings are important because on a clinical level, this patient’s symptoms were equivalent to those observed in the other patients who lacked perfusion abnormalities.

We do not know whether the CTP flow abnormalities observed could have triggered a punctate lesion in the mesial temporal structures because the hippocampi did not seem to be directly involved and DWI was not performed within the ideal time interval of 48–72 hours after symptom onset.1,2,14 We hypothesize that disruption of the corticohippocampal circuitry without direct involvement of the mesiotemporal region may have caused a clinical syndrome indistinguishable from classic TGA.

In both SPECT and PET studies, perfusion abnormalities in the basal ganglia have been reported for TGA but were associated with concomitant medial temporal lobe hypoperfusion.4,11 Analogous to this study, the case series of patients with TGA examined by using PWI by Toledo et al8 did not show a correlation between perfusion abnormalities and hippocampal DWI lesions on subacute imaging. Hypotheses for such abnormalities temporally re-
lated to TGA but lying outside of the limbic system include cortical spreading depression (migraine) or hitherto unexplained mechanisms.

Our study has limitations due to its retrospective nature and the nonconsecutive performance of CTP on the patients with TGA. Furthermore, CTP imaging included the entire hippocampi in only 14 patients, which may have lowered the detection rate of perfusion abnormalities in this region. Only 2 of 10 patients showed typical DWI punctate hippocampal lesions. This result was probably due to the low resolution of our examinations, the use of different MR imaging machines and measurement specifications, and image acquisition outside of the optimal timeframe.

CONCLUSIONS
Our data suggest that CTP does not offer additional diagnostic information in the work-up of typical TGA and is therefore not recommended on a routine basis. If imaging is performed in typical or atypical TGA, DWI is the preferred mode of imaging.15

REFERENCES
ABSTRACT

BACKGROUND AND PURPOSE: Timing-invariant (or delay-insensitive) CT angiography derived from CT perfusion data may obviate a separate cranial CTA in acute stroke, thus enhancing patient safety by reducing total examination time, radiation dose, and volume of contrast material. We assessed the diagnostic accuracy of timing-invariant CTA for detecting intracranial artery occlusion in acute ischemic stroke, to examine whether standard CTA can be omitted.

MATERIALS AND METHODS: Patients with suspected ischemic stroke were prospectively enrolled and underwent CTA and CTP imaging at admission. Timing-invariant CTA was derived from the CTP data. Five neuroradiologic observers assessed all images for the presence and location of intracranial artery occlusion in a blinded and randomized manner. Sensitivity and specificity of timing-invariant CTA and standard CTA were calculated by using an independent expert panel as the reference standard. Interrater agreement was determined by using κ statistics.

RESULTS: We included 108 patients with 47 vessel occlusions. Overall, standard CTA and timing-invariant CTA provided similar high diagnostic accuracy for occlusion detection with a sensitivity of 96% (95% CI, 90%–100%) and a specificity of 100% (99%–100%) for standard CTA and a sensitivity of 98% (95% CI, 94%–100%) and a specificity of 100% (95% CI, 100%–100%) for timing-invariant CTA. For proximal large-vessel occlusions, defined as occlusions of the ICA, basilar artery, and M1, the sensitivity and specificity were 100% (95% CI, 100%–100%) for both techniques. Interrater agreement was good for both techniques (mean κ value, 0.75 and 0.76).

CONCLUSIONS: Timing-invariant CTA derived from CTP data provides diagnostic accuracy similar to that of standard CTA for the detection of artery occlusions in acute stroke.

Stroke imaging research currently focuses on prediction of patient outcome and identifying patients who are suitable for neurointerventional treatment.1,2 For these purposes, advanced stroke imaging protocols typically add CT perfusion imaging or diffusion-weighted MR imaging to the traditional work-up, consisting of noncontrast CT and CT angiography.2,3 Noncontrast CT is used to differentiate hemorrhagic stroke from ischemic stroke and to assess early signs of ischemia. CTA is used to localize arterial occlusions and to identify proximal large-vessel occlusions that may be suitable for endovascular treatment. CT perfusion imaging and DWI are used to assess the extent and severity of hypoperfusion and particularly increase the sensitivity of imaging in the early stages of ischemic stroke.4 The practical advantages of CT perfusion imaging are that it is widely available and does not delay treatment decisions because it is fast and most patients already undergo CT scanning.3

Currently, CTA can be derived from CT perfusion data. Such an approach allows the enhancement of patient safety by reducing the total scanning time, radiation dose, and amount of contrast material needed.5 In CT perfusion imaging, multiple scans after intravenous injection of contrast material are obtained with time, generating a 4D dataset, which is used to derive cerebral perfusion maps such as the cerebral blood flow, cerebral blood volume, and arrival times. When imaging is performed on a CT scanner with large spatial coverage, however, this 4D data can also be used to provide CT angiographic information, referred to as 4D-CTA or dynamic CTA. Previous studies have assessed whether 4D-CTA can be used for detection of vascular occlusion in a stroke setting but found that image quality was moderate and diagnostic performance for stroke assessment was limited because large-vessel

Received December 4, 2014; accepted after revision February 22, 2015.

From the Department of Radiology (E.J.S., E.-j.V., J.W.D., A.D.H., B.V., I.v.d.S.), University Medical Center Utrecht, Utrecht, the Netherlands; and Department of Radiology (E.J.S., F.J.A.M., B.v.G., M.P.), Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands.

Please address correspondence to E.J. Smit, MD, University Medical Center Utrecht, Department of Radiology (E01.132), PO Box 85500, 3508 GA Utrecht, the Netherlands; e-mail: ewoudsmit@gmail.com

Indicates open access to non-subscribers at www.ajnr.org

http://dx.doi.org/10.3174/ajnr.A4376

1834 Smit Oct 2015 www.ajnr.org
occlusions may be missed.5–8 Recently, a different approach to obtain CTA from CT perfusion source data was presented that combines the whole 4D-CTA dataset into 1 high-quality 3D-CTA dataset by displaying maximum contrast enhancement with time.5 This technique is referred to as “timing-invariant CTA” because it is insensitive to delayed contrast arrival and was shown to provide similar-to-superior image quality compared with standard CTA.5

The aim of our study was to test the diagnostic performance of timing-invariant CTA for stroke evaluation, to assess whether standard CTA can be omitted when CT perfusion imaging has been performed.

MATERIALS AND METHODS

Patients

Institution review board approval and informed consent were obtained. Consecutive patients admitted to our hospital with suspected ischemic stroke were prospectively enrolled. They underwent standard CTA and CT perfusion imaging if they fulfilled the following criteria: 1) admission at <9 hours after onset of neurologic deficit (including patients who woke up with stroke symptoms if the time between going to sleep and admission was <9 hours), 2) NIHSS score of at least 2, 3) no signs of hemorrhage on noncontrast CT, and 4) no known contrast allergy or kidney failure. For this study, we selected all patients who were scanned on our 256-section CT scanner (iCT; Philips Healthcare, Best, the Netherlands). Scans were performed according to a previously reported protocol: CT perfusion imaging was performed by using 40 mL of intravenous contrast material, 80 kVp, and 150 mAs every 2 seconds during 48 seconds (volume CT dose index = 5.8 mGy per acquisition, dose-length product = 1157 mGy × cm), and CT angiography was performed by using 50 mL of intravenous contrast material, 120 kVp, and 150 mAs (volume CT dose index = 19.5 mGy, dose-length product = 775 mGy cm).5 CT perfusion imaging and CTA were performed subsequently, and both, before tPA administration. For the purpose of this study, the volume covered by standard CTA was manually clipped to correspond with the volume of CT perfusion. For all imaging studies, the intracranial arteries being included in the CT perfusion volume were verified.

Timing-invariant CTA was automatically derived from the CT perfusion data on a scientific workstation (iX Viewer; ISI, Utrecht, the Netherlands). Timing-invariant CTA provides angiographic images by displaying maximal enhancement with time (temporal maximum intensity projection) with a prior noise-reducing filter in the temporal domain.5,6 This temporal noise-reducing filter improves image quality without loss of spatial resolution. Due to the choice of the temporal maximum, this technique is timing-invariant (ie, the maximal enhancement of a vessel is displayed independent of its contrast arrival time).7 In this study, timing-invariant CTA was implemented as a 1D Gaussian low-pass filter across all time points of the CTP sequence (parameters: SD = 1.5 seconds, kernel size = 5) followed by determining the maximal CT number with time (temporal MIP), which is the output CT number displayed on the timing-invariant CTA.

Procedures

Timing-invariant CTA and standard CTA were assessed for the presence and location of arterial occlusion.

All scans were assessed by 5 experienced radiologic observers (2 neuroradiologists, 1 radiologist, and 2 radiology residents, with 9 [I.v.d.S.], 7 [F.J.A.M.], 7 [A.D.H.], 5 [J.W.D.] and 3 [E.J.S.] years of experience in evaluating cerebral CTA examinations, respectively). These observers were individually presented with a random sequence of scans and were blinded to patient information and imaging technique. To reduce potential sources of bias, we presented all sequences with different randomization.

Images were scored for the presence of occlusion in the following arteries: 1) intracranial part of the internal carotid artery, 2) middle cerebral artery segment 1 (M1), 3) distal MCA segment 2 (M2+), 3) anterior cerebral artery segment 1 (A1), 4) anterior cerebral artery segment 2 (A2), 5) basilar artery, and 6) posterior cerebral artery. Arteries were separately scored for both hemispheres. Scans were presented with equal display settings, and observers could change these settings in accordance with clinical practice (arbitrary planes, slab thickness, and window leveling).

The final diagnosis (reference standard) was made by an independent expert panel consisting of a neurointerventional radiologist and a neuroradiologist (with >15 and 10 years of experience in evaluating cerebral CTA examinations, respectively) who were provided with all available imaging and relevant clinical information (including follow-up). This expert panel was blinded to the observer scores and reviewed all cases in which differences were found between the observer scores on standard CTA and timing-invariant CTA.

Statistical Analysis

To assess diagnostic accuracy, we determined the sensitivity and specificity of standard CTA and timing-invariant CTA with the diagnosis of the expert panel serving as the reference test. The diagnosis per CTA technique was the one made by the majority of the observers. The sensitivity and specificity were calculated per artery segment separately and for the major cerebral arteries combined. These values were expressed with their 95% confidence intervals.

To assess reproducibility, we determined interobserver agreement by using κ statistics for both timing-invariant CTA and standard CTA. These parameters were expressed as average values together with their range among observers.

RESULTS

From October 2009 to October 2011, 167 consecutive patients underwent imaging at our hospital for suspected ischemic stroke. One hundred fifteen patients were eligible for this diagnostic study because they were scanned on a 256-section CT scanner and CT perfusion source data were available for analysis. Of these, 6 patients were excluded because imaging was unsuccessful due to severe patient motion (4 on CT perfusion imaging and 2 on standard CTA), and 1 patient was excluded because the CT perfusion images did not include the circle of Willis. The final analysis included 108 patients (58 women; mean age, 68 ± 13 years). The median NIHSS score at admission was 6 (interquartile range,
and the median time from onset of symptoms to CT was 107 minutes (interquartile range, 40–200 minutes).

Thirty-five patients (32%) had an arterial occlusion, in which 9 occlusions were located in the internal carotid artery, 33 in the middle cerebral artery (25 in the M1 segment and 8 in M2 segment), 2 in the anterior cerebral artery (both in segment A1), 1 in the basilar artery, and 2 in the posterior cerebral artery.

An overview of the results is presented in the Table. Overall, standard CT angiography and timing-invariant CT angiography provided similar high diagnostic accuracy for occlusion detection in acute ischemic stroke with a sensitivity of 96% (95% CI, 90%–100%) and a specificity of 100% (95% CI, 100%–100%) for standard CTA and a sensitivity of 98% (95% CI, 94%–100%) and a specificity of 100% (95% CI, 100%–100%) for timing-invariant CTA. For proximal large-vessel occlusions, defined as occlusions of the ICA, basilar artery, and M1, the sensitivity and specificity were 100% (95% CI, 100%–100%) for both techniques. For distal middle cerebral artery occlusions (M2+), standard CTA provided a sensitivity of 75% (95% CI, 45%–100%) and a specificity of 100% (95% CI, 100%–100%) compared with a sensitivity and specificity of 100% (95% CI, 100%–100%) for timing-invariant CTA (not significant). An example of a M2 occlusion that was detected on both techniques is shown in Fig 1.

For the posterior cerebral artery, 1 of 2 occlusions was missed on timing-invariant CTA, while both were diagnosed on standard CTA. Overall, only this 1 occlusion was missed on timing-invariant CTA (missed by 3 observers on timing-invariant CTA and by 2 observers on standard CTA), shown in Fig 2.

In 8 patients, differences were found between the observer scores on standard CTA and timing-invariant CTA, and these cases were presented to the expert panel. In all cases, the expert panel found that the standard CTA and timing-invariant CTA images provided the same diagnosis. In 4 cases, however, standard CTA showed faint enhancement in an artery segment, whereas timing-invariant CTA showed high enhancement. Figure 3 shows an example of these differences in a patient with a hypoplastic A1
segment that was scored as a false-positive finding on standard CTA as a combined A1 and A2 occlusion, resulting from only faint A2 enhancement, while on timing-invariant CTA, the segment was scored as a true-negative finding because it showed clear A2 enhancement. In the remaining 4 cases, the differences in observer scores between standard CTA and timing-invariant CTA could only be explained by observer variation because there was mostly 1 observer difference and the images were virtually identical (Figs 1 and 2).

Overall interrater agreement was good for both timing-invariant CTA (mean κ value = 0.76; range observers, 0.69–0.83; mean agreement = 97%; range observers, 96%–98%), and standard CTA (mean κ value = 0.75; range observers, 0.63–0.85; mean agreement = 97%; range observers, 96%–98%).

DISCUSSION

In acute stroke, CT angiography is performed to identify proximal large-vessel occlusions suitable for endovascular treatment. In this study, we found that CTA derived from CT perfusion data can successfully detect such occlusions; this feature makes it unnecessary to perform a separate CTA acquisition of the brain. Timing-invariant CTA integrates information across the whole time sequence of the CT perfusion acquisition and is, therefore, less susceptible to delays in regional enhancement, which may hamper standard CTA. Our results imply that standard CTA for the evaluation of intracranial occlusions can be omitted if CT perfusion imaging has been performed. The advantage of such an approach lies in improvement of patient safety: Because 1 scan can be performed instead of 2 separate ones, total scanning time, contrast material usage, and radiation dose will be reduced. The exact benefits will depend on the scan protocol, but the approach will typically allow a combined CTA and CT perfusion imaging protocol that can be performed within 60 to 90 seconds, reduces the radiation dose by 0.5–1.0 mSv, and requires only 40–50 mL of intravenous contrast material. Within this time, tPA can be prepared for administration; therefore, advanced imaging need not delay thrombolytic therapy.

In our study, we found a few differences in occlusion detection between standard CTA and timing-invariant CTA. We analyzed these cases and found that most of these differences could be explained only by observer variation because the images were virtually identical. In some cases however, we found that segments that seemed occluded on standard CTA actually showed contrast enhancement on timing-invariant CTA. This difference implies that these segments cannot be occluded because they fill with contrast material, albeit at a later point in time than that used for acquiring the standard CTA. Our results imply that standard CTA may not be able to differentiate delayed enhancement of a vascular segment from vessel occlusion. Standard CTA is delay-sensitive because it is performed at 1 moment in time: Vessels will not be visible if contrast material has not yet arrived at the time of acquisition. Timing-invariant CTA, on the other hand, is delay-insensitive because it displays the maximum contrast during the total time of the CT perfusion acquisition, typically some 60 seconds. Timing-invariant CTA is, therefore, less susceptible to suboptimal contrast enhancement resulting from variations in cardiac output or delayed arrival due to vascular pathology. A strength of the suggested approach is that CT perfusion images and 4D-CTA images are simultaneously available for side-by-side comparison. This combined information can resolve discrepancies and helps differentiate hypoplastic vessel segments, vessel stenosis, and occlusions with good collateralization.

Our study has limitations. First, our scanner could not cover the whole brain during CT perfusion but only a 5- to 6-cm range around the circle of Willis. We could, therefore, evaluate the main cerebral arteries that are relevant for endovascular treatment but not the distal pericallosal and cortical branches. In this comparison study, we focused on the question of whether occlusions can be reliably detected on the CTA images that are derived from the CT perfusion data. To make sure that the results were not biased by the greater coverage of standard CTA, we cropped the CTA data so that identical volumes could be evaluated and compared. Most manufactures now have scanners that provide whole-brain coverage during CT perfusion imaging. With this equipment, no additional brain CTA is necessary if timing-invariant CTA is calculated from the CT perfusion acquisition. For assessing the extracranial portions of the carotid artery, cervical CTA, MR angiography, or sonography may be performed. Cervical imaging remains important for assessing the extracranial extent of ICA occlusion for neurointerventional planning or detecting carotid plaques as a source of emboli. Second, timing-invariant CTA is currently not commercially available but can be easily implemented in commercial or research software, and 1 major vendor has announced the implementation on its CT workstation.

CONCLUSIONS

Timing-invariant CTA derived from CT perfusion data provides diagnostic performance similar to that of standard CTA for the detection of artery occlusions in acute stroke.

Disclosures: Ewoud J. Smit—UNRELATED: Payment for Lectures (including service on Speakers Bureau); Toshiba Medical Systems, Frederick J.A. Meijer—UNRELATED: Payment for Lectures (including service on Speakers Bureau); Toshiba Medical Systems, Jan W. Dankbaar—RELATED: Grant: Dutch Heart Foundation (2012T06); Birgitta Velthuis—UNRELATED: Grants/Grants Pending: Netherlands Heart Foundation (grant number 2008 T034) Dutch Acute Stroke Trial; Pay- ment for Lectures (including service on Speakers Bureau); Philips Healthcare; Mathias Prokop—RELATED: Grant: Philips Healthcare; UNRELATED: Grants/Grants Pending: Philips Healthcare; Toshiba Medical Systems; Payment for Lectures (including service on Speakers Bureau); Bracco, Toshiba Medical Systems, Bayer-Schering, CME Science; Travel/Accommodations/Meeting Expenses Unrelated to Activities Listed: Toshiba Medical Systems, Philips Healthcare, European School of Radiology, CME Science. *Money paid to the institution.

REFERENCES

5. Smit EJ, Vonken E-J, van der Schaaf IC, et al. Timing-invariant re-

Oct 2015 www.ajnr.org 1837
construction for deriving high-quality CT angiographic data from cerebral CT perfusion data. Radiology 2012;263:216–25
Significance of Development and Reversion of Collaterals on MRI in Early Neurologic Improvement and Long-Term Functional Outcome after Intravenous Thrombolysis for Ischemic Stroke

ABSTRACT

BACKGROUND AND PURPOSE: Predicting response to rtPA is essential in the era of endovascular therapy for stroke. The purpose of this study was to elucidate prognostic factors of early neurologic improvement and long-term outcome with respect to the development and reversion of leptomeningeal collaterals in recanalization therapy after acute ischemic stroke.

MATERIALS AND METHODS: We analyzed consecutive patients with proximal MCA occlusion treated with rtPA from 2007 to 2012 at 2 hospital stroke centers. All patients routinely underwent brain MR imaging before rtPA. To assess the reversion of collateral signs, we included patients who underwent follow-up MR imaging. We assessed the development and reversion of collaterals by using a combination of 2 MR imaging collateral markers, the hyperintense vessel sign and the posterior cerebral artery laterality sign. Early neurologic improvement was defined as a decrease in the NIHSS score of ≥10 or a score of ≥2 at 24 hours of treatment.

RESULTS: Early neurologic improvement was observed in 22 of 48 eligible patients. The development of collaterals at arrival (15/22 versus 9/26, \(P = .042\)) was significantly associated with early neurologic improvement. Multivariate analysis adjusting for other variables showed that the development of collaterals at arrival \(P = .015\) was independently associated with early neurologic improvement. Reversion of collaterals was significantly associated with successful recanalization \(P < .001\), and multivariate analysis showed that the reversion of collaterals was an independent prognostic factor of long-term functional outcome \(P = .013\).

CONCLUSIONS: Our results indicate that the development of leptomeningeal collaterals plays a crucial role in achieving early neurologic improvement, and reversion of collaters predicts a favorable outcome via arterial recanalization after rtPA treatment for acute stroke.

ABBREVIATIONS: ENI = early neurologic improvement; HV = hyperintense vessel; IQR = interquartile range; MCA = middle cerebral artery; PCA = posterior cerebral artery; TIMI = Thrombolysis in Myocardial Infarction

Received October 8, 2014; accepted after revision March 3, 2015.

From the Department of Neurology and Neurological Science (M.I., E.I., Y.N., S.I., and H.M.), Department of Endovascular Surgery (K.M.), and Clinical Research Center (M.T.), Tokyo Medical and Dental University, Tokyo, Japan; Department of Neurology, JA Toride Medical Center (H.T., S.S.), Ibaraki, Japan; Department of Neurology, Musashino Red Cross Hospital (M.I., T.K.), Tokyo, Japan; and Department of Internal Medicine (H.F.), Metropolitan Bokutoh Hospital, Tokyo, Japan.

Please address correspondence to S. Ishibashi, MD, PhD, Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-0034; e-mail: t-ishibashi.nuro@tmd.ac.jp

Indicates article with supplemental on-line appendix and table.

http://dx.doi.org/10.3174/ajnr.A4384

ORIGINAL RESEARCH
ADULT BRAIN

Proximal intracranial arterial occlusion is associated with poor functional outcome, and salvaging brain tissue at risk of infarction is of great interest. Intravenous administration of recombinant tissue plasminogen activator to recanalize the occluded artery has significantly reduced mortality and improved long-term outcomes after ischemic stroke, as shown in large clinical trials.\(^1,2\) Approximately 25% of patients who received IV rtPA experienced neurologic improvement within 24 hours after administration (early neurologic improvement [ENI]).\(^3-7\) and the long-term functional outcome at 3 months was better than that of patients who did not experience ENI.\(^6,8\) Identifying factors predicting neurologic improvement shortly after reperfusion therapy with rtPA in clinical practice may help select patients who are likely to respond to IV rtPA and improve the selection of patients for more aggressive therapies, including endovascular intervention. ENI has been associated with lower baseline NIHSS scores\(^7\) and younger age,\(^4,6,7\) but not with time from onset to treatment.\(^4,7,8\) Although the theory of thrombolysis predicts that early recanalization should contribute to ENI, a proportion of patients with early recanalization did not experience ENI in some studies,\(^6,10\) suggesting that other unspecified factors also play a role.

At the acute phase of proximal MCA occlusion, the primary collateral circulation is occasionally established via leptomeningeal anastomoses from the anterior cerebral artery and posterior cerebral artery (PCA). Hyperintense vessels (HVs) on FLAIR MR
Baseline Clinical and Radiologic Characteristics in Patients with Collateral Development and Reversion

For detailed methods, see the On-line Appendix. This retrospective case control study was performed on all patients admitted to 2 hospital stroke centers from April 2007 to November 2012. We selected patients with acute proximal MCA occlusion (M1 or M2 segment) who were treated with IV rtPA according to Japanese guidelines.20 All patients routinely underwent brain MR imaging (Signa HDxt 1.5T Optima Edition; GE Healthcare, Milwaukee, Wisconsin; Magnetom Avanto; Siemens, Erlangen, Germany; or Symphony; Siemens) before rtPA and follow-up brain CT after stroke (median, 9 days; interquartile range [IQR], 6–12 days). To assess the reversion of collateral signs, we included patients who underwent follow-up MR imaging. In accordance with the standard protocol of our institutions for patients with ischemic stroke, demographic data and information on cardiovascular risk factors and medical history, the results of diagnostic tests, NIHSS scores, and modified Rankin Scale scores at 3 months after stroke were collected. We assessed ENI, defined as a decrease in NIHSS score of ≥10 or an NIHSS score ≤2 at 24 hours after rtPA treatment.4-8

Readers (E.I. and M.I.) blinded to all clinical information assessed the presence of PCA laterality and HVs on FLAIR. PCA laterality was considered present if ≥1 segmental extent was observable on axial stereoscopic images (Fig 1A), as described in previous studies.15,16 If signal from both PCAs ended in the same segment, laterality was defined as negative. HVs were defined as linear or serpentine hyperintense signals relative to gray matter distal to the Sylvian fissure.12 To quantify the degree of HV, 10 FLAIR MR imaging sections were analyzed, from 2 sections below to 7 sections above the first M1 segment in which the MCA appeared (Fig 1B).14 The resulting HV score ranged from 0 to 10. A large reduction in the HV score was defined as a decrease of ≥5 on follow-up MR imaging. The “development of collaterals” was defined as positive PCA laterality and an HV score of ≥5 on initial MR imaging. The disappearance of PCA laterality or the reduction of the HV score by ≥5 on follow-up MR imaging or both was defined as the “reversion of collaterals.” Interrater reliability for the presence of PCA laterality and HV score grading between 2 observers were estimated; in the event of discrepancies between readers, the final result was reached by consensus. Recanalization status after IV rtPA was assessed with a modified grading system based on the Thrombolysis in Myocardial Infarction (TIMI) grade.21 Successful recanalization was defined as TIMI 3 on follow-up MRA, and the percentage of successful recanalization was used as the recanalization rate. The Alberta Stroke Program Early CT Score22 was used to evaluate the initial DWI hyperintensity and final infarct extent on follow-up CT scans. Initial DWI volume was measured by using NIH Image (http://rsb.info.nih.gov/nih-image/). Univariable parametric and nonparametric comparisons of clinical characteristics were performed as appropriate. To identify independent predictors of ENI and long-term functional outcome, we performed multivariate logistic regression analyses as shown in the On-line Appendix.
The distribution of HV scores before IV rtPA is shown in Fig 3A. The HV score was significantly lower after IV rtPA than before IV rtPA (1 versus 6; IQR, 0–3 versus 5–7; \(P < .0001 \); Fig 3B).

The groups with and without reversion of collaterals were equivalent in age, NIHSS score at arrival, cardiovascular risk factors, stroke etiology, and past medication (Table 1). Both groups were equivalent in the duration between the 2 MR imaging scans. The initial NIHSS score, DWI ASPECTS, and DWI volume did not differ significantly between the groups. The NIHSS score obtained 24 hours and 7 days after admission was significantly lower in patients with reversion of collaterals than in those without it (24 hours, 7 versus 11; IQR, 2–12 versus 6–17; \(P = .022 \); 7 days, 4 versus 8; IQR, 1–8 versus 3–14; \(P = .008 \)). The successful recanalization rate (TIMI 3) assessed by follow-up MR imaging was significantly higher in patients with reversion of collaterals than in those without it (23 of 25 patients versus 8 of 23 patients; \(P < .001 \)). The follow-up CT ASPECTS was significantly higher in patients with reversion of collaterals than in those without it (8 versus 6; IQR, 6.5–9 versus 4–8; \(P = .017 \)), indicating a smaller infarct extent (Table 1). Significantly more patients with reversion of collaterals had a favorable long-term functional outcome (mRS, 0–1 at 3 months) than those without it (16 of 25 patients versus 8 of 23 patients; \(P = .043 \)).

Prognostic Factors of ENI and Long-Term Functional Outcome after IV rtPA in Patients with Proximal MCA Occlusion

ENI was observed in 22 (46%) of 48 patients. The group with ENI and the group without ENI were equivalent in age, NIHSS score at arrival, cardiovascular risk factors, stroke etiology, and past medication (Table 2). DWI ASPECTS at arrival (8 versus 8; IQR, 6.75–9 versus 6.75–8; \(P = .33 \)) and the arterial occlusion site \((P = .33) \) did not differ between groups. Consistent with previous research, \(^3\)–\(^5\), \(^7\) the rate of good long-term functional outcome (modified Rankin Scale score of 0–1 at 3 months) was significantly higher in the ENI-positive group than the ENI-negative group (16 of 22 patients versus 8 of 26 patients; \(P = .008 \)). The development of collateral signs was detected in a significantly greater number of patients in the distribution of HV scores before IV rtPA is shown in Fig 3A. The \(\kappa \) coefficient for interobserver agreement was 0.917 for PCA laterality and 0.772 for the grading as low, medium, or high HV score by the 2 observers, which indicated good agreement. Reversion of collaterals (disappearance of PCA laterality and/or a large reduction in the HV score) was observed in 25 (52%) of 48 patients. The collateral reversion was observed in approximately 50% of patients in each collateral marker. PCA laterality had disappeared in 13 (52%) of 25 patients (Fig 2C), and 22 (56%) of 39 patients showed a large reduction in the HV score (\(\geq 5 \)) after IV rtPA (Fig 2B, -D). The HV score was significantly lower after IV rtPA than before IV rtPA (1 versus 6; IQR, 0–3 versus 5–7; \(P < .0001 \); Fig 3B).

The groups with and without reversion of collaterals were equivalent in age, NIHSS score at arrival, cardiovascular risk factors, stroke etiology, and past medication (Table 1). Both groups were equivalent in the duration between the 2 MR imaging scans. The initial NIHSS score, DWI ASPECTS, and DWI volume did not differ significantly between the groups. The NIHSS score obtained 24 hours and 7 days after admission was significantly lower in patients with reversion of collaterals than in those without it (24 hours, 7 versus 11; IQR, 2–12 versus 6–17; \(P = .022 \); 7 days, 4 versus 8; IQR, 1–8 versus 3–14; \(P = .008 \)). The successful recanalization rate (TIMI 3) assessed by follow-up MR imaging was significantly higher in patients with reversion of collaterals than in those without it (23 of 25 patients versus 8 of 23 patients; \(P < .001 \)). The follow-up CT ASPECTS was significantly higher in patients with reversion of collaterals than in those without it (8 versus 6; IQR, 6.5–9 versus 4–8; \(P = .017 \)), indicating a smaller infarct extent (Table 1). Significantly more patients with reversion of collaterals had a favorable long-term functional outcome (mRS, 0–1 at 3 months) than those without it (16 of 25 patients versus 8 of 23 patients; \(P = .043 \)).
Univariate analysis revealed that the history of atrial fibrillation and the development of collaterals at arrival were significantly associated with ENI (Table 3). Multivariate logistic regression analysis was performed to further evaluate the independent predictors of ENI after adjusting for other variables (On-line Table).

DISCUSSION

We showed that the development of leptomeningeal collaterals, assessed by PCA laterality on MRA and HV score on FLAIR, was significantly associated with ENI in patients with proximal MCA occlusion treated with IV rtPA. Because the principal purpose of thrombolytic therapy is to open obstructed vessels and to reperfuse the ischemic penumbra, early recanalization after IV rtPA should contribute to ENI. However, 37%–46% of patients with recanalization performed within 2 hours after IV rtPA, as assessed by transcranial Doppler, or after endovascular treatment showed no immediate clinical improvement or may have even worsened. In our study, the positive association observed between the development of collateral signs on MR imaging and ENI indicates that leptomeningeal collateral development may be an important factor for achieving ENI after recanalization therapy.

Several factors may explain why well-developed collaterals lead to ENI. First, the leptomeningeal collateral circulation plays an important role in preserving cerebral blood flow in the territory of the occluded artery. Well-developed leptomeningeal collateral circulation is associated with maintaining the perfusion of penumbral regions, as evaluated by using CT perfusion or MR imaging perfusion methods, resulting in the protection of distal brain tissues. Consistently, our recent study showed that patients with PCA laterality had a significantly smaller infarct volume, particularly in the cortical region, on follow-up CT than those without this sign who were treated with rtPA after acute MCA occlusion. Second, retrograde collateral filling may allow the access of thrombolytic agents to distal clots, which may minimize the ischemic damage to the structure of the distal vessels themselves. Because cerebral arteries and capillaries in the brain are impaired early and in a progressive fashion after focal cerebral ischemia, the degree of ischemic vascular injury can be minimized by collateral blood supply to vessels and brain tissue located within the territory of the occluded artery. These possible effects of collateral circulation may protect brain tissue and/or vessel structures from ischemic damage until MCA recanalization.

Another important finding of our study was that the collateral signs observed on MR imaging were diminished in almost half of the group with ENI than in the group without ENI (15 of 22 patients versus 9 of 26 patients, $P = .042$).

Univariate analysis revealed that the development of leptomeningeal collaterals at arrival were significantly associated with ENI (Table 3). Multivariate logistic regression analysis was performed to further evaluate the independent predictors of ENI after adjusting for age, history of atrial fibrillation, NIHSS score at arrival, and time to rtPA administration as covariates. The development of collaterals at arrival (OR, 4.82; 95% CI, 1.34–19.98; $P = .015$) and history of atrial fibrillation (OR, 5.32; 95% CI, 1.16–32.1; $P = .031$) were independently associated with ENI after adjustment for other variables (Table 3). Univariate and multivariate analyses were performed to evaluate the prognostic factors for long-term functional outcome. In a univariate analysis, initial DWI volume and reversion of collaterals were predictive of long-term functional outcome. Multivariate logistic regression analysis was performed to further evaluate independent predictors of clinical outcome. Reversion of collaterals (OR, 5.07; 95% CI, 1.38–22.09; $P = .013$) was independently associated with favorable outcome, after adjustment for other variables (On-line Table).

Table 1: Characteristics of patients with and without reversion of collateralsa

<table>
<thead>
<tr>
<th>Reversion of Collaterals</th>
<th>Value</th>
<th>Yes (n = 25)</th>
<th>No (n = 23)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median) (IQR)</td>
<td></td>
<td>78 (71–81)</td>
<td>79 (68–86)</td>
<td>.52</td>
</tr>
<tr>
<td>Male sex (No.) (%)</td>
<td></td>
<td>13 (52)</td>
<td>13 (57)</td>
<td>.78</td>
</tr>
<tr>
<td>mRS 0–1 before stroke (No.) (%)</td>
<td></td>
<td>25 (100)</td>
<td>22 (96)</td>
<td>.48</td>
</tr>
<tr>
<td>Cardiovascular risk factors (No.) (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td>15 (60)</td>
<td>13 (57)</td>
<td>1</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td>7 (28)</td>
<td>3 (13)</td>
<td>.29</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td></td>
<td>4 (16)</td>
<td>7 (30)</td>
<td>.31</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
<td>21 (84)</td>
<td>13 (57)</td>
<td>.057</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td></td>
<td>5 (20)</td>
<td>4 (17)</td>
<td>1</td>
</tr>
<tr>
<td>Previous stroke</td>
<td></td>
<td>6 (24)</td>
<td>6 (26)</td>
<td>1</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td>9 (36)</td>
<td>9 (41)</td>
<td>.77</td>
</tr>
<tr>
<td>Past medication at stroke onset (No.) (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antplatelet therapy</td>
<td></td>
<td>7 (28)</td>
<td>8 (35)</td>
<td>.76</td>
</tr>
<tr>
<td>Anticoagulant therapy</td>
<td></td>
<td>5 (20)</td>
<td>4 (17)</td>
<td>1</td>
</tr>
<tr>
<td>Antihypertensive therapy</td>
<td></td>
<td>13 (52)</td>
<td>10 (44)</td>
<td>.58</td>
</tr>
<tr>
<td>Statin therapy</td>
<td></td>
<td>2 (8)</td>
<td>4 (17)</td>
<td>.41</td>
</tr>
<tr>
<td>Stroke etiology (No.) (%)</td>
<td></td>
<td>19 (76)</td>
<td>11 (48)</td>
<td>.07</td>
</tr>
<tr>
<td>Cardioembolism</td>
<td></td>
<td>4 (16)</td>
<td>8 (35)</td>
<td>.19</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td></td>
<td>2 (8)</td>
<td>4 (17)</td>
<td>.41</td>
</tr>
<tr>
<td>Other or undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severity of stroke at arrival (median) (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial GCS</td>
<td></td>
<td>13 (11–14)</td>
<td>12 (10–14)</td>
<td>.62</td>
</tr>
<tr>
<td>Initial DWI volume (mL)</td>
<td></td>
<td>21.6 (13.8–42.5)</td>
<td>22.9 (10.6–41.1)</td>
<td>.63</td>
</tr>
<tr>
<td>DWI ASPECTS at arrival</td>
<td></td>
<td>8 (7–9)</td>
<td>8 (6–8)</td>
<td>.72</td>
</tr>
<tr>
<td>Initial NIHSS score</td>
<td></td>
<td>17 (14–24)</td>
<td>16 (11–21)</td>
<td>.35</td>
</tr>
<tr>
<td>Duration between 2 MRI scans (days)</td>
<td></td>
<td>7 (5–9)</td>
<td>6 (3–8)</td>
<td>.2</td>
</tr>
<tr>
<td>Neurologic and radiologic outcome after rtPA (median) (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-hr NIHSS</td>
<td></td>
<td>7 (2–12)</td>
<td>11 (6–17)</td>
<td>.022b</td>
</tr>
<tr>
<td>7-day NIHSS</td>
<td></td>
<td>4 (1–8)</td>
<td>8 (3–14)</td>
<td>.008c</td>
</tr>
<tr>
<td>Hemorrhagic transformation</td>
<td></td>
<td>6 (24)</td>
<td>10 (43)</td>
<td>.22</td>
</tr>
<tr>
<td>Successful recanalization</td>
<td></td>
<td>23 (93)</td>
<td>8 (35)</td>
<td><.001d</td>
</tr>
<tr>
<td>Follow-up CT ASPECTS</td>
<td></td>
<td>8 (6.5–9)</td>
<td>6 (4–8)</td>
<td>.017b</td>
</tr>
<tr>
<td>M1 to M6 area in ASPECTS</td>
<td></td>
<td>5 (4–6)</td>
<td>3 (2–6)</td>
<td>.021b</td>
</tr>
<tr>
<td>C, I, L, IC area in ASPECTS</td>
<td></td>
<td>3 (2.5–4)</td>
<td>3 (2–3)</td>
<td>.12</td>
</tr>
<tr>
<td>mRS 0–1 at 3 mo (No.) (%)</td>
<td></td>
<td>16 (64)</td>
<td>8 (35)</td>
<td>.043b</td>
</tr>
</tbody>
</table>

Note:—GCS indicates Glasgow Coma Scale; C, caudate nucleus; I, insular cortex; L, lenticular nucleus; IL, internal capsule.

*For continuous variables, the median and P values (Mann-Whitney U test) are shown. The resulting proportions and the P values (Fisher exact test with Yates correction, when appropriate) are shown.

b $P < .05$.

c $P < .01$.

d $P < .001$ was considered significant.

For continuous variables, the median and P values (Mann-Whitney U test) are shown. The resulting proportions and the P values (Fisher exact test with Yates correction, when appropriate) are shown.
patients with well-developed collateral signs before rtPA administration; we found a significant association between the reversion of collateral signs and long-term functional outcome. A previous study reported that HVs were observed on FLAIR in all patients with MCA occlusion within 24 hours of stroke onset and the percentage of HV-positive patients subsequently decreased in a time-dependent manner, though HVs were still observed in some cases of successful recanalization on follow-up MR imaging. Thus, according to these findings, collateral reversion may indicate improvement in cerebral hemodynamic status. Indeed, the extent of infarction in the cortical regions (M1–M6 in ASPECTS; total score, 6) was significantly smaller in patients with collateral reversion than in those without it (median ASPECTS, 5 versus 3; $P = .021$), but no significant differences were observed in other for up to 2 weeks. However, the mechanism underlying these changes in collateral signs has not been well-documented. In the course of ischemic stroke, collateral blood flow should play an important role in providing blood to cerebral tissues at risk of infarction in the territory of the occluded artery. Therefore, a failure or reduction of collateral circulation may cause infarct growth in the occluded territory. In a recent study that evaluated the temporal profile of collateral flow by using modified perfusion MR imaging in patients with acute ischemic stroke, compared with initial MR imaging, the leptomeningeal collateral flow reduced 3–5 days after stroke onset in approximately one-third of patients without spontaneous recanalization. In the no-recanalization group, the decrease in collateral flow was associated with infarct growth within 5 days. Therefore, maintaining collateral flow may help prevent infarct growth during the acute phase of ischemic stroke if recanalization is not achieved.

We observed reversion of collaterals after thrombolysis in approximately 50% of patients with initially well-developed collaterals and significant association with favorable long-term functional outcome. Because early collateral development via leptomeningeal anastomoses after MCA occlusion is induced by a pressure gradient between the anterior cerebral artery or PCA territory and a territory distal to the MCA occlusion site, leptomeningeal collaterals may decrease or disappear after the occluded MCA reopens at an optimal timing because of normalization of the pressure gradient. Several studies in patients with acute internal carotid or MCA occlusion reported that HV collateral signs on initial FLAIR MR imaging disappeared within several days after early spontaneous recanalization or successful vascularity via endovascular therapy. In this study, reversion of collaterals was significantly associated with a high rate

| Table 2: Comparison of the presence and absence of early neurologic improvement after IV rtPA in patients with proximal middle cerebral artery occlusion* |
|----------------------------------|-----------------|-----------------|-----------------|
| Early Neurologic Improvement | Yes ($n=22$) | No ($n=26$) | P Value |
| Age (yr) (median) (IQR) | 78.5 (74–81) | 78.5 (68–84) | .92 |
| Male sex (No.) (%) | 10 (45) | 16 (62) | .38 |
| mRS 0–1 before stroke (No.) (%) | 22 (100) | 25 (96) | 1 |
| NIHSS score at arrival (median) (mean) | 17.9 ± 8.1 | 16.0 ± 5.7 | .29 |
| Systolic blood pressure (mean) | 161.3 ± 29.6 | 155.0 ± 30.8 | .91 |
| Diastolic blood pressure (mean) | 88.5 ± 26.1 | 78.3 ± 21.9 | .19 |
| Temperature (°C) (mean) | 36.3 ± 0.4 | 36.2 ± 0.7 | .75 |
| Cardiovascular risk factors (No.) (%) | | | |
| Hypertension | 14 (64) | 14 (54) | .57 |
| Diabetes mellitus | 7 (27) | 4 (15) | .48 |
| Hyperlipidemia | 5 (23) | 6 (23) | 1 |
| Atrial fibrillation | 19 (86) | 15 (58) | .054 |
| Congestive heart failure | 4 (18) | 5 (19) | 1 |
| Previous stroke | 5 (23) | 7 (27) | 1 |
| Smoking | 6 (27) | 12 (48) | .23 |
| Past medication at stroke onset | 8 (36) | 7 (27) | .54 |
| Antiplaite therapy | 3 (13) | 2 (8) | .5 |
| Anticoagulant therapy | 2 (9) | 4 (15) | .67 |
| Stroke etiology (No.) (%) | | | |
| Cardioembolism | 17 (77) | 13 (50) | .074 |
| Atherosclerosis | 4 (18) | 8 (31) | .5 |
| Other or undetermined | 1 (5) | 5 (19) | .2 |
| Imaging analysis | | | |
| Initial DWI volume (mL) (median) (IQR) | 19.8 (11.5–42.3 | 22.7 (13.9–42.1) | .26 |
| DWI ASPECTS at arrival (median) (IQR) | 8 (6.75–9) | 8 (6.75–8) | .33 |
| MCA M1 occlusion (No.) (%) | 18 (82) | 17 (65) | .33 |
| Development of collaterals at arrival (No.) (%) | 15 (68) | 9 (35) | .042 |
| Stroke outcome | | | |
| Follow-up CT ASPECTS (median) (IQR) | 8 (6–9.25) | 6 (4.75–8) | .004 |
| mRS 0–1 at 3 mo (No.) (%) | 16 (73) | 8 (31) | .008 |

*a For continuous variables, the median and P values (Mann-Whitney U test) are shown. The resulting proportions and the P values (Fisher exact test with Yates correction, when appropriate) are shown.

*b P < .05.

*c The development of collaterals was defined as positive in the presence of PCA laterality and an HV score of ≥5 on initial MRI.

*P < .01 was considered significant.

| Table 3: Univariate analyses and multivariate logistic regression analysis for the association of early neurologic improvement after IV rtPA in patients with proximal middle cerebral artery occlusion |
|---------------------------------|-----------------|-----------------|-----------------|
| Crude OR (95% CI) | P Value | Adjusted OR (95% CI) | P Value |
| Age (yr) | 0.99 (0.95–1.06) | .91 | 1.00 (0.94–1.06) | .95 |
| Male sex | 0.52 (0.16–1.63) | .26 | 0.45 (0.15–1.50) | .19 |
| History of atrial fibrillation | 4.64 (1.20–23.36) | .025* | 5.32 (1.62–32.1) | .031* |
| NIHSS score at arrival | 1.04 (0.88–1.04) | .34 | 1.02 (0.89–1.08) | .72 |
| DWI ASPECTS at arrival | 1.16 (0.80–1.73) | .44 | | |
| Time to rtPA administration | 0.99 (0.97–1.02) | .49 | 1.00 (0.97–1.03) | .84 |
| Development of collaterals at arrival| 4.0 (1.25–14.27) | .019* | 4.82 (1.34–19.98) | .015* |

* P < .05 was considered significant.

* P < .01 was considered significant.

* Adjusted for age, history of atrial fibrillation, NIHSS score at arrival, and time to rtPA administration.
ASPECTS regions, such as the insular cortex, basal ganglia, and internal capsule (median ASPECTS, 3 versus 3, \(P = .12 \)) (Table 1). Because leptomeningeal collaterals, which are upstream of the penetrating cortical vessels, play a major role in compensating for low blood flow in the cerebral cortex after ischemic stroke, collateral reversion may exhibit the recovery of effective “cortical” blood flow after the optimal timing of recanalization, contributing to prevention of infarct extent.

This study has several limitations. First, it was retrospective and limited by a small sample size and a nonrandomized population; and the timing for initial and follow-up MR imaging was heterogeneous. The timing of the development and reversion of collateral circulation is not well-elicited. The timing and duration of MR imaging may influence the existence of collateral signs, though there was no significant association between the timing of the MR imaging scan and the collateral development or reversion in our study. Second, MR imaging acquisitions before and after rtPA therapy during acute ischemic stroke may be challenging in a clinical setting. The greatest benefit of rtPA therapy comes from earlier treatment, and MR imaging screening before rtPA may cause a time delay. Generalizing our results to all hospitals may be a problem because the delay in MR imaging screening might be greater in centers less specialized for emergency stroke MR imaging.

CONCLUSIONS

Recently, the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) study reported that endovascular therapy within 6 hours of stroke onset in addition to rtPA improved functional independence at 3 months.\(^3^9\) Leptomeningeal collaterals contribute to ENI after acute ischemic stroke, and the development of collateral signs on MR imaging can help identify patients more likely to show ENI in the setting of thrombolysis and help us select patients for additional endovascular therapy. Considering the results, reversion of collaterals is associated with more favorable outcome in patients with acute proximal MCA occlusion after administration of rtPA, which may be due to improved hemodynamic status. Reversion of collaterals may help us to examine the risk of recurrent stroke or infarct extent, to achieve an appropriate prevention after proximal cerebral artery occlusion.

ACKNOWLEDGMENTS

The authors would like to thank Enago (www.enago.jp) for the English language review.

Disclosures: Tomoyuki Kamata—UNRELATED: Payment for Lectures (including service or Speakers Bureau): Owtsuka Pharmaceutical, Eisai, AstraZeneca, Otsuka Pharmaceutical, Novartis Pharma, Bayer, Shionogi.

REFERENCES

23. De Silva DA, Fink JN, Christensen S, et al; Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) Investigators. Assessing reperfusion and recanalization as markers of clinical outcomes af-

Independent Poor Prognostic Factors for True Progression after Radiation Therapy and Concomitant Temozolomide in Patients with Glioblastoma: Subependymal Enhancement and Low ADC Value

ABSTRACT

BACKGROUND AND PURPOSE: Subependymal enhancement and DWI have been reported to be useful MR imaging markers for identifying true progression. Our aim was to determine whether the subependymal enhancement pattern and ADC can differentiate true progression from pseudoprogression in patients with glioblastoma multiforme treated with concurrent chemoradiotherapy by using temozolomide.

MATERIALS AND METHODS: Forty-two patients with glioblastoma multiforme with newly developed or enlarged enhancing lesions on the first follow-up MR images obtained within 2 months of concurrent chemoradiotherapy completion were included. Subependymal enhancement was analyzed for the presence, location, and pattern (local or distant relative to enhancing lesions). The mean ADC value and the fifth percentile of the cumulative ADC histogram were determined. A multiple logistic regression analysis was performed to identify independent factors associated with true progression.

RESULTS: Distant subependymal enhancement (ie, extending >1 cm or isolated from the enhancing lesion) was significantly more common in true progression \((n = 24) \) than in pseudoprogression \((n = 18) \) \((P = .042) \). The fifth percentile of the cumulative ADC histogram was significantly lower in true progression than in pseudoprogression \((P = .04) \). Both the distant subependymal enhancement and the fifth percentile of the cumulative ADC histogram were independent factors associated with true progression \((P = .041 \) and \(P = .033 \), respectively). Sensitivity and specificity for the diagnosis of true progression were 83% and 67%, respectively, by using both factors.

CONCLUSIONS: Both the distant subependymal enhancement and the fifth percentile of the cumulative ADC histogram were significant independent factors predictive of true progression.

ABBREVIATIONS: CCRT = concurrent chemoradiotherapy; GBM = glioblastoma multiforme; TMZ = temozolomide; RANO = Response Assessment in Neuro-Oncology

Glioblastoma multiforme (GBM) is the most common form of malignant primary brain tumor in adults,\(^1\) which is notorious for its intrinsic aggressiveness and a dismal prognosis.\(^2,3\) The current standard treatment for GBM is maximal safe tumor resection followed by radiation therapy with concurrent temozolomide (TMZ) and adjuvant TMZ.\(^4\)

Recently, the criteria for assessing therapeutic responses in high-grade gliomas have been updated by the Response Assessment in Neuro-Oncology (RANO) Working Group to address the limitations of the previous guideline.\(^5\) For instance, contrast enhancement, which has been regarded as a surrogate marker for tumor progression, has been reassessed as a nonspecific finding merely reflecting the passage of contrast material across a disrupted blood-tumor barrier.\(^6-11\) In particular, radiologists and clinicians have increasingly recognized the occurrence of progressive MR imaging lesions immediately after completion of concurrent chemoradiotherapy (CCRT) with TMZ, which spontaneously improved without further treatment other than the adjuvant TMZ.\(^12-14\) The treatment-related reaction is termed pseudoprogression and has received attention as a potential pitfall in the response evaluation. At present, owing to the lack of established findings in conventional contrast-enhanced MR imaging for the differential diagnosis of true...
progression from pseudoprogression.9,10 RANO stresses that the diagnosis of true progression can be made within the first 12 weeks after completion of radiation therapy only if most of the new enhancement is located outside the radiation field or if there is pathologic confirmation of progressive disease.5

During the past few decades, there has been extensive effort to identify imaging biomarkers for tumor progression. Among the many parameters derived from advanced MR imaging techniques, DWI has been consistently reported to be helpful in differentiating tumor progression from treatment-related changes or necrosis.15–22 Meanwhile, most previous studies pertaining to the role of conventional MR imaging have not shown promising results.9,23 Nevertheless, a recent study focusing on the conventional MR imaging findings has proposed subependymal enhancement as a useful MR imaging marker for differentiating true progression from pseudoprogression.24 To our knowledge, however, no previous studies have conducted in-depth analysis of the subependymal enhancement, and its potential as an independent predictor for true progression remains elusive.

The purpose of the present study was to determine whether the subependymal enhancement pattern and ADC can differentiate true progression from pseudoprogression in patients with GBM treated with radiation therapy and concomitant TMZ.

MATERIALS AND METHODS

This retrospective study was approved by our institutional review board, and informed consent was waived.

Patient Selection

One hundred thirty-two patients with newly diagnosed GBM, who had undergone surgical resection or stereotactic biopsy at our institution between June 2008 and March 2013 were selected from our radiology report data base. The inclusion criteria were patients with the following: 1) histopathologic diagnosis of GBM according to the World Health Organization criteria; 2) CCRT with TMZ and 6 cycles of adjuvant TMZ performed after surgical resection or biopsy; 3) baseline contrast-enhanced MR imaging performed within 24–48 hours after surgery before CCRT with TMZ; 4) the first follow-up 3T MR imaging including DWI performed within 2 months (mean, 28 days; range, 12–62 days) after the end of CCRT; 5) newly developed or enlarged measurable contrast-enhancing lesions inside the radiation field on the first follow-up MR images; and 6) follow-up contrast-enhanced MR imaging after 6 cycles of adjuvant TMZ to confirm true progression or pseudoprogression. The measurable contrast-enhancing lesions were defined as bidimensional contrast-enhancing lesions with 2 perpendicular diameters of at least 10 mm.5 We excluded 88 patients for the following reasons: 1) poor quality of the MR images, 2) no newly visible enhancing lesions on the first follow-up MR images, 3) definite disease progression according to the RANO criteria, and 4) the presence of subependymal enhancement on the baseline MR images.5 Two additional patients were excluded because of follow-up loss in one and a switch to bevacizumab in the other (Fig 1).

Therefore, 42 patients (27 men, 15 women; mean age, 56 years; age range, 28–80 years) were included in this study. After adjuvant TMZ, true progression and pseudoprogression were con-
Qualitative Image Analysis for Subependymal Enhancement

Two neuroradiologists (S.H.C. and J.-H.K. with 7 and 15 years of experience, respectively, in the interpretation of MR imaging studies), who were blinded as to whether the patients had true progression or pseudoprogression, analyzed the first follow-up MR images together and reached a consensus reading for subependymal enhancement in terms of the following: 1) the presence or absence, 2) location, and 3) pattern of enhancement. Regarding the pattern, the subependymal enhancement was categorized into 1 of the following, according to the positional relationship between the subependymal enhancement and an enhancing lesion: 1) type I: enhancement at the ependymal lining abutting the newly developed or enlarged measurable contrast-enhancing lesion; 2) type II: enhancement extending along the ventricular margin with the distance of extension (ie, distance from the margin of the enhancing lesion to the farthest end of the subependymal enhancement) measuring ≤1 cm; 3) type III: enhancement extending along the ventricular margin with the distance of extension measuring >1 cm; and 4) type IV: enhancement at the ependymal lining isolated from the enhancing lesion. Type I and II patterns were classified as local, whereas type III and IV patterns were classified as distant (On-line Fig 1).

Quantitative Image Analysis for ADC Maps

The MR imaging data for ADC maps were digitally transferred from the PACS workstation to a personal computer. ROIs that contained the entire measurable contrast-enhancing lesions, excluding the areas of necrosis or cysts, were manually drawn in each section of the ADC maps by 1 neuroradiologist (R.-E.Y. with 5 years of experience in the interpretation of MR imaging studies) by using ImageJ software (National Institutes of Health, Bethesda, Maryland). The data acquired from each section were summated to derive voxel-by-voxel ADC values for the entire contrast-enhancing lesions by using software developed in house.

Subsequently, the mean ADC values were calculated. For further quantitative analysis, the fifth percentiles (the point at which 5% of the voxel values that form the cumulative ADC histogram are found to the left) were calculated on the basis of the previous findings that the fifth percentile of the cumulative ADC histogram was a significant predictor for the differential diagnosis between true progression and pseudoprogression.17,21

Statistical Analysis

All statistical analyses were performed by using the statistical software MedCalc for Windows, Version 11.1.1.0 (MedCalc Software, Mariakerke, Belgium). The data for each parameter were assessed for normality with the Kolmogorov-Smirnov test. In all tests, P values < .05 were considered statistically significant.

Clinical characteristics of the patients in the 2 groups were compared by using either the Fisher exact test or the unpaired Student t test. The Fisher exact test was performed to assess whether the incidence of the subependymal enhancement significantly differed between the true progression and pseudoprogression groups. The unpaired Student t test was used to compare the mean ADC values and the fifth percentiles of the cumulative ADC histograms between the 2 groups. Variables showing a univariate association with true progression (at P < .10) were included in a multivariable stepwise logistic regression analysis to identify independent predictors of true progression.

Sensitivity and specificity of the imaging parameters for the diagnosis of true progression were calculated. To determine an optimal cutoff value that provided a balance between sensitivity and specificity, a receiver operating characteristic curve was constructed for the ADC values. In addition, a leave-one-out cross-validation method was used to test the effects of outliers.25

RESULTS

Clinical Characteristics of the Patients

There was a significant difference in age between the true progression and pseudoprogression groups (P = .002). Other clinical characteristics did not significantly differ between the 2 groups (Table 2).

Qualitative Image Analysis for Subependymal Enhancement

Subependymal enhancement was significantly more common in the true progression group (19 of 24) than in the pseudoprogression group (8 of 18) (P = .027). Anatomic locations of the subependymal enhancement were as follows: unilateral lateral ventricle (n = 25), bilateral lateral ventricles (n = 1), and fourth ventricle (n = 1). With regard to the pattern, the incidence of distant subependymal enhancement was significantly higher in the true progression group than in the pseudoprogression group (P = .042), whereas that of local subependymal enhancement did not significantly differ between the 2 groups (P > .99) (Table 3 and Fig 2).
Quantitative Image Analysis for ADC Maps
The fifth percentile of the cumulative ADC histogram was significantly lower in the true progression group than in the pseudoprogression group (895×10^{-6} mm2/s versus 998×10^{-6} mm2/s, $P = .014$). In contrast, the mean ADC value was not significantly different between the 2 groups (1247×10^{-6} mm2/s versus 1310×10^{-6} mm2/s, $P = .298$) (Table 3).

Multiple Logistic Regression Analysis for Independent Variables
The multiple logistic regression analysis revealed that age, the distant subependymal enhancement, and the fifth percentile of the cumulative ADC histogram were independent predictors of true progression (OR, 1.08; 95% CI, 1.01–1.17; $P = .026$ for the age; OR, 8.30; 95% CI, 1.09–63.16; $P = .041$ for the distant subependymal enhancement; and OR, 0.99; 95% CI, 0.98–1.00; $P = .033$ for the fifth percentile of the cumulative ADC histogram) (Fig 3).

Sensitivity and Specificity for the Diagnosis of True Progression with Imaging Parameters
Sensitivity and specificity for the diagnosis of true progression were 42% (95% CI, 24–61) and 89% (95% CI, 67–97), respectively, when considering only distant subependymal enhancement. Sensitivity and specificity were 67% (95% CI, 45–84) and 78% (95% CI, 52–94), respectively, when using only the optimal cutoff ADC value (fifth percentile of the cumulative ADC histogram) of 915×10^{-6} mm2/s.

The predictive equation was calculated with the 2 logistic regression parameters as

Table 2. Clinical characteristics of the patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>True Progression (n = 24)</th>
<th>Pseudoprogression (n = 18)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>60.50 \pm 11.58</td>
<td>48.22 \pm 12.54</td>
<td>.002</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>.347</td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Karnofsky performance score <70</td>
<td>4</td>
<td>1</td>
<td>.371</td>
</tr>
<tr>
<td>≥70</td>
<td>20</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
<td>.623</td>
</tr>
<tr>
<td>Biopsy</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Resection</td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Radiation dose (Gy)</td>
<td>55.52 \pm 8.17</td>
<td>57.83 \pm 7.52</td>
<td>.376</td>
</tr>
<tr>
<td>Methylated MGMT promoter*</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Negative</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>15</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Note:—MGMT indicates O6-methylguanine DNA methyltransferase.
*The promoter methylation status of MGMT, which was investigated by using the methylation-specific polymerase chain reaction technique, was documented whenever available.

Table 3: Qualitative and quantitative image analyses*

<table>
<thead>
<tr>
<th></th>
<th>True Progression (n = 24)</th>
<th>Pseudoprogression (n = 18)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subependymal enhancement</td>
<td>19 (79)</td>
<td>8 (44)</td>
<td>.027</td>
</tr>
<tr>
<td>Local</td>
<td>9 (38)</td>
<td>6 (33)</td>
<td>> .99</td>
</tr>
<tr>
<td>Type I</td>
<td>8 (33)</td>
<td>4 (22)</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>1 (4)</td>
<td>2 (11)</td>
<td></td>
</tr>
<tr>
<td>Distant</td>
<td>10 (42)</td>
<td>2 (11)</td>
<td>.042</td>
</tr>
<tr>
<td>Type III</td>
<td>5 (21)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Type IV</td>
<td>5 (21)</td>
<td>2 (11)</td>
<td></td>
</tr>
<tr>
<td>ADC ($\times 10^{-6}$ mm2/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1247 \pm 197</td>
<td>1310 \pm 182</td>
<td>.298</td>
</tr>
<tr>
<td>Fifth percentile</td>
<td>895 \pm 136</td>
<td>998 \pm 120</td>
<td>.014</td>
</tr>
</tbody>
</table>

*Numbers in parentheses are percentages.

FIG 2. Pseudoprogression in a 40-year-old man with glioblastoma who had undergone surgical resection. A, Axial contrast-enhanced T1-weighted MR image obtained within 1 month after the end of concurrent chemotherapy and radiation therapy shows a newly developed enhancing lesion (arrow) in the right frontal periventricular white matter. The ventricular margin adjacent to the enhancing lesion (arrow) also shows linear enhancement (arrowhead), with the distance of extension measuring \leq1 cm. B, On the ADC map, a decrease in ADC value is not apparent at the lesion (arrow) (mean, 1264×10^{-6} mm2/s; fifth percentile, 1059×10^{-6} mm2/s). C, Follow-up MR image after a 6-month continuation of temozolomide reveals resolution of the enhancing lesion.
follows: $P = e^{x} / (1 + e^{x})$, where $x = -0.0085 \times \text{fifth percentile of the cumulative ADC histogram} + 2.2808 \times \text{distant subependymal enhancement} + 7.8108$. The cutoff point for the diagnosis of true progression was defined as a probability value ≥ 0.50. The sensitivity, specificity, and accuracy of the equation were 83% (20 of 24), 67% (12 of 18), and 76% (32 of 42), respectively. Leave-one-out cross-validation revealed a sensitivity of 79% (19 of 24), a specificity of 61% (11 of 18), and an accuracy of 71% (30 of 42).

DISCUSSION

Our results demonstrated the value of using the subependymal enhancement pattern and DWI to differentiate true progression from pseudoprogression in patients with GBM treated with CCRT by using TMZ.

Along with the increasing recognition of pseudoprogression, there has been a growing interest in ADC values as surrogate markers for differentiating true progression from pseudoprogression. Previous studies found that the fifth percentile of the cumulative ADC histogram based on the entire newly developed or enlarged enhancing lesion could be used to accurately differentiate them. Specifically, Chu et al reported a sensitivity of 73% and a specificity of 73% for diagnosing true progression, by using a cutoff ADC value of 929×10^{-6} mm2/s. Our results showed that the fifth percentile value was significantly lower in the true progression group than in the pseudoprogression group ($P = 0.014$), while the mean value was not significantly different between the 2 groups—findings in keeping with those of the previous study. With a cutoff ADC value of 915×10^{-6} mm2/s, sensitivity and specificity for the diagnosis of true progression were 67% and 78%, respectively.

With the advent of various advanced MR imaging techniques, conventional MR imaging has been thought to have a

![FIG 3. True progression in a 36-year-old man with glioblastoma who had undergone surgical resection. A, On the axial contrast-enhanced T1-weighted MR image obtained within 1 month after the end of concurrent chemotherapy and radiation therapy, a newly developed enhancing lesion (arrow) is noted in the left occipital lobe. B, On the ADC map, the ADC value is decreased in some portion of the lesion (arrow) (mean, 1292×10^{-6} mm2/s; fifth percentile, 991×10^{-6} mm2/s). C, Axial contrast-enhanced T1-weighted MR image at a higher level reveals linear enhancement (arrowheads) along the ventricular margin, with the distance of extension measuring ≥ 1 cm. D, Follow-up MR image after a 6-month continuation of temozolomide demonstrates aggravation of both the left occipital lobe lesion (arrows) and subependymal enhancement (arrowheads) in the left lateral ventricle.](image-url)
limited role in the differential diagnosis of true progression from pseudoprogression. Nevertheless, some authors have suggested that certain conventional MR imaging findings may be helpful for differentiating them. Mullins et al reported that though individual enhancement patterns such as subependymal enhancement did not show a statistically significant difference between tumor recurrence and radiation necrosis, their combinations—specifically, corpus callosum involvement in conjunction with multiple enhancing lesions with or without crossing of the midline and subependymal spread—favored predominant glioma progression.

More recently, Young et al investigated the potential utility of various conventional MR imaging signs in a larger patient population. The study, unlike that by Mullins et al, included those with worsening (new or increased) enhancing lesions on the initial postradiotherapy MR imaging (usually 2–4 weeks after completion of radiotherapy) and found that the incidence of subependymal enhancement was significantly higher in the early progression group than in the pseudoprogression group ($P = .001$). In agreement with the previous findings, the present study found subependymal enhancement significantly more common in the true progression group than in the pseudoprogression group ($P = .027$). Subependymal spread of tumor, albeit less common than local progression, is a known pattern of glioma failure, with reported rates ranging from 0% to 24%, and. According to previous studies, even though the recurrence pattern of GBM after CCRT was predominantly central at first, distant recurrences, including subependymal spread, often developed during the patient’s clinical course. It has been speculated that the infiltration of the ventricular margin may occur either by direct spread of tumor cells in the subependymal space or by deposits transferred by the CSP.

Unlike the study by Young et al, we further analyzed the subependymal enhancement in terms of its pattern and found that only the distant subependymal enhancement was significantly more common in the true progression group than in the pseudoprogression group ($P = .042$). The occurrence of local subependymal enhancement in pseudoprogression may be attributed to treatment-related necrosis. The periventricular region is known to be supplied by long medullary arteries with no collateral vessels. It has been suggested that the relatively poor vascularity may predispose the periventricular region to radiation-induced vasculopathy. Furthermore, the periventricular region close to a newly developed contrast-enhancing lesion may be more prone to radiation necrosis because the radiation dose delivered to a specific region during intensity-modulated radiation therapy decreases with increasing distance from the center of the enhancing lesion. On the basis of the findings, we infer that the local subependymal enhancement is more likely to reflect radiation necrosis, compared with the distant subependymal enhancement.

Sensitivity and specificity for the diagnosis of true progression were 42% and 89%, respectively, by using only the distant subependymal enhancement. Although the specificity is relatively high, the clinical utility of the imaging findings may be limited due to its low sensitivity. However, our results suggest that the distant subependymal enhancement, when present, can be an early clue to the diagnosis of true progression.

Moreover, the multiple logistic regression analysis revealed that the distant subependymal enhancement and the fifth percentile of the cumulative ADC histogram were independently predictive of true progression (OR, 8.30; $P = .041$; OR, 0.99; $P = .033$, respectively). Given that the enhancing portion presumably represents a wide spectrum of histologic features comprising normal brain tissue, radiation necrosis, and highly cellular recurrent tumor, we infer that the enhancing lesion with the high fifth percentile value may also contain small foci of viable tumor with low ADC values. Hence, we speculate that the incidence of distant subependymal enhancement is likely to be influenced by multiple factors, including the anatomic location of the viable tumor portion within the enhancing lesion (ie, whether it is close to the ventricular margin), not just by the fifth percentile value itself. The sensitivity and specificity for the diagnosis of true progression were 83% and 67%, respectively, by using both independent factors.

Apart from the intrinsic limits of any retrospective study, several other limitations should be mentioned. First, MR imaging was performed on 2 different 3T MR imaging units. However, MR images were optimized to maintain the image quality and to minimize differences between the 2 units. Second, although any discernible necrotic or cystic area was excluded from ROI measurements, it was difficult to eliminate the possibility of including small necrotic or cystic areas. Nonetheless, the contamination was presumed to have had a negligible effect on our results because we used the fifth percentile of the cumulative ADC histogram as the main parameter, rather than the mean value. Third, the present study included a relatively small patient population, in which we could not find any statistically significant difference in the methylation status of O6-methylguanine DNA methyltransferase promoter between the true progression and pseudoprogression groups. On the other hand, the age of the patients was unexpectedly found to be an independent predictor of true progression. A further study with a larger population is warranted to strengthen the statistical power. Fourth, given the possibilities of the occurrence of pseudoprogression later than 3 months after the end of CCRT and coexistence of the 2 entities, some ambiguity may be inevitably present in the final diagnosis of true progression or pseudoprogression because the diagnosis was made on the basis of the follow-up MR images rather than pathologic confirmation. Fifth, there may have been false-negative results for subtle subependymal enhancement because high-resolution volumetric T1-weighted images were not available in some patients from the early study period.

CONCLUSIONS

Both the distant subependymal enhancement (ie, extending >1 cm or isolated from the enhancing lesion) and the fifth percentile of the cumulative ADC histogram of enhancing lesions were significant independent predictors for true progression in patients with GBM. Compared with the histogram analysis of ADC values, the visual assessment of subependymal enhancement is relatively straightforward and less time-consuming. In clinical practice, despite the inherent difficulty of differentiating true progression from pseudoprogression, the diagnostic accuracy may be im-
proved by taking into account both the subependymal enhancement pattern and ADC values.

Disclosures: Seung Hong Choi—RELATED: Grant: Korea Healthcare Technology R&D Projects, Ministry for Health, Welfare and Family Affairs (HI2C001S), and the Research Center Program of Institute for Basic Science in Korea.* *Money paid to the institution.

REFERENCES
MRI Tractography of Corticospinal Tract and Arcuate Fasciculus in High-Grade Gliomas Performed by Constrained Spherical Deconvolution: Qualitative and Quantitative Analysis

E. Mormina, M. Longo, A. Arrigo, C. Alafaci, F. Tomasello, A. Calamuneri, S. Marino, M. Gaeta, S.L. Vinci, and F. Granata

ABSTRACT

BACKGROUND AND PURPOSE: MR imaging tractography is increasingly used to perform noninvasive presurgical planning for brain gliomas. Recently, constrained spherical deconvolution tractography was shown to overcome several limitations of commonly used DTI tractography. The purpose of our study was to evaluate WM tract alterations of both the corticospinal tract and arcuate fasciculus in patients with high-grade gliomas, through qualitative and quantitative analysis of probabilistic constrained spherical deconvolution tractography, to perform reliable presurgical planning.

MATERIALS AND METHODS: Twenty patients with frontoparietal high-grade gliomas were recruited and evaluated by using a 3T MR imaging scanner with both morphologic and diffusion sequences (60 diffusion directions). We performed probabilistic constrained spherical deconvolution tractography and tract quantification following diffusion tensor parameters: fractional anisotropy; mean diffusivity; linear, planar, and spherical coefficients.

RESULTS: In all patients, we obtained tractographic reconstructions of the medial and lateral portions of the corticospinal tract and arcuate fasciculus, both on the glioma-affected and nonaffected sides of the brain. The affected lateral corticospinal tract and the arcuate fasciculus showed decreased fractional anisotropy (\(\tau = 2.51, n = 20, P = .006; z = 2.52, n = 20, P = .006\)) and linear coefficient (\(z = 2.51, n = 20, P = .006; z = 2.52, n = 20, P = .006\)) along with increased spherical coefficient (\(z = -2.51, n = 20, P = .006; z = -2.52, n = 20, P = .006\)). Mean diffusivity values were increased only in the lateral corticospinal tract (\(z = -2.53, n = 20, P = .006\)).

CONCLUSIONS: In this study, we demonstrated that probabilistic constrained spherical deconvolution can provide essential qualitative and quantitative information in presurgical planning, which was not otherwise achievable with DTI. These findings can have important implications for the surgical approach and postoperative outcome in patients with glioma.

ABBREVIATIONS: AF = arcuate fasciculus; CI = linear coefficient; \(C_p\) = planar coefficient; \(Cs\) = spherical coefficient; CSD = constrained spherical deconvolution; CST = corticospinal tract; FA = fractional anisotropy; HGG = high-grade glioma; MD = mean diffusivity

Gliomas are the most common type of WM-involved invasive cerebral primary neoplasm in adults. These brain tumors represent approximately 80% of primary malignant brain tumors and almost 3% of all types of cancer, and patient prognosis is poor.

In recent years, the use of noninvasive study techniques, such as cortical mapping and fMRI, has improved presurgical planning for brain neoplasms. However, these methods alone are considered inadequate to achieve the primary neurosurgical aim, obtaining the most radical tumor resection with the minimum of postoperative deficits, because they do not provide good anatomic representation of the spatial location of WM tracts affected by the tumor. Tractography is the most common neuroimaging technique used to reveal WM structure by analysis of DWI signals dependent on anisotropic water diffusion. From DWI gradient directions, it is possible to generate an anisotropic map showing WM bundles and their orientations; this information is adapted by tractographic algorithms to yield a 3D representation of WM tracts. DTI-based tractography is widely used for presurgical planning and is a powerful tool in the evaluation of major WM fiber bundles; it has also a positive impact on neurosurgical resection, disease prognosis, and preservation of brain function. Although widely used and histologically validated, DTI approaches have several limitations, such as partial volume effects or lack of...
tensor estimation in voxels characterized by low fractional anisotropy (FA) values. Recent tractographic algorithms, such as probabilistic constrained spherical deconvolution (CSD), have overcome these limitations.

The corticospinal tract (CST) and arcuate fasciculus (AF) are 2 of the WM pathways most commonly investigated by tractography because of their important roles in voluntary movement control and language, respectively. Probabilistic CSD improves tractographic reconstruction of the lateral portion of the CST, corresponding to the somatotopic representation of hand, face, tongue, and voluntary swallow muscles, which is not detectable by DTI-based approaches. In addition, this technique allows better evaluation of all AF components, including projections to the Geschwind area and other cortical regions, compared with other tractographic methods. The main aim of this study was to evaluate WM tract alterations of both the CST and AF in patients with frontoparietal high-grade gliomas (HGGs), through a qualitative and quantitative analysis by using probabilistic CSD tractography, to obtain reliable presurgical planning.

MATERIALS AND METHODS

Participants

In our study, we recruited 20 patients (9 women and 11 men; mean age, 47.4 ± 14.2 years; age range, 20–67 years), all affected by HGG, which involved mainly the lateral part of the frontoparietal lobes. After MR imaging evaluation, all patients underwent surgery, and all diagnoses were confirmed histologically.

The study was approved by our institution review board, and written informed consent was obtained from all subjects.

Data Acquisition and Preprocessing

The study was performed with an Achieva 3T MR imaging scanner (Philips Healthcare, Best, the Netherlands) by using a 32-channel coil. We performed the following sequences:

- A T1-weighted fast-field echo 3D high-resolution sequence with TR, 8.1 ms; TE, 3.7 ms; flip angle, 8°; reconstruction matrix, 240 × 240; voxel size, 1 mm³ without an intersection gap;
- A FLAIR volume isotropic turbo spin-echo acquisition sensitivity encoding 3D sequence with TR, 8000 ms; TE, 360 ms; TI, 2400 ms; reconstruction matrix, 240 × 240; voxel size, 1 mm³ without an intersection gap;
- Diffusion-weighted MR imaging acquired with a dual-phase encoded pulsed gradient spin-echo sequence with TR, 15,120 ms; TE, 54 ms; scan matrix, 160 × 160; section thickness, 2 mm without an intersection gap; 60 gradient directions; b-value, 1000 s/mm². We corrected the diffusion-weighted dataset for eddy current distortions and motion artifacts and adjusted the diffusion gradients with proper rotation of the b-matrix.

Data Processing and Fiber Tracking

To avoid possible coregistration errors between morphologic and diffusion images caused by HGGs, we did not normalize patient data to a common template space as usual. Seed ROIs were also selected directly in the native space of each subject. Fiber tracking was obtained with a probabilistic CSD algorithm (MRtrix software package; http://software.incf.org/software/mrtrix/mrtrix-package) with manually selected ROIs. Fiber tracking was stopped when 10,000 tracts reached the selected ROI or when 100,000 total tracts were generated. The 3D segmentation of each HGG and the 3D visualization of tracts were performed by using 3D Slicer software (www.slicer.org) with T1-weighted images set as an overlay.

Qualitative Analysis

Qualitative analysis was performed by a radiologist with 20 years of experience who evaluated reconstructed tracts on superimposed 3D T1-weighted images. We verified the anatomic course of each fiber bundle section by section, in axial, coronal, and sagittal planes, comparing the neoplasm-affected side with the healthy one. During this step, the reader could detect any macroscopic WM tract dislocation or disruption in the affected side. Moreover, neoplasm 3D segmentation was used to depict the spatial relationship between tracts and gliomas.

Quantitative and Statistical Analysis

Quantitative analysis of reconstructed tracts, both in healthy and affected hemispheres, was performed by using the output data of MRtrix. Diffusion tensors were sampled along fiber tracts, and the mean values of FA, mean diffusivity (MD), linear coefficient (CI), planar coefficient (CP), and spherical coefficient (CS) were considered for each bundle. All parameters were calculated with in-house scripts built with the Matlab software package (MathWorks, Natick, Massachusetts), based on the eigenvalues obtained from MRtrix output data.

As previously described, we used a combined approach of diffusion tensor parameters and probabilistic CSD tractography to overcome the well-known limitations of DTI in voxels containing crossing fibers and to increase the sensitivity of diffusion tensor metric changes in these regions.

Statistical analysis was performed by the nonparametric Wilcoxon signed rank test for paired measures of bundles in the healthy-versus-affected sides. Furthermore, Sidák correction was performed to account for multiple comparisons. The significance threshold was set to an α value of .05, resulting in an effective threshold of .0102 after correction.

RESULTS

All recruited patients were symptomatic with different degrees of motor and/or speech impairment, from mild to severe. All patients had both CST and AF involved by HGGs, which were located in the lateral frontoparietal lobes. There was a prevalence of left-sided involvement (11 left side, 9 right side). After surgery, the histologic analysis of resected neoplasms confirmed each lesion as III or IV World Health Organization grade: grade III (n = 15) and grade IV (n = 5). We were able to obtain tractographic reconstructions of the medial portion of the CST and the lateral portion of the CST and AF, both in the healthy and neoplasm-affected sides in all 20 patients.

Qualitative Analysis

Qualitative analysis revealed the anatomic course of each reconstructed fiber bundle, morphologic alterations of WM tracts on affected sides, and the spatial relationship between those tracts and the HGG.
Probabilistic CSD tractography of the CST yielded streamlines of both the medial and lateral portions of the CST on each side of the brain. Qualitative analysis for the healthy side showed a reliable representation of all components of the Pensfield homunculus (Fig 1A). In the neoplasm-affected side, all evaluated tracts showed a strict spatial relationship with HGGs. In 6/20 patients, the lateral portion of the CST was disrupted by the neoplasm, with consequent poor representation of streamlines (Fig 1B–D). In the other 14 patients, the lateral portion of the CST passed through the neoplasm and was, therefore, less compromised than expected on the basis of morphologic MR imaging evaluation of the neoplasms (Fig 1E). In all patients, the medial portion of the CST was not affected by the neoplasm (Fig 1F).

Probabilistic CSD tractographic reconstructions also allowed reliable recognition of the anatomic course for all AF segments, such as Broca, Wernicke, and Geschwind projections (Fig 2) on both sides. Qualitative analysis showed that the AF was involved by the neoplasm on the affected side of all subjects (Fig 2D–F), with different degrees of morphologic impairment.

Quantitative Analysis

Quantitative analysis showed that FA was significantly decreased in the lateral portion of the CST ($z = 2.51, n = 20, P = .006$) and in the AF ($z = 2.52, n = 20, P = .006$) of the side affected by the neoplasm; furthermore, no significant difference was found for FA ($P > .0102$) in the medial portion of the CST. Although MD was increased in all affected tracts, only the lateral portion of the CST reached significance ($z = -2.53, n = 20, P = .006$). CI was significantly decreased in the affected bundles for the lateral portion of the CST ($z = 2.51, n = 20, P = .006$) and the AF ($z = 2.52, n = 20, P = .006$). Cs was significantly increased for the affected lateral CST ($z = -2.51, n = 20, P = .006$) and for the AF ($z = -2.52, n = 20, P = .006$). No differences were observed when measuring Cp.

Quantitative results are summarized in Fig 3.

DISCUSSION

In this study we evaluated 20 patients with HGGs centered in the lateral frontoparietal lobes. Each patient underwent glioma surgical resection after presurgical evaluation of the main WM fiber bundles involved by MR imaging tractography. The main goal of the surgical approach was to remove neoplasms while preserving brain function, accurate presurgical planning was essential to granting the best possible quality of life after surgery.

Presurgical tractographic analysis, performed by a probabilistic CSD-based tractographic approach, revealed involvement of the CST and AF in each patient. These 2 WM fiber bundles have clinically relevant roles in voluntary motor control and speech and language, respectively. Common DTI approaches cannot depict the entire motor tract, allowing only reconstruction of the

FIG 1. Tractographic reconstruction of corticospinal tracts in patients with high-grade gliomas. Coronal T1-weighted MR image (A) shows the corticospinal tract (arrow) on the healthy side with overlay of the Pensfield motor homunculus (arrowheads indicate neoplasm margins) and the neoplasm volume segmentation (blue volume). Coronal (C) and sagittal (D) rotated images show tractographic reconstruction of CSTs on both healthy (arrow) and neoplasm-affected sides (empty arrow) of the brain. In this patient, the lateral portion of the CST on the affected side is poorly represented due to neoplasm disruption. E, Coronal T1-weighted MR image shows CSTs, both on healthy (arrow) and neoplasm-affected sides (empty arrow) of another patient (neoplasm segmentation is depicted by red volume). In this case, on the affected side, the lateral portion of the CST passes through the neoplasm and is poorly involved. F, Coronal T1-weighted MR image shows the medial portion of CSTs on the healthy side (arrow) and the absence of their involvement in the neoplasm-affected one (empty arrow). N indicates neoplasm.
medial portion of the CST, corresponding to a somatotopic depiction of the lower limbs, trunk, and upper limbs without the hand. Conversely, these techniques could not represent the lateral portion of the CST, which corresponds to a somatotopic depiction of the hand, face, tongue, and voluntary swallow muscles,15 due to the inherent limitations of DTI approaches to resolve complex fiber configurations,6 which were estimated to represent approximately 90% of WM voxels of the entire brain.16 By overcoming these limitations, probabilistic CSD-based tractography allowed a reconstruction of the entire CST (medial and lateral parts),8 with a marked match between tracts and all somatotopic parts of the Penfield motor homunculus. It also demonstrated that brain neoplasms can involve different WM modifications, resulting in DTI parameter changes and alterations of the average WM fiber bundle morphology represented with tractography. In particular, Witwer et al.17 described deviated, infiltrated, edematous, and disrupted WM patterns, depending on tumor type and location.

Different DTI-based studies reported that high-grade gliomas mainly cause complete tract disruption,18 whereas low-grade gliomas infiltrate tracts along myelinated fibers.19 All these patterns of tumors cause DTI parameter changes, in particular FA decrease, in involved regions.20 Furthermore, the presence of voxels with FA values lower than the DTI threshold (commonly set to 0.2) causes an interruption of reconstructed WM tracts,21 and the use of an FA threshold lower than 0.2 results in poor accuracy of major eigenvector-direction estimation.1 These limitations can produce 3 negative effects on tractographic presurgical planning, particularly in CST evaluation. First, the reconstructed CST tract could show a false interruption, for example, in the lateral portion of the CST.8 Second, DTI findings could suggest a false safe resection margin around the lesion.8 Last, the lack of reconstruction of the lateral portion of the CST fails to provide any qualitative or quantitative information about this part of the tract and its relationship to neoplasms. These combined effects make presurgical planning inaccurate and may contribute to unexpected postoperative functional deficits.

Use of the CSD technique allowed reconstruction of fibers in voxels with low anisotropy and characterization of voxels in tumoral and peritumoral areas1 and voxels with complex axonal spatial configurations. In addition, it was demonstrated that edema-affected and infiltrated tracts could reduce their anisotropy, while preserving sufficient directional information for tractographic depiction.1

In our study, we could reconstruct the medial and lateral portions of the CST of 20 patients in both the healthy and neoplasm-affected sides of the brain by using probabilistic CSD tractography. This approach allowed reliable reconstruction of these pathways with an accurate representation of the entire Penfield motor homunculus on the healthy side, avoiding well-known reconstruction problems from crossing fibers. Moreover, on the involved side, we detected differing degrees of involvement for the lateral portion of the CST, from deviation to disruption, with no alterations of the medial portion.

AF depiction in presurgical planning is clinically relevant to avoid aphasic syndromes induced by surgical lesions or stroke.21,22 This WM bundle connects to Broca, Wernicke, and Geschwind areas and other brain regions involved in language
and speech. Because brain stimulation techniques are less effective for WM tracts than for GM, evaluating the morphologic localization of the AF is essential for appropriate presurgical planning. DTI-based tractographic studies revealed incomplete AF reconstructions, in particular of the anterior portion. The evaluation of this AF segment is considered an important predictor of postoperative outcome because a lesion in the anterior portion of AF could cause negative effects on speech fluency. DTI approaches have tractographic reconstruction limitations in the centrum semiovale, due to the presence of crossing fibers. In addition, DTI tractography of AFs in patients with brain neoplasms resulted in incomplete correspondence with intracortical stimulation, suggesting that this technique is not optimal for mapping language areas. Finally, the same negative effects of DTI techniques discussed above for CST are also relevant to AFs involved by gliomas during presurgical planning. Thus, the use of probabilistic CSD, which includes voxels not considered by DTI tractography, could provide advantages in the evaluation of DTI metrics in aphasic syndromes as well.

In this cohort of patients, we found that probabilistic CSD-based tractography allowed reliable representation of AFs both in glioma-involved and noninvolved sides of the brain, even in arduous regions for conventional DTI tractography. Qualitative analysis showed that all affected AFs were dislocated, infiltrated, or disrupted by the neoplasm.

From probabilistic CSD tractography, we extrapolated a quantitative analysis based on the main DTI parameters (FA, MD, Cl, and Cs). FA and MD are well-known values measuring axonal integrity and anisotropic water diffusivity, respectively. Cl measures the intravoxel uniformity of tract direction and fiber tract organization, Cs estimates the intravoxel diffusivity, and Cp estimates voxels in which there are crossing or kissing fibers. No statistically significant changes were found for the medial CST both in healthy and affected sides of the brain, suggesting that in our group of patients, these bundles are not involved with HGGs. In all patients, we found statistically significant differences in both the lateral CST and AF between the involved and noninvolved sides. In particular, we detected decreased FA and CI and increased CS in the involved side. MD was increased in all affected tracts, reaching significance only in the lateral portion of CST, probably due to the low number of subjects. The significant FA decrease could reflect a remarkable change in WM microstructure, induced by tract deviation, infiltration, or disruption or influenced by edema. MD increase could be associated with loss of WM integrity with a consequent increase in free tissue water. Cl and Cs are 2 known shape-oriented anisotropy measures, indexes of anisotropic and isotropic diffusion changes, respectively. In our study, neoplasms changed the intravoxel uniformity and diffusivity of affected tracts, causing Cl decrease and Cs increase. These parameters, combined with the use of FA and MD, could provide a powerful quantitative estimation of WM tracts involved by HGGs. Finally, we evaluated Cp for all tracts, which is another shape-oriented parameter reflecting the intravoxel presence of crossing fibers. In our study, the Cp value was not significantly different between the healthy and affected side. This result could
be due to a lack of sensitivity in cases of >2 crossing fibers inside the same voxel.\(^{12}\) The major limitation of this study is the relatively small patient cohort, which might influence the statistical power of our findings. In addition, it was not possible to perform follow-up MR imaging tractography after surgical neoplasm resections. This lack of MR imaging follow-up prohibited us from providing an evaluation of the postoperative outcome after CSD-based presurgical planning.

CONCLUSIONS

The results presented here demonstrated that probabilistic CSD tractography provides useful qualitative and quantitative analysis in presurgical planning for HGGs. Our qualitative analysis showed that probabilistic CSD allowed reliable reconstruction of tracts not detected with other DTI techniques, such as those involved by neoplasms or with complex fiber configurations. We also demonstrated that quantitative analysis based on CSD tractography can characterize the involvement of the tracts by the neoplasms, overcoming the well-known quantitative underestimation related to DTI reconstruction. Furthermore, because postoperative quantitative measurements are also important for the prediction of brain-function recovery,\(^{12}\) further studies performed with probabilistic CSD could provide noteworthy results on surgical-outcome evaluation.

REFERENCES

Hyperintense Dentate Nuclei on T1-Weighted MRI: Relation to Repeat Gadolinium Administration

M.E. Adin, L. Kleinberg, D. Vaidya, E. Zan, S. Mirbagheri, and D.M. Yousem

ABSTRACT

BACKGROUND AND PURPOSE: A hyperintense appearance of the dentate nucleus on T1-weighted MR images has been related to various clinical conditions, but the etiology remains indeterminate. We aimed to investigate the possible associations between a hyperintense appearance of the dentate nucleus on T1-weighted MR images in patients exposed to radiation and factors including, but not limited to, the cumulative number of contrast-enhanced MR images, amount of gadolinium administration, dosage of ionizing radiation, and patient demographics.

MATERIALS AND METHODS: The medical records of 706 consecutive patients who were treated with brain irradiation at The Johns Hopkins Medical Institutions between 1995 and 2010 were blindly reviewed by 2 readers.

RESULTS: One hundred eighty-four subjects were included for dentate nuclei analysis. Among the 184 subjects who cumulatively underwent 2677 MR imaging studies following intravenous gadolinium administration, 103 patients had hyperintense dentate nuclei on precontrast T1-weighted MR images. The average number of gadolinium-enhanced MR imaging studies performed in the group with normal dentate nuclei was significantly lower than that of the group with hyperintense dentate nuclei. The average follow-up time was 62.5 months. No significant difference was observed between hyperintense and normal dentate nuclei groups in terms of exposed radiation dose, serum creatinine and calcium/phosphate levels, patient demographics, history of chemotherapy, and strength of the scanner. No dentate nuclei abnormalities were found on the corresponding CT scans of patients with hyperintense dentate nuclei (n = 44). No dentate nuclei abnormalities were found in 53 healthy volunteers.

CONCLUSIONS: Repeat performance of gadolinium-enhanced studies likely contributes to a long-standing hyperintense appearance of dentate nuclei on precontrast T1-weighted MR images.

ABBREVIATIONS: CEMRI = contrast-enhanced MRI; DN = dentate nucleus; HDN = hyperintense appearance of the dentate nucleus; NDN = normal dentate nucleus; MFS = magnetic field strength of the scanner; p 25 = 25th percentile; p75 = 75th percentile; RD = radiation dose; RT = radiation therapy

A hyperintense appearance of the dentate nucleus (HDN) on precontrast T1-weighted MR imaging has been reported to be related to various clinical conditions. There is no consensus about the underlying etiology, and the mechanism and clinical implications remain poorly understood. A number of variables may have direct or indirect effect on the dentate nucleus (DN). Among those factors, radiation therapy (RT) has well-known short-term and long-term effects on the CNS. RT is reported to cause calcification in brain tissue. A retrospective study conducted on pediatric patients suggested that the DN is particularly sensitive to the effects of brain irradiation, leading to structural changes on DTI.

Few studies in the English literature have investigated HDN on T1WI. The possible etiologies of HDN remain indeterminate. The appearance has been attributed to radiation therapy, the secondary-progressive subtype of MS, and, most recently, to cumulative numbers of gadolinium-enhanced MR imaging scans. No long-term longitudinal radiologic studies have been completed defining the radiologic course of HDN, to our knowledge. The frequency of HDN in the healthy population has not been determined because none of the existing studies included a healthy control group to provide a comparison.

The purpose of our study was to explore associations of HDN in irradiated patients with long-term follow-up MRI studies. We examined various factors including the cumulative number of...
gadolinium-enhanced MR images, total amount of gadolinium administration, different commercial gadolinium agents, dosage of therapeutic ionizing radiation, histology of underlying brain neoplasm, calcium/phosphate level, creatinine levels, magnetic field strength of the scanner (MFS), patient demographics, and chemotherapy exposure, by using a large cohort with retrospective evaluation of long-term longitudinal follow-up brain MR imaging studies.

MATERIALS AND METHODS

We retrospectively reviewed the medical records of 706 consecutive patients who were treated with brain irradiation for primary brain neoplasms at The Johns Hopkins Medical Institutions between June 1995 and January 2010. The institutional review board approved our study in compliance with the Health Insurance Portability and Accountability Act and waived informed consent. We reviewed clinical notes, discharge summaries, operative notes, radiologic studies, RT summaries, and prior studies performed at outside institutions, when available. In a subset group, we investigated whether there was a threshold value of gadolinium administration before HDN is evident and whether there is a significant difference among gadolinium agents used during the follow-up. We excluded all cases that lacked the exact dosage and gadolinium agent information. In this group, for the same reason, we excluded cases with outside studies for which such information was not available.

Radiologic interpretations for all available MR images for all subjects were made independently by 2 radiologists who were blinded to clinical diagnoses and treatment protocols. A determination of HDN was made on the basis of the qualitative comparison of the signal intensity of the middle cerebellar peduncle versus the DN on T1WI, because white matter tracts (middle cerebellar peduncle) are typically brighter than gray matter nuclei in the normal state on T1WI. Once HDN was determined for a subject, comparative assessment of prior studies was done to detect the first appearance of HDN, and follow-up studies were reviewed to look for its disappearance with time. Any disagreement between readers regarding final conclusions was resolved by discussion and consensus. The senior author (D.M.Y.), who has 25 years’ experience, was used as the tiebreaker when there were ambiguities as to the signal intensity of the DN. No t tests were performed because there were only 9 scans of all MR imaging studies that required such a review for signal intensity. CT scans of patients demonstrating HDN were also reviewed by using the same methodology (n = 54). CT studies with severe artifactual degradation in the posterior fossa and those that were performed only after iodine enhancement were excluded (n = 10).

The MFS was noted for each study to investigate its influence on the bright appearance of the DN. RT was classified according to site, dose, and number of fractions applied in each individual. Approximate radiation exposure to the DN for each subject was quantitatively calculated and depicted by color isodose lines applied to multiplanar CT and MR imaging of each individual’s RT therapy plan. The treatment plans were created by using the Pinnacle3 Planning system (Philips Healthcare, Best, the Netherlands), Leksell GammaPlan (Elekta Instruments, Stockholm, Sweden), Brainlab (Brainlab, Feldkirchen, Germany), or Multi-plan (Accuray, Sunnyvale, California). The radiation dose (RD) and techniques were specific to the patients’ illnesses and included stereotactic single treatment or hypofractionated radiosurgery plans for acoustic neuroma or meningioma of 1200–1600 cGy in a single fraction or 2500 cGy hypofractionated for 5 days, delivered with a dose distribution tightly conforming to the abnormality. Patients with meningiomas or gliomas were treated to wider areas of normal-appearing brain, and for larger or infiltrating tumors, 4500–6000 cGy was delivered during 25–33 treatment days by 3D and intensity-modulated treatment approaches. The radiation treatment plan, containing isodose lines pictorially demonstrating the radiation dose distributed throughout the brain, was used to determine a quantitative value of the dose delivered to the DN. In general, there was not specific quantification or depiction of the RD for areas of the brain receiving <20% of the dose prescribed to the tumor, and this region was considered outside the radiated brain. If the DN was out of the region of the brain receiving ≥20% of the dose targeted at the tumor, an approximate value according to the total RD was recorded. These values were accepted as negligible in amplitude and were censored in statistical analyses.

Underlying brain tumors were classified according to their histologic type. Patient demographics and serum calcium phosphate levels at the time of detection of HDN were also detailed. Chemotherapy regimen, if any, was also investigated.

We excluded the following: patients with no MR images available in the radiology archive (n = 458), MR imaging studies degraded with severe artifacts, a surgical cavity, or any type of posterior fossa lesion that obscured thorough examination of the DN (n = 23; 21 adult and 2 pediatric cases), patients with hepatic dysfunction (n = 1), patients with a history of total parenteral nutrition and/or manganese intake (n = 3), and patients who did not have MR imaging available after brain irradiation (n = 37).

All studies were performed by using either 1.5T (Magnetom Avanto and Magnetom Espree; Siemens, Erlangen, Germany; In- tera and Achieva; Philips Healthcare; and Sigma; GE Healthcare, Milwaukee, Wisconsin) or 3T (Verio and Skyra; Siemens; and Achieva; Philips Healthcare) MR imaging machines. The T1WI used one of the following: 1) an MPRAGE pulse sequence with 8°–9° flip angle and TR, 1900–2200 ms; TE, 2–5 ms; 2) a spin-echo pulse sequence with TR, 400–600 ms; TE, 2–20 ms; or 3) a T1-weighted FLAIR sequence with TR, 2000 ms; TI, 860 ms; and TE, 8–12 ms. No specific methodology was used to enroll subjects for either 1.5T or 3T scanners; however, the number of 1.5T studies exceeded that of 3T scans because the institution did not purchase 3T scanners until the most recent 10 years and the study spanned 1995–2010. In our institution, and thus in the present study, we used almost exclusively Magnevist (gadopentetate dimeglumine; Bayer HealthCare Pharmaceuticals, Wayne, New Jersey) for contrast-enhanced MR imaging (CEMRI) in subjects with normal renal function and without known Magnevist contrast reactions. Omniscan (gadodiamide; GE Healthcare, Piscataway, New Jersey), MultiHance (gadobenate dimeglumine; Bracco Diagnostics, Princeton, New Jersey), ProHance (gadoteridol; Bracco Diagnostics), OptiMARK (gadoversetamide; Mallinckrodt, St. Louis, Missouri), and Gadavist (gadobutrol; Bayer Schering Pharma, Berlin, Germany) were other agents used in a small proportion of the
CEMRI scans. In 113 cases, all individual consecutive studies were performed by using Magnevist (gadopentetate dimeglumine). In most of the remaining cases, different combinations of gadolinium molecules were injected with an unevenly distributed dosage. The renal function of subjects was evaluated by using the most recent serum creatinine levels at the time of the relevant MR imaging scan, and the estimated glomerular filtration rate was calculated when possible.

To investigate the incidence of HDN on T1WI in the general population and justify the qualitative methodology, we recruited a control group consisting of 53 healthy volunteers (age range, 22–75; mean age, 41.9 ± 11.8 years; 15 women and 38 men). None of the control group participants underwent prior CEMRI scanning of any body part. The total number of MR imaging scans in the control group was 133 (mean, 2.5 ± 2.3). MPRAGE (either 1.5T Magnetom Avanto and Magnetom Espree [Siemens] or 3T Verio and Skyra [Siemens]) was used in evaluating the DN in 52 control subjects, and 3D fast echo-spoiled gradient echo (1.5T Signa; GE Healthcare) was used in 1 control subject. We qualitatively compared the signal intensities of the DN and middle cerebellar peduncle by using ROI measurement in this group. None of the control group participants underwent cranial CT imaging.

For statistical analyses, demographic, clinical, laboratory, and outcome measures were tabulated in 2 groups: those with normal dentate nuclei (NDN) and those with HDN. Categoric variables were tabulated as number (percentage within group), and continuous variables were tabulated as median (25th percentile [p25] to 75th percentile [p75]). Group differences were tested by using χ² or Fisher exact tests (if cell counts were low) for categoric variables and nonparametric rank sum tests for continuous variables. The variable specific dose was left-censored at 500 U when the DN was located beyond the outer dose lines representing the lowest amount of radiation, generally <20% of the RD prescribed to the tumor, which is considered to have a minimal risk of causing toxicity or tissue injury/side effects. Rank sum statistics were conservative for this variable because the median in both groups lay in the censored range. We plotted the percentage of individuals with HDN versus quartiles of the CEMRI number as a bar chart along with their 95% confidence intervals (Fig 1). We performed logistic regression analyses for HDN versus NDN as the dependent variable with the number of CEMRIs as the independent variable adjusted for age, sex, and race (classified as white versus nonwhite). The variable “total number of CEMRI” was highly skewed and not normally distributed. Because a few individuals received high numbers of CEMRIs, we logarithmically transformed this variable to limit the undue influence of these high numeric values on the regression results.

RESULTS
We evaluated 184 subjects in this study (83 females, 101 males). The ages of subjects ranged from 3 to 73 years (mean, 43.3 ± 16.8 years). Twenty subjects were younger than 18 years of age (Table 1). Among the 184 subjects who altogether underwent 2677 MR imaging studies (mean, 14.55; range, 1–60) following IV gadolinium administration, 103 (55.9%) patients showed HDN on T1WI. The estimated glomerular filtration rate was measured in 84 subjects and was 60 mL/min per 1.73 m² in all subjects. Of these, 25 had NDN, and 59, HDN. The upper normal limit of the creatinine value was accepted as 1.1 mg/dL. In only 3 cases was the creatinine value >1.1 mg/dL (range, 0.2–1.4 mg/dL). The median (p25 to p75) serum creatinine value was 0.7 (0.5–0.8) for NDN (56 individuals) and 0.65 (0–0.8) for HDN (92 individuals). The rank sum test P value for the difference between groups was .99.

Strong Impact of the Number of CEMRIs and Volume of Gadolinium Administered

The average number of CEMRIs for the NDN group was significantly lower than that of HDN group (median [p25 to p75] for NDN, 6 [4.0–11.0]; range, 1–25; and median [p25 to p75] for HDN, 18 [10.0–26.0]; range, 2–60; P < .001). The logistic regression model was used to assess the impact of factors that may relate to HDN on T1WI. A strong association was found between the total number of contrast-enhanced MR imaging studies and the existence of HDN on T1WI. After we adjusted for age, sex, nonwhite race, and follow-up time in logistic regression, doubling the number

Table 1: Demographics and diagnoses of the pediatric age group tabulated as NDN versus HDN

<table>
<thead>
<tr>
<th>Variable/Group</th>
<th>NDN (n = 5) (%)</th>
<th>HDN (n = 15) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race (white versus nonwhite)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (female vs male)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total RT dose mean (SD) (cGy)</td>
<td>5628 (222)</td>
<td>5196 (680)</td>
</tr>
<tr>
<td>Anaplastic astrocytoma</td>
<td>1 (20.0)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>0 (0.0)</td>
<td>3 (20.0)</td>
</tr>
<tr>
<td>Astrocytoma, pilocytic</td>
<td>1 (20.0)</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Desmoplastic nodular medulloblastoma</td>
<td>0 (0.0)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Ependymoma</td>
<td>1 (20.0)</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Glioma, malignant</td>
<td>1 (20.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>1 (20.0)</td>
<td>5 (33.3)</td>
</tr>
<tr>
<td>Primitive neuroectodermal tumor</td>
<td>0 (0.0)</td>
<td>1 (6.7)</td>
</tr>
</tbody>
</table>

Note:—W indicates white; NW, nonwhite.

Note a significantly higher HDN percentage compared with the adult population.
The rank sum test was used to investigate the difference between the total volume of gadolinium administration in the HDN and NDN groups. In the HDN group, the average total amount of gadolinium administration was significantly higher than that of NDN group (NDN group: median [p25 to p75], 40.0 mL [20.0–83.0]; HDN group: median [p25 to p75], 76.0 mL [31.5–120.0]; P value = .032). Accordingly, the average total number of CEMRIs scans before HDN become evident was significantly higher than the total number of CEMRI scans in the NDN group (NDN group: median [p25 to p75], 2.0 [1.0–5.0]; HDN group: median [p25 to p75], 5.0 [2.0–8.0]; P value = .004). We performed logistic regression with the presence of HDN as the dependent variable and (1 at a time) the log-transformed number of CEMRIs or the log-transformed total gadolinium volume as predictor variables. Every doubling of the number of CEMRIs was associated with 1.51 times higher odds of HDN (95% CI, 1.14–2.01; P < .001). For those with HDN, the mean follow-up time after the first study with positive findings was 35 months (median [p25 to p75], 23 months [9.0–60.0 months]; range, 1–139 months). Twelve cases did not have follow-up studies after the first month of detection of HDN. On follow-up, 2 cases (2.2%) reverted to a normal DN signal after being bright (after 5 and 36 months). All cases with HDN had bilateral hyperintensity initially. However, in 2 cases, the hyperintensity of 1 DN disappeared and left only a unilateral HDN at the 122nd and 134th months of follow-up. The longest follow-up of a patient who developed HDN that persisted was 11.5 years after initial detection (Fig 2).

Impact of Diagnosis Relates to Number of CEMRIs and Follow-Up Period

Various pathologic diagnoses in both the NDN and HDN groups had a distinct distribution (Table 2). The incidence of World Health Organization grades III and IV malignant tumors in the group with NDN was higher than that of the group with HDN, and this difference was statistically significant (P < .001). Sixty-one percent of patients were diagnosed with glioblastoma multiforme in the group with NDN, whereas this rate was only 16% in the group with HDN. Eighty percent of the patients in the group negative for HDN died during the follow-up as opposed to 58% mortality in the HDN group (P = .002).

No Impact of Demographic Variables

Race was classified as white versus nonwhite because of the lower representation of some races. The race of 146 subjects was white, while 38 subjects were nonwhite. The nonwhite group included 23 African Americans, 2 Asians, 2 Hispanics, and 11 other (multiracial) subjects. The race and age demographic between the NDN and HDN groups was not statistically significant (P = .4).
cases (pentetate dimeglumine) injection. In all except 1 of the remaining 113 of 137 individuals who were included for subset analysis, cases were therefore included in our core subset analysis.

Given the preponderance of Magnevist administration, we collapsed the group with "any kind of non-Magnevist usage" during the follow-up period (Table 3). Given the number of 3T scans performed, and by the percentage of 3T scans analyzed by the following: whether any 3T scan was performed, by the number of 3T scans performed, and by the percentage of 3T scans performed per individual. There was no statistically significant difference between the HDN and NDN groups in terms of a history of chemotherapy (46.9% for the NDN and 44.6% for the HDN group).

No Impact of MFS

The possible impact of MFS was evaluated by interpreting repeat studies on different MFSs when available. The total number of MR images investigated was 733. The MFS was 1.5T for 690 studies and 3T in the remaining 43 studies. The effect of the MFS was analyzed by the following: whether any 3T scan was performed, by the number of 3T scans performed, and by the percentage of 3T scans performed per individual. There was no statistically significant difference between the HDN and NDN groups for all 3 parameters (P = .46, .50, and .36, respectively). One reader also qualitatively evaluated whether the MFS changed his final assessment of DN intensity in serial MR images with both 1.5T and 3T magnets. The MFS did not change the reader’s final decision in any of the cases.

Impact of Gadolinium Agent Used

For further reliable analyses of gadolinium agents, we excluded cases that had at least 1 outside MR image and those lacking technique and dosage information in at least 1 CEMRI scan during the follow-up period (n = 47). One hundred thirty-seven (female, 54; male, 83) cases were therefore included in our core subset analysis. In 113 of 137 individuals who were included for subset analysis, every CEMRI study was performed using a Magnevist (gadopentetate dimeglumine) injection. In all except 1 of the remaining cases (n = 23), at 1 different gadolinium molecule including Magnevist was injected during the follow-up (Table 3). Given the preponderance of Magnevist administration, we collapsed the group with "any kind of non-Magnevist usage" during the follow-up into a single category. The Fisher exact test showed no statistically significant difference between Magnevist and non-Magnevist usage (P = .109).

No Impact of RT

Data records of total RDs were available for 129 (NDN: n = 58; HDN: n = 71) subjects. Of this group, specific RD exposures of the DN were retrieved for 109 subjects (NDN: n = 52; HDN: n = 57). Total RT duration and fraction data were available for 108 subjects (NDN: n = 52; HDN: n = 56). The median value of total RD exposure of the brain was higher in the HDN group than in the NDN group (median [p25 to p75] for NDN, 5940.0 cGy [5375.0 – 6000.0 cGy]; for the HDN group: 5400.0 cGy [5040.0 – 5940.0 cGy], P = .017). The DN was located outside the outermost circles (indicating the lowest radiation exposure) on all 3 imaging planes in 23 subjects with NDN and 25 subjects with HDN. Those cases were considered to have received a negligible amount of radiation exposure and were censored in the statistical analysis because RD could not be numerically quantified when the DN was located outside the RF (ie, the lowest circle). In cases with DN located within the colored isodose lines (ie, within the RF), the mean RDs were 3181 and 3261 cGy, respectively, for the groups with NDN and HDN (NDN: n = 29; HDN: n = 32). The mean number of fractions during RT was 31 (NDN) and 29 (HDN) days for the 2 groups. There was no statistically significant difference between 2 groups (those with NDN and HDN) on the χ² test for total RD, specific RD, and therapy duration (P = .12, .86, and .30, respectively).

No Confounders of Calcification or Hemorrhage

The CT studies of 44 of the subjects with HDN who had CTs were unremarkable in terms of the appearance of the DN. Calcification and hemorrhage, common causes of T1WI hyperintensity, were excluded by these CT scans.

Table 2: Diagnoses of brain tumors in the group with NDN and those with HDN*

<table>
<thead>
<tr>
<th>Histology</th>
<th>NDN (n = 81) (%)</th>
<th>HDN (n = 103) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaplastic astrocytoma</td>
<td>8 (9.9)</td>
<td>19 (19.0)</td>
</tr>
<tr>
<td>Astroblastoma</td>
<td>0 (0.0)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>4 (4.9)</td>
<td>14 (13.6)</td>
</tr>
<tr>
<td>Astrocytoma, pilocytic</td>
<td>2 (2.5)</td>
<td>4 (3.9)</td>
</tr>
<tr>
<td>Desmoplastic nodular astrocytoma</td>
<td>0 (0.0)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>4 (4.9)</td>
<td>5 (4.9)</td>
</tr>
<tr>
<td>Ependymoma</td>
<td>1 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Fibrillary astrocytoma</td>
<td>1 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Gemistocytic astrocytoma</td>
<td>1 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Giant cell glioblastoma</td>
<td>1 (1.2)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>60 (74.7)</td>
<td>74 (72.0)</td>
</tr>
<tr>
<td>Glioma, malignant</td>
<td>1 (1.2)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td>3 (3.7)</td>
<td>7 (6.8)</td>
</tr>
<tr>
<td>Medulomyoblastoma</td>
<td>0 (0.0)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Mixed glioma</td>
<td>0 (0.0)</td>
<td>3 (2.9)</td>
</tr>
<tr>
<td>Myxopapillary ependymoma</td>
<td>0 (0.0)</td>
<td>2 (1.9)</td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td>2 (2.5)</td>
<td>10 (9.7)</td>
</tr>
<tr>
<td>Oligodendroglioma, anaplastic</td>
<td>1 (1.2)</td>
<td>7 (6.8)</td>
</tr>
<tr>
<td>Pleomorphic xanthoastrocytoma</td>
<td>0 (0.0)</td>
<td>1 (1.0)</td>
</tr>
<tr>
<td>Primitive neuroectodermal tumor</td>
<td>0 (0.0)</td>
<td>1 (1.0)</td>
</tr>
</tbody>
</table>

*Note the high percentages of glioblastoma multiforme in the NDN group.

Table 3: Number of CEMRI scans, total gadolinium doses, and commercial agents one-by-one in the group with HDN and NDN with doses collapsed

<table>
<thead>
<tr>
<th>Contrast Medium</th>
<th>NDN (n = 57)</th>
<th>HDN (n = 80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of CEMRI s (p25 to p75) (median)</td>
<td>2.0 (1.0–5.0), 57</td>
<td>5.0 (2.0–8.0), 80</td>
</tr>
<tr>
<td>Total gadolinium (p25 to p75) (median)</td>
<td>40.0 (20.0–83.0), 57</td>
<td>76.0 (31.5–120.0), 80</td>
</tr>
<tr>
<td>Magnevist</td>
<td>51 (89.5)</td>
<td>62 (77.5)</td>
</tr>
<tr>
<td>Any non-Magnevist agent used</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>51 (89.5)</td>
<td>62 (77.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>6 (10.5)</td>
<td>18 (22.5)</td>
</tr>
<tr>
<td>Omniscan</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>53 (93.0)</td>
<td>70 (87.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>4 (7.0)</td>
<td>10 (12.5)</td>
</tr>
<tr>
<td>MultiHance</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>53 (93.0)</td>
<td>75 (93.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>4 (7.0)</td>
<td>5 (6.3)</td>
</tr>
<tr>
<td>ProHance</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>57 (100.0)</td>
<td>78 (97.5)</td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0.0)</td>
<td>2 (2.5)</td>
</tr>
<tr>
<td>OptiMARK</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>57 (100.0)</td>
<td>79 (98.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0.0)</td>
<td>1 (1.3)</td>
</tr>
<tr>
<td>Gadavist</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>57 (100.0)</td>
<td>79 (98.8)</td>
</tr>
<tr>
<td>Yes</td>
<td>0 (0.0)</td>
<td>1 (1.3)</td>
</tr>
</tbody>
</table>
No HDN in Control Group

The healthy control group underwent MR imaging without contrast agent administration. None of the control group had HDN. In quantitative signal-intensity analyses, the median (p25 to p75) of the ROI value was 380.4 (354.4–407.5) for average DN intensity and 384.7 (364.9–409.9) for average middle cerebellar peduncle intensity. The rank sum test for the difference between the 2 did not reach statistical significance (P = .46).

DISCUSSION

In this study, analyses of multiple longitudinal MR images with long follow-up periods revealed that once HDN was evident, it was most likely to remain permanently, as long as 139 months after onset. Among various variables we investigated, our data suggest a statistically significant association between HDN and repeat CEMRI scans in patients who underwent various amounts of brain irradiation. An increase in the total number of CEMRI scans and thus total amount of gadolinium administration significantly increased the risk for developing HDN. After ≥4 CEMRI scans and a total dose of 77 mL of gadolinium, there was a significant increase in the likelihood of developing HDN. No significant association was found between doses of radiation exposure to DN and HDN on T1WI. Although the radiation dosing schema used differed in potential biologic impact because the total dose and number and size of fractions varied by diagnosis and tumor size, no relationship was encountered between whether a significant dose was given to the dentate nucleus and HDN. While it cannot be excluded that a subgroup of patients treated with a particular regimen might be vulnerable to such an effect, the absence of any observed association suggests that this is not the case. We also showed that the number of the subjects whose DNIs were located outside the outermost RF did not significantly differ between subjects with HDN and those with NDN. Thus, the DNIs do not necessarily need to be within the RF to become hyperintense on T1WI.

Gadolinium, a molecule known to induce cell damage, has been shown to deposit in normal and pathologic human tissue in different studies. There is evidence that in individuals with a history of multiple CEMRI scans, gadolinium-based MR imaging contrast agents can deposit for up to 3 years in structures such as kidney, skin, muscle, and bone after becoming insoluble free gadolinium as a result of transmetalation and dissociation processes. We have verified that HDN on T1WI possibly results from gadolinium deposits that can persist longer than 11 years. Different gadolinium molecules have different kinetics and thus different propensities for dechelation. Omniscan (gadodiamide) and Magnevist (gadopentetate dimeglumine) were used in the very first studies in the literature conducted on subjects with HDN on T1WI. In the present retrospective study, we primarily used Magnevist (gadopentetate dimeglumine) for CEMRI scans in subjects with normal renal function during the time of this study. Statistical analyses yielded no significant association between serum creatinine level and the development of HDN. Omniscan (gadodiamide), MultiHance (gadobenate dimeglumine), ProHance (gadoteridol), OptiMARK (gadoxetic acid), and Gadavist (gadobutrol) were also used in some cases. The sample sizes of other commercial gadolinium agents were too small compared with Magnevist to make a reliable statistical analysis for individual gadolinium agents. Nevertheless, there was no statistically significant difference between the HDN incidences by using Magnevist and a combination of different gadolinium agents. We recommend further evaluation.

In the present study, we investigated the associations between an HDN and the components of RT such as total RD to brain, specific RD to the DN, and the number of fractions during RT. No statistically significant association was found between any of these variables and HDN on T1WI. These findings were contrary to what was suggested by Kasahara et al, who found a correlation between the brightness of the DN and the amount of radiation exposure. In terms of underlying brain pathologies, we found a significant difference in dispersion of histopathologic diagnoses of brain neoplasms between the group with NDN and that with HDN. Malignant tumors with low survival rates such as glioblastoma multiforme were more likely to be in the NDN group but also underwent fewer enhanced scans because of that shorter life span. During the follow-up period, the death rate was significantly higher in the NDN group compared with the HDN group. We speculate that the early death of subjects with high-grade tumors led to a decreased total number of follow-up MR imaging studies, thus the total amount of gadolinium exposure and a lower rate of HDN.

Hyperintensity on T1WI in the basal ganglia has been shown to be caused by various entities. Total parenteral nutrition supplemented with manganese has proved to cause abnormal high signal intensity at the globus pallidus on T1WI. It has been speculated that a hyperintense globus pallidus in patients with liver failure and significant liver collaterals is also related to the manganese accumulation in the basal ganglia by virtue of bypass conduits that skip the hepatic clearance. In light of these studies, we excluded patients on total parenteral nutrition therapy and those with liver failure. Iron is one of the best-known causes of T1 shortening on MR imaging along with several other substances. Calcium deposition in cortical and deep gray matter has also been associated with paradoxical T1 shortening on MR imaging. None of our patients had a history of iron metabolism disorder. We did not find a statistically significant relationship between serum calcium or phosphate levels and HDN on T1WI. RT is reported to cause calcification in brain tissue. However, there was no radiologic evidence of DN calcium accumulation on CT examinations of subjects included in our study.

Prior studies showed that the MFS may contribute to contrast differences between brain structures, which could have affected the appreciation of signal alteration. In the present study, we found no significant difference among the scanners with different MFSs in qualitatively evaluating the appearances of DN on T1WI. There was also no statistically significant difference between scanner strengths (1.5T and 3T) in terms of HDN incidence. Most of our patients underwent CEMRI with a 1.5T scanner because the present study extended back to 1995.

In the English literature, few studies have investigated HDN on T1WI, and each drew different conclusions for possible etiologies. Rocca et al reported a higher incidence of HDN on T1WI in a subset of patients with secondary-progressive MS compared with 2 other groups comprising patients with relapsing-remitting and primary-progressive MS subtypes. In a study conducted on 362 adult patients, Kasahara et al considered the
relationship between T1 hyperintensity in DN and variables such as brain irradiation, multiple sclerosis, and liver dysfunction. They found a significant association between brain irradiation history and T1 hyperintensity in DN. However, details about interaction or correlation between whole- and partial-brain irradiation, if any, were not discussed in these studies, and they did not look at the number of gadolinium-enhanced MR imaging examinations as a variable. Kanda et al. compared subjects who underwent at least 6 CEMRI scans with subjects who underwent at least 6 unenhanced MR imaging scans and found a significant association between T1 hyperintensity of GP and DN and the total number of CEMRIs. Most recently Errante et al. replicated the same technique with Kanda et al., excluding the globus pallidus, and reinforced the findings of Kanda et al. They supported the idea of a strong association of the total number of gadolinium administrations with increased T1 shortening in the human DN by showing a linear regression model in cases with repeat CEMRI scans in their retrospective study.

The lack of a histologic examination and thus a molecular investigation of DN was the main limitation of our observational study. Although in receiver operating characteristic analyses, 4 CEMRI scans were significantly associated with a higher percentage of HDN, we did not detect an absolute threshold for the number of CEMRI scans resulting in HDN. Magnevist was administered in all scans in a vast majority of our subjects. A combination of different agents was used during the follow-up scans in the remainder of the subjects. Therefore, further studies with evenly distributed commercial gadolinium molecules are needed to reliably compare the association of HDN and other gadolinium molecules. Given the retrospective design of our study, the time intervals between studies and the time interval between the last day of RT and the first MR imaging scan and/or first detection of HDN could not be adjusted. This situation resulted in different follow-up times and thus variable timing of the detection of HDN. Because the follow-up period was longer than a decade for some instances, body mass index was not evaluated to prevent the potential interactions of body weight fluctuations in run-time. Because this was a retrospective, observational, radiologic study, we did not seek the clinical consequences of HDN. Our goal was to elucidate an imaging finding, not its clinical significance.

CONCLUSIONS

Our study revealed that repeat performance of CEMRI studies in irradiated subjects contributes to a hyperintense appearance of the DN on T1WI. This appearance may be related to the accumulation of gadolinium in the DN. Other variables that could be associated with HDN demonstrated no significant effect on the DN appearance in this retrospective study.

REFERENCES

Differentiation between Cystic Pituitary Adenomas and Rathke Cleft Cysts: A Diagnostic Model Using MRI

ABSTRACT

BACKGROUND AND PURPOSE: Cystic pituitary adenomas may mimic Rathke cleft cysts when there is no solid enhancing component found on MR imaging, and preoperative differentiation may enable a more appropriate selection of treatment strategies. We investigated the diagnostic potential of MR imaging features to differentiate cystic pituitary adenomas from Rathke cleft cysts and to develop a diagnostic model.

MATERIALS AND METHODS: This retrospective study included 54 patients with a cystic pituitary adenoma (40 women; mean age, 37.7 years) and 28 with a Rathke cleft cyst (18 women; mean age, 31.5 years) who underwent MR imaging followed by surgery. The following imaging features were assessed: the presence or absence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, an off-midline location, the presence or absence of an intracystic nodule, size change, and signal change. On the basis of the results of logistic regression analysis, a diagnostic tree model was developed to differentiate between cystic pituitary adenomas and Rathke cleft cysts. External validation was performed for an additional 16 patients with a cystic pituitary adenoma and 8 patients with a Rathke cleft cyst.

RESULTS: The presence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, and an off-midline location were more common with pituitary adenomas, whereas the presence of an intracystic nodule was more common with Rathke cleft cysts. Multiple logistic regression analysis showed that cystic pituitary adenomas and Rathke cleft cysts can be distinguished on the basis of the presence of a fluid-fluid level, septation, an off-midline location, and the presence of an intracystic nodule (P = .006, .032, .001, and .023, respectively). Among 24 patients in the external validation population, 22 were classified correctly on the basis of the diagnostic tree model used in this study.

CONCLUSIONS: A systematic approach using this diagnostic tree model can be helpful in distinguishing cystic pituitary adenomas from Rathke cleft cysts.

ABBREVIATIONS: AUC = area under the curve; RCC = Rathke cleft cyst

Pituitary adenoma is a benign neoplasm that arises from the adenohypophysis and is the most common intrasellar pathology, accounting for 10%–15% of all intracranial neoplasms. Typical imaging findings of an uncomplicated pituitary adenoma include slow enhancement compared with that of the pituitary gland, lateral deviation of the infundibulum, and isointense signal intensity relative to gray matter on T1-weighted imaging. Intratumoral hemorrhage and ischemic infarction are common with larger pituitary adenomas, which may result in hemorrhagic or cystic changes or both, leading to various signal intensities on MR imaging.

Rathke cleft cyst (RCC) is a benign epithelial cyst believed to originate from the remnants of the Rathke pouch. Typical imaging findings include a nonenhancing, noncalcified, intrasellar/suprasellar cyst with an intracystic nodule. Depending on its cystic content and the presence of an associated intracystic nodule, an RCC may show various signal intensities on both T1- and T2-weighted images. More specifically, T1 hyperintensity and T2 hypointensity of an RCC associated with a high intracystic protein content can mimic cystic pituitary adenoma with hemorrhage, which makes imaging diagnosis of a cystic pituitary adenoma or an RCC a challenge.

Preoperative differentiation between a cystic pituitary adenoma and an RCC is important for treatment planning.
pituitary adenomas and RCCs have been reported,2,9,12,20,23–25 geons.9 To date, several characteristic MR imaging appearances of optimal surgical procedure is a major concern for neurosur-

which to determine the proper surgical indication and to plan the

tial resection of the wall and evacuation of cyst contents are suffi-
cient for an RCC, whereas a cystic pituitary adenoma may require
total resection, not only to relieve mass effect but also to correct hormone excess.9,19–21 Unnecessary surgical excision of an RCC may lead to serious complications, such as CSF leaks, infection, and hypothalamic injury, though the incidences thereof are very low.21,22 Thus, obtaining the correct preoperative diagnosis with which to determine the proper surgical indication and to plan the optimal surgical procedure is a major concern for neurosurgeons.9 To date, several characteristic MR imaging appearances of pituitary adenomas and RCCs have been reported,2,9,12,20,23–25 but there are some cases for which the diagnoses are inconclusive when 1 or 2 imaging findings are used, and none of the studies has systematically analyzed the MR imaging appearances of cystic pituitary adenomas to differentiate them from RCCs. Therefore, we evaluated the diagnostic potential of a multifactor analysis of MR imaging findings and developed a diagnostic tree model to increase the diagnostic accuracy in differentiating cystic pituitary adenomas and RCCs before surgery.

MATERIALS AND METHODS

Study Population

This retrospective study was approved by the Yonsei University Health System institutional review board, and the requirement for informed consent was waived. We retrospectively reviewed preoperative MR imaging and electronic medical records. Among 891 patients with a sellar mass who underwent surgery between August 2007 and July 2013, we identified 82 patients (24 men and 58 women; mean age, 37.7 ± 11.4 years) with a cystic pituitary adenoma and 28 patients (10 men and 18 women; mean age, 31.5 ± 12.7 years) with a RCC. Among them, 54 patients (14 men and 40 women; mean age, 37.7 ± 11.4 years) were diagnosed with a pituitary adenoma and 28 patients (10 men and 18 women; mean age, 31.5 ± 12.7 years) were diagnosed with an RCC on the basis of histopathology reports. None of the included pituitary adenomas involved the cavernous sinus. Craniohypophyseoma was not included for analysis, because only 3 patients presented with a cystic mass without a solid enhancing portion during the same period, and 2 of them had typical imaging findings of craniohypophyseoma. Those 54 patients with a pituitary adenoma underwent surgery because of medication treatment failure (n = 10), local mass effect (n = 11), hormonal symptoms (n = 18), headache (n = 14), or rapid size increase (n = 1). Twenty-eight patients with an RCC underwent surgery because of local mass effect (n = 13), hormonal symptoms (n = 8), or headache (n = 7). Laboratory and immunohistochemical findings (available for 26 patients) revealed that 46 patients had a hormonally functioning adenoma with prolactin (32 cases), growth hormone (8 cases), adrenocorticotropic hormone (5 cases), or thyroid-stimulating hormone (1 case). In the other 8 patients, the adenoma was nonfunctioning, with or without hypopituitarism. The characteristics of the 82 patients are shown in Table 1.

Validation Population

For validation, an additional 24 patients (10 men and 14 women; mean age, 38.8 ± 15.8 years) with a cystic pituitary adenoma (n = 16) or an RCC (n = 8) histopathologically confirmed between August 2013 and August 2014 were subsequently included in the study.

Data Acquisition

Each of the preoperative MR imaging examinations of the sella was performed with a 3T MR unit using an 8-channel head coil (Achieva; Philips Healthcare, Best, the Netherlands). The following pulse sequences were acquired: sagittal T2-weighted imaging (TR, 3000 ms; section thickness, 3 mm; matrix, 400 × 316; and FOV, 23 × 23 cm), sagittal T1-weighted imaging (TR, 2000 ms; TE, 10 ms; section thickness, 2–3 mm; matrix, 256 × 200; and FOV, 23 × 23 cm), sagittal T1-weighted dynamic imaging (TR, 2000 ms; TE, 10 ms; section thickness, 2–3 mm; matrix, 256 × 200; and FOV, 23 × 23 cm), axial T2-weighted imaging (TR, 3000 ms; TE, 80 ms; section thickness, 5 mm; matrix, 400 × 309; and FOV, 23 × 23 cm), and coronal T2-weighted imaging (TR, 2129.8 ms; TE, 90 ms; section thickness, 1–2 mm; matrix, 368 × 368; and FOV, 18 × 18 cm). Five coronal T1-weighted dynamic images (TR, 230 ms; TE, 15 ms; section thickness, 2–3 mm; matrix, 352 × 351; and FOV, 20 × 20 cm) were obtained every 25–30 seconds after an intravenous bolus injection (0.2 mL/kg) of gadolinium-based contrast (gadoterate meglumine [Dotarem; Guerbet, Aulnay-sous-Bois, France]), followed by coronal T1-weighted imaging (TR, 2000 ms; TE, 10 ms; section thickness, 2 mm; matrix, 320 × 240; and FOV, 20 × 20 cm) and sagittal T1-weighted imaging (TR, 2000 ms; TE, 10 ms; section thickness, 2 mm; matrix, 320 × 250; and FOV, 20 × 20 cm).

Image Analysis

Two radiologists (one with 5 years and one with 1 year of experience in neuroradiology who were blinded to the final histologic diagnosis independently analyzed the imaging of each patient to document the following findings: presence of a fluid-fluid level, hypointense rim on T2-weighted images, septation, off-midline location, presence of an intracystic nodule, change in size, and change in signal intensity (Fig 1).2,9,12,20,23–25 The presence or absence of a fluid-fluid level was evaluated on either axial or sagittal T2-weighted images. A peripheral hypointense rim was regarded as present if the peripheral portion of a sellar lesion was lower than the signal intensity of white matter on T2-weighted images. Septation was identified on axial or coronal T2-weighted images. A peripheral hypointense rim was regarded as present if the peripheral portion of a sellar lesion was lower than the signal intensity of white matter on T2-weighted images. Septation was identified on axial or coronal T2-weighted images. Off-midline location was defined as lateralization of the lesion in the

<table>
<thead>
<tr>
<th>Table 1: Demographic and clinical data of patients with a cystic pituitary adenoma or Rathke cleft cyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Data</td>
</tr>
<tr>
<td>Age (mean ± SD), y</td>
</tr>
<tr>
<td>Sex, male/female ratio</td>
</tr>
<tr>
<td>Size of tumor/cyst (mean ± SD), mm</td>
</tr>
<tr>
<td>Suprasellar extension, n (%)</td>
</tr>
<tr>
<td>Abnormal hormone level, n (%)</td>
</tr>
<tr>
<td>Symptons, n (%)</td>
</tr>
<tr>
<td>Local mass effect</td>
</tr>
<tr>
<td>Hormonal symptoms</td>
</tr>
</tbody>
</table>

*From the χ² test.

Note:—

<table>
<thead>
<tr>
<th>Valuea</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>31.5 ± 12.7</td>
<td>31.5 ± 12.7</td>
<td>.026</td>
</tr>
<tr>
<td>Size of tumor/cyst</td>
<td>19.2 ± 5.5</td>
<td>19.2 ± 5.5</td>
<td>.644</td>
</tr>
<tr>
<td>Suprasellar extension</td>
<td>67.8</td>
<td>67.8</td>
<td>.358</td>
</tr>
<tr>
<td>Abnormal hormone level</td>
<td>89.3</td>
<td>89.3</td>
<td>.833</td>
</tr>
</tbody>
</table>

FOV: Field of view; **SD:** Standard deviation; **P:** Probability value.
sella turcica or stalk deviation by the lesion. An intracystic nodule was defined as a nodule showing various signal intensities on T1- and T2-weighted images without enhancement after contrast-medium administration. A size change (either increase or decrease) or signal change was defined as present if there was any change in size or signal intensities on T1- and T2-weighted images between the 2 preoperative MR imaging examinations, when previous MR imaging examinations were performed \((n = 78) \). The median follow-up interval for all the cases was 59 days (interquartile range, 26–126 days), for adenomas \((n = 55) \) it was 58 days (interquartile range, 26–154 days), and for RCCs \((n = 23) \) it was 62 days (interquartile range, 27–98 days). Interobserver agreement for the imaging findings was assessed, and discordant interpretations were resolved by consensus.

For the validation group, the significant MR imaging findings in the study group were evaluated for differentiation. Two radiologists (one with 5 years and one with 1 year of experience in neuroradiology) who were blinded to the final histopathologic diagnoses performed imaging analyses on the basis of the diagnostic tree model.

Review of Imaging Reports

Each official radiologic report had been written by several neuroradiologists with >5 years’ experience in neuroradiology and was reviewed retrospectively. Final impressions of the radiologic reports were recorded to compare them with those of the diagnostic tree model in terms of diagnostic accuracy. When there were several differential diagnoses on the reports, only the first impression was used for analysis.

Statistical Analysis

Statistical analyses were performed by using the software package R version 3.0.2 (http://www.R-project.org) and MedCalc version 9.3.6.0 (MedCalc Software, Mariakerke, Belgium). The interobserver agreement for each imaging feature was calculated by using the \(\kappa \) statistic. A \(\kappa \) value of 0.81–1.0 indicated excellent agreement between the 2 observers, 0.61–0.80 indicated good agreement, 0.41–0.60 indicated moderate agreement, 0.21–0.40 indicated fair agreement, and 0–0.20 indicated only slight agreement. The frequencies of imaging features of cystic pituitary adenomas and those of RCCs were compared with \(\chi^2 \) tests. The contribution of each imaging feature was evaluated by univariate logistic regression and a multivariable logistic regression model after a stepwise procedure was performed to differentiate cystic pituitary adenomas and RCCs. On the basis of the results of logistic regression analysis, a recursive-partitioning-tree classification algorithm was used to suggest a diagnostic tree model. Finally, the discriminatory powers of the diagnostic tree model and radiologic reports were assessed by receiver operating characteristic analysis, and the areas under the curve (AUCs) for receiver operating characteristic analysis were compared. A \(P \) value of <.05 was considered statistically significant.

RESULTS

Interobserver agreements for imaging features were good to excellent, with \(\kappa \) values of 0.780 for the presence of a fluid-fluid level, 0.677 for a hypointense rim on T2-weighted images (Fig 2), 1.0 for septation, 0.926 for an off-midline location, and 0.892 for the presence of an intracystic nodule.

The frequencies of MR imaging findings were significantly different between pituitary adenomas and RCCs. The presence of a fluid-fluid level, a hypointense rim on T2-weighted images, an

FIG 1. Typical MR features for image analysis: A, fluid-fluid level (sagittal T2-weighted image); B, peripheral hypointense rim (arrow) (coronal T2-weighted image); C, septation (arrowhead) (coronal T2-weighted image); D, off-midline location, deviating pituitary stalk (coronal contrast-enhanced T1-weighted image); and E, intracystic nodule (sagittal T2-weighted image).
off-midline location, septation, and signal change of the lesion were more common with pituitary adenomas than with RCCs (Table 2). An intracystic nodule in the lesion was observed significantly more often in RCCs than in pituitary adenomas.

Receiver operating characteristic curve analyses were performed, and the following 3 variables exhibited good performances in diagnosing cystic pituitary adenomas: the presence of a fluid-fluid level (sensitivity, 68.5%; specificity, 96.4%; AUC value, 0.825), a hypointense rim on T2-weighted images (sensitivity, 75.9%; specificity, 78.6%; AUC value, 0.773), and an off-midline location (sensitivity, 83.3%; specificity, 92.9%; AUC value, 0.881). The presence of an intracystic nodule also exhibited good performance in diagnosing RCCs (sensitivity, 83.3%; specificity, 67.9%; AUC value, 0.756).

The ORs from the univariate logistic regression analysis of MR imaging variables for predicting cystic pituitary adenomas were listed in Table 3. Multiple logistic regression analysis with a stepwise procedure was performed to identify the MR imaging variables that contributed to the differentiation of cystic pituitary adenomas from RCCs. The presence of a fluid-fluid level, septation, and an off-midline location were selected as independent factors associated with cystic pituitary adenomas and the presence of an intracystic nodule as associated with RCCs. These variables and their adjusted ORs are listed in Table 3.

Using the recursive-partitioning analysis based on the classification and regression tree method,26 we were able to establish a diagnostic tree model (Fig 3). The diagnostic tree model was able to correctly classify 79 (96.3%) of 82 cases in the study population (Figs 5 and 6). In terms of diagnosing pituitary adenomas, the sensitivity and specificity of the diagnostic tree model were 98.1% and 92.9% and those of the official radiologic reports were 77.8% and 92.9%, respectively. Receiver operating characteristic curve analyses were performed to compare the AUCs between the diagnostic tree model and those of the official radiologic reports. The AUC values were 0.991 for the diagnostic tree model and 0.853 for the radiologic reports, and the difference was statistically significant (P < .001) (Fig 4).

The proposed diagnostic tree model was then validated on subsequent data from the 24 patients in the external-validation group. There were no significant differences between the study group and the validation group in terms of age, sex, or histopathology results (P = .252, P = .119, and P = .762, respectively). The imaging diagnoses made by 2 radiologists on the basis of the diagnostic tree model agreed for all the patients. Twenty-two of these 24 cases were classified correctly (91.7%) (Figs 5 and 6). One RCC was misclassified as a cystic pituitary adenoma because of septation (Fig 7), and one cystic pituitary adenoma was misclassified as an RCC because of its midline location and the absence of a fluid-fluid level and septation.

DISCUSSION

We first evaluated the diagnostic value of imaging findings for differentiating cystic pituitary adenomas and RCCs. Consistent with previous reports,3,8,20,27 we found that the presence of a fluid-fluid level, septation, and an off-midline location strongly favored a diagnosis of cystic pituitary adenoma over that of RCC. Conversely, the presence of an intracystic nodule was associated significantly with RCCs. On the basis of these results, we established a diagnostic tree model that increased the diagnostic accuracy for differentiating cystic pituitary adenomas from RCCs by using preoperative MR imaging. The use of this model with MR imaging findings resulted in the correct classification of > 95% of the study cases and 91.7% of the validation cases. Given its availability and simplicity, we believe that this method has important clinical implications for making correct preoperative diagnoses and determining the proper treatment planning.

RCCs are sometimes indistinguishable from cystic pituitary adenomas on MR imaging, and a previous study reported that 50% of surgically proven RCCs were misdiagnosed as pituitary adenomas preoperatively because of their various signal intensities, which ranged from hypointense to hyperintense on both T1- and T2-weighted images.15 These various MR signal intensities depend on the composition of the cyst, including protein, mucopolysaccharides, and cholesterol.15,28 Another study reported that wall enhancement of cystic lesions may play a role in differentiating neoplastic from nonneoplastic cysts.29 However, RCCs are often surrounded by the enhancing normal pituitary gland, thus mimicking wall enhancement, especially when there is a partial volume-averaging effect.31 In addition, RCCs may show patchy or

Table 2: MR imaging features of cystic pituitary adenomas and Rathke cleft cysts

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cystic Pituitary Adenomas [n = 54] (n [%])</th>
<th>Rathke Cleft Cysts [n = 28] (n [%])</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid-fluid level</td>
<td>37 (68.5)</td>
<td>1 (3.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Hypointense rim on T2</td>
<td>41 (75.9)</td>
<td>6 (21.4)</td>
<td><.001</td>
</tr>
<tr>
<td>Septation</td>
<td>21 (38.9)</td>
<td>1 (3.6)</td>
<td>.002</td>
</tr>
<tr>
<td>Off-midline location</td>
<td>45 (83.3)</td>
<td>2 (7.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Intracystic nodule</td>
<td>9 (16.7)</td>
<td>19 (67.9)</td>
<td><.001</td>
</tr>
<tr>
<td>Size change</td>
<td>24 (44.4)</td>
<td>8 (28.6)</td>
<td>.212</td>
</tr>
<tr>
<td>Increase</td>
<td>20 (37.0)</td>
<td>3 (10.7)</td>
<td>.012</td>
</tr>
<tr>
<td>Decrease</td>
<td>4 (7.4)</td>
<td>5 (17.9)</td>
<td>.151</td>
</tr>
<tr>
<td>Signal change</td>
<td>20 (37.0)</td>
<td>4 (14.3)</td>
<td>.05</td>
</tr>
</tbody>
</table>

*From the χ² test.
ring enhancement, which can be attributed to inflammation and/or squamous metaplasia in the cyst wall.13 The presence of an intracystic nodule has been suggested as a characteristic MR imaging feature of RCCs, with an incidence of 37.5\%–45\%.9,13 Although intracystic nodules were more common in RCCs than in cystic pituitary adenomas, we also observed intracystic nodules in pituitary adenomas (67.9\% vs 16.7\%, respectively). Moreover, these nodules can easily be mistaken for hemorrhage and vice versa, which makes the preoperative differentiation between RCCs and cystic pituitary adenomas problematic.30

The presence of a fluid-fluid level, presumably related to intracystic hemorrhage, was significantly more common in, and had high predictive value for, cystic pituitary adenomas. Intratumoral hemorrhage in pituitary adenomas is common even without clinical symptoms.7,31,32 Thus, clinical symptoms themselves are not always sufficient to make a correct diagnosis of hemorrhagic adenoma. Furthermore, hemorrhagic pituitary adenomas can exhibit various signal intensities on both T1- and T2-weighted MR imaging, which makes imaging diagnoses difficult. More accurate diagnoses can be achieved by considering other imaging parameters collectively.

An off-midline location was the most important imaging finding for distinguishing pituitary adenomas from RCCs on the basis of multivariate logistic regression analysis in our study, which may be explained by their different origins. RCCs are believed to originate from the remnants of the Rathke pouch and are located mainly in the midline of the pituitary gland.9 Conversely, adenomas arise from the adenohypophysis, and the 2 most common pituitary adenomas, prolactinomas and growth hormone–secreting adenomas, tend to arise laterally in the sella turcica.10,33 Thus, lateral bulging of the gland and displacement of the infundibulum were considered characteristic findings of pituitary adenomas.3,27 However, adrenocorticotropic hormone–secreting adenomas are often located at the midline, which may overlap with the location of RCCs.33 In our study, an off-midline location alone showed high diagnostic value, but that value could be improved when combined with other imaging parameters via a diagnostic tree model.

In this study, pituitary adenomas and RCCs did not have a significant size change difference. Several reports have indicated that some RCCs undergo reduction without treatment and even resolve spontaneously, which suggests that simple RCCs may be dynamic in nature.18,30,34 Although growth rates are variable, pituitary adenomas usually enlarge slowly over years and may also exhibit size change, even regression, accompanied by intratumoral hemorrhage and resorption.4,10,31 We also observed that size increases were more frequent in cystic pituitary adenomas than in RCCs, but on the basis of multivariate analysis, size in-
creases did not have predictive value for diagnosing cystic pituitary adenomas. Clinical findings could be important clues for making a preoperative diagnosis. However, preoperative endocrine dysfunction was reported in up to 80% of patients with an RCC, which makes diagnosis with clinical findings alone difficult.\(^9,35\) In our study, the incidence of hormonal symptoms was 28.6%, which was less common than in previous studies but not significantly different than that of cystic pituitary adenomas (33.3%), which supports the idea that radiologic findings are important when making a preoperative diagnosis.

Previously, T2*-weighted imaging was proposed as a potential way to detect intratumoral hemorrhage in pituitary adenomas.\(^7\) Another study in which diffusion-weighted MR imaging was used revealed that the ADC values of RCCs were significantly higher than those of other cystic lesions, including cystic or hemorrhagic pituitary adenomas; therefore, diffusion-weighted MR imaging may be useful for differentiating cystic lesions in the pituitary fossa.\(^36\) However, these sequences are not routinely performed for standard sellar MR imaging because of susceptibility artifacts related to the skull base and, thus, were not performed in our patients. In this study, features of conventional T1- and T2-weighted MR imaging were evaluated without the need for any additional advanced imaging techniques. Our proposed diagnostic tree model with a combination of imaging features (ie, an off-midline location, the presence of a fluid-fluid level or a hypointense rim on T2-weighted MR imaging, septation, and the presence of an intracystic nodule) is easy to use and can achieve high diagnostic performance (AUC value, 0.991), which is significantly superior to that of the original radiologic reports (AUC value, 0.853). Furthermore, it can suggest which imaging features should be considered more important than the others in differentiating cystic pituitary adenomas and RCCs. In addition, the diagnostic tree model showed high diagnostic performance in the validation group by the radiologists with 5 years or 1 year of experience, which suggests that radiologists with less experience may also benefit from the systematic approach for differentiating cystic pituitary adenomas and RCCs.

Our study had several limitations. It was a retrospective study with a possible selection bias. We excluded pituitary adenomas with an enhancing solid portion, which may indicate that these results cannot be generalized to all pituitary adenomas and RCCs that show typical imaging features. However, the purpose of this study was to differentiate pituitary adenomas that present as cystic lesions from RCCs. Therefore, we proposed a diagnostic tree model that is easily applicable in clinical situations when a cystic mass without solid enhancement in the sella is observed and surgical treatment is considered because of the patient’s symptoms. Because this study was retrospective, we were not able to correlate the findings of each image with pathology results. In addition, we did not include craniopharyngioma, another common pathology in this region. RCCs and craniopharyngiomas have been suggested to be on a histologic continuum, and the differentiation of these lesions is often difficult, even at the microscopic and molecular levels.\(^37\) However, in the study period, there were only 3 cases of craniopharyngiomas that presented as cystic masses without a solid enhancing portion, and 2 of them showed imaging findings typical of craniopharyngioma. The number of patients in this study was relatively small, but significant differences in MR imaging findings were found between the cystic pituitary adenomas and

FIG 5. A 71-year-old female patient presented with a 21.2-mm nonenhancing intrasellar cystic lesion. The lesion was located in the midline on a coronal contrast-enhanced T1-weighted image (A), and a fluid-fluid level (B) and septation (C) were seen on sagittal and coronal T2-weighted images. This lesion was classified as a cystic pituitary adenoma on the basis of the diagnostic tree model and was finally diagnosed by histopathology as a pituitary adenoma.

FIG 6. A 42-year-old male patient presented with a 23.8-mm nonenhancing sellar and suprasellar lesion. The cystic lesion had an off-midline location on contrast-enhanced T1-weighted imaging (A) and an intracystic nodule (arrow) showing hypointensity on coronal T2-weighted imaging (B). There was no identified fluid-fluid level or septation. Therefore, this lesion was classified as a Rathke cleft cyst on the basis of the diagnostic tree model and was diagnosed through histopathology as a Rathke cleft cyst.
REFERENCES

plastic cysts from cystic neoplasms by Gd-DTPA MRI. J Comput Assist Tomogr 1992;16:744–49 CrossRef Medline
Cognitive and White Matter Tract Differences in MS and Diffuse Neuropsychiatric Systemic Lupus Erythematosus

ABSTRACT

BACKGROUND AND PURPOSE: Multiple sclerosis and neuropsychiatric systemic lupus erythematosus are autoimmune diseases with similar CNS inflammatory and neurodegenerative characteristics. Our aim was to investigate white matter tract changes and their association with cognitive function in patients with MS and those with neuropsychiatric systemic lupus erythematosus compared with healthy controls by using diffusion tensor imaging.

MATERIALS AND METHODS: Thirty patients with relapsing-remitting MS and 23 patients with neuropsychiatric systemic lupus erythematosus matched for disease severity and duration and 43 healthy controls were scanned with 3T MR imaging. The DTI was postprocessed, corrected for lesions, and analyzed with tract-based spatial statistics. Cognitive assessment included examination of processing speed, visual, auditory/verbal, and visual-spatial memory; and sustained attention and executive function. Differences were considered significant at $P < .05$.

RESULTS: Tract-based spatial statistics analysis revealed significantly decreased fractional anisotropy and increased mean diffusivity in patients with MS compared with healthy controls, decreased fractional anisotropy in patients with MS compared with those with neuropsychiatric systemic lupus erythematosus, and an increased mean diffusivity in patients with neuropsychiatric systemic lupus erythematosus compared with healthy controls. Patients with MS showed decreased fractional anisotropy throughout central WM pathways, including the corpus callosum and the inferior longitudinal and fronto-occipital fasciculi compared with those with neuropsychiatric systemic lupus erythematosus. Altered cognitive scores in patients with MS were significantly associated with decreased fractional anisotropy and increased mean diffusivity in all examined domains, while in patients with diffuse neuropsychiatric systemic lupus erythematosus, only decreased fractional anisotropy in the superior WM pathways showed significant association with executive function.

CONCLUSIONS: Patients with MS and neuropsychiatric systemic lupus erythematosus showed widespread WM tract alterations outside overt lesions, though more severe changes were identified in patients with MS. The WM tract changes were associated with cognitive dysfunction in all explored domains only in patients with MS.

ABBREVIATIONS: AD = axial diffusivity; FA = fractional anisotropy; HC = healthy control; MD = mean diffusivity; NPSLE = neuropsychiatric systemic lupus erythematosus; PASAT = Paced Auditory Serial Addition Task; RD = radial diffusivity; SLE = systemic lupus erythematosus; TBSS = tract-based spatial statistics

Multiple sclerosis and systemic lupus erythematosus (SLE) are both chronic inflammatory autoimmune diseases that adversely affect the CNS.1 MS is characterized by both focal and diffuse damage in the brain and spinal cord due to demyelination, leading to axonopathy and tissue atrophy. While the pathology of MS is primarily restricted to the CNS, SLE can involve multiple organ systems. CNS involvement in SLE is mainly attributed to autoantibody attack on small vessels, resulting in diffuse ischemic damage. However, axonal loss and demyelination may also result from direct antibody attack on neuronal cells, either on neuronal bodies or in the WM tracts.2

Although SLE and MS have notable differences in etiology, there is a marked overlap concerning the CNS inflammatory and neurodegenerative nature of these 2 diseases.3 In 1972, Fulford et
al4 first coined the term “lupoid sclerosis” when referring to patients with SLE who presented with symptoms similar to those in MS. Additionally, neuropsychological and cognitive testing revealed similarities in cognitive profiles of patients with MS and those with SLE that may be the result of similar dysfunctional CNS structures.5,6 These neuropsychological findings included deficits in working memory and processing speed and general lower cognitive scores, even in the absence of a diagnosed neurologic or psychiatric condition.7,8 It is possible that these cognitive disturbances may be attributed to decreased WM integrity, the presence and extent of WM lesions, or GM damage, all of which are present in patients with MS and those with SLE.2,3,8-10

Unlike in MS, the relationship between cerebral pathology and resulting neuropsychiatric disorders in SLE is not well-established. Neuropsychiatric symptoms range from transient to chronic and are heterogeneous among patients.3,6 The American College of Rheumatology has identified 19 different syndromes of neuropsychiatric systemic lupus erythematosus (NPSLE). NPSLE includes focal syndromes such as seizures, strokes, and transient ischemic attacks and also diffuse syndromes such as anxiety disorders, mood disorders, headache, and cognitive impairment.7,8 It is possible that these cognitive disturbances may be attributed to decreased WM integrity, indicated by increased MD and decreased FA, which affect cognition. HC participants were excluded if they had a psychiatric disorder or if they were on psychotropic or any other medications that could affect cognition.

All subjects met the criteria for MR imaging testing based on a health-screening interview and an MR imaging questionnaire containing information about medical history (medications, surgeries, pregnancy, illness, and so forth). The Expanded Disability Status Scale was used to measure disease severity in patients with MS and was obtained at a 30-day interval from cognitive testing. Disease activity at the time of testing was measured for patients with NPSLE with a checklist based on the Systemic Lupus Activity Measure,15 with scores ranging from 0 to 19, and was calculated as the sum of positive responses on a checklist of current symptoms (including fever, hair loss, joint pain, and so forth). The determination of cognitive impairment was based on the American College of Rheumatology guidelines established by the cognition subcommittee of the Ad Hoc Committee on Lupus Response Criteria.11 Patients with SLE were determined to have NPSLE with diffuse syndromes on the basis of a review of their medical records and on the data obtained from the neuropsychological, psychological, and other medical components of the study. Those patients diagnosed with a mood disorder all had major depression (mild to moderate), defined as related to the underlying NPSLE.

Neuropsychological testing was overseen by a board-certified clinical neuropsychologist. The battery of neuropsychological tests assessed cognitive function in the domains of processing speed; visual, auditory/verbal, and visual-spatial memory; sustained attention; and executive function. Processing speed and visual working memory were assessed with the oral Rao adaptation of the Symbol Digit Modalities Test.16,17 Attention and verbal working memory were assessed with the Paced Auditory Serial Addition Task (PASAT) by using 3-second interstimulus interval conditions.17,18 Auditory/verbal memory was assessed with the California Verbal Learning Test, 2nd ed.19 Visual-spatial memory was assessed with the Brief Visuospatial Memory Test–Revised.20 Executive function was assessed with the Delis-Kaplan Executive Function System Test.21

The study was approved by an internal institutional review board, and written informed consent was obtained from all participants. All participants were compensated for their time.

MATERIALS AND METHODS

Subjects

Participants were 30 patients with relapsing-remitting MS, 23 patients with NPSLE with diffuse syndromes, and 43 HCs. The outpatient groups were matched for disease duration (MS, mean of 11.7 years; NPSLE, mean of 15 years), and all patients had mild-to-moderate disease severity. Patients with NPSLE and those with MS were recruited from the specialty centers in a local hospital and rheumatologists in the area. The diagnosis of SLE was independently confirmed by a rheumatology specialist and clinical routine laboratory testing obtained from medical records, whereas the MS diagnosis was confirmed by a neurology specialist. HC participants were recruited from advertisements in a local newspaper. All participants were screened for general selection criteria. The participants were then tested further for other exclusionary criteria such as a history of head trauma, learning disability, alcohol and drug use, notable hearing loss, visual problems, or other medical conditions unrelated to MS and SLE that could affect cognition. HC participants were excluded if they had a Diagnoses and Statistical Manual of Mental Disorders, 4th ed Axis I psychiatric disorder or if they were on psychotropic or any other medications that could affect cognition.

MR Imaging Acquisition

All subjects were scanned on a 3T whole-body MR imaging system (Signa Excite HD; GE Healthcare, Milwaukee, Wisconsin), with a maximum slew rate of 150 T/m/s and maximum gradient amplitude in each orthogonal plane of 40 mT/m (zoom mode) by
using an 8-channel head and neck coil. All scans were prescribed parallel to the subcallosal line in an axial-oblique orientation. The subjects were scanned with FLAIR (TR = 8500 ms, TE = 120 ms, TI = 2100 ms, voxel size = 0.94 × 0.94 × 3 mm), 3D gradient recalled-echo T1WI (TR = 24 ms, TE = 7 ms, voxel size = 0.94 × 0.94 × 1.5 mm), and DTI sequences (TR = 8600 ms, TE = 85 ms, b = 1000, 39 diffusion directions, voxel size = 1.1 × 1.1 × 3 mm).

MR Imaging Analysis
Volumetric data were obtained by using 3D T1WI. Scans were adjusted by using an in-house-developed inpainting technique to avoid tissue misclassification. Structural Image Evaluation by using Normalization of Atrophy Cross-Sectional (SNIAX, Version 2.6; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/SIENA) was used to acquire measures of normalized whole-brain and GM and WM volumes, with actual segmentation performed by the FMRIB Automated Segmentation Tool (FAST; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST).22,23 Lesions were evaluated on FLAIR images with reference to T2/proton-attenuation images. A semi-automated edge-detection contouring-thresholding technique was used to create subject-specific binary lesion masks, also used in Zivadinov et al.24

The DTI was corrected for motion and eddy current distortion by using the FMRIB Diffusion Toolbox (http://www.fmrib.ox.ac.uk/fdt/index.html).25 To eliminate all nonbrain tissue, we extracted and deskulled the original b = 0 images (with no diffusion-weighting) by using the FSL Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET).26 On the basis of the Matlab (MathWorks, Natick, Massachusetts) code provided by the original authors,27 we applied a bi-tensor fitting to account for the partial voluming effects of free water. The FA, MD, radial diffusivity (RD), and axial diffusivity (AD) maps were calculated in Matlab by using the corrected tissue diffusion tensor as estimated by the free water elimination technique.28 Because field maps were not acquired in this study, a 2-step process was used to reduce the inherent susceptibility-induced spatial distortions in EPI-based acquisitions. First, the b = 0 images were linearly coregistered into the same geometric space as the FLAIR images by using the FMRIB Linear Image Registration Tool (FLIRT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT). The images were then non-linearly coregistered by using the Advanced Normalization Tools package (http://stnava.github.io/ANTs/).29 These 2 transformations were then applied to each of the DTI outputs so that all scalar measurements were resampled into the native FLAIR geometric space.14,29 Specific tissue compartment masks of WM (see above) were used to obtain global WM diffusion measures.

Voxelwise intergroup statistical analysis of the DTI data was performed by using TBSS.14 First, subjects’ FA data were aligned into a common space by using the FMRIB Nonlinear Registration Tool (FNIRT; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT), which uses a b-spline representation of the registration warp field. Next, the mean FA image was created and thinned to create a mean FA skeleton, which represented the centers of all tracts common to the group. Each subject’s aligned FA data were then projected onto this skeleton. The same transformations and skeletonization were also applied to the other DTI metric maps, as well as to the individual subject lesion maps.

Statistical Analysis
Analyses were performed by using SPSS, Version 20.0 (IBM, Armonk, New York). Due to non-normality, the T2 lesion number and volume differences between the groups were evaluated with the Mann-Whitney U test. Whole-brain and tissue-specific volume differences were evaluated by using 1-way ANOVA with post hoc Tukey correction. Parametric 1-way ANCOVAs, adjusted for age and sex, were performed to assess differences in global WM diffusion characteristics among the groups. One-way ANCOVA, adjusted for age and sex, was performed to compare the neuropsychological tests among the 3 groups, while the Bonferroni post hoc t test was used to assess differences between the individual groups.

For both global WM and voxelwise TBSS analyses, the specific DTI parameters investigated were FA and MD. In the event that either was found significantly different between group comparisons (P < .05), additional diffusion metrics, RD and AD, were also reported. For TBSS analysis, lesions maps were also taken into consideration as voxelwise covariates, to model out their effect and focus on changes in WM in these groups. Additionally, we directly compared lesion attenuation between patients with MS and those with NPSLE along TBSS-derived tracts (P < .05).

Age and sex were also used as covariates in both the TBSS and global WM analyses. For TBSS analysis, ANCOVA was performed to compare the 3 groups, with additional post hoc t tests to investigate regional differences between HCs and patients with MS, HCs and patients with NPSLE, and patients with MS and NPSLE. Inference was performed by using the nonparametric FSL Randomise permutation testing tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise) with 5000 permutations for each test.30 The Randomise command using the FSL General Linear Model function (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM) allows the comparison of diffusion metrics among the study groups in a voxelwise fashion. The tracts were dilated by using the tbs_fill command in FSL to enhance visualization of the results. Within-group comparisons of neuropsychological test scores with diffusion metrics (FA and MD) were performed for each subject group. Using the FSL General Linear Model function, we created matrices, including neuropsychological tests scores as voxelwise covariates, in the TBSS comparisons. The subjects’ lesion data were also incorporated as voxelwise covariates in all analyses. All TBSS results were corrected for family-wise error at P < .05 by using threshold-free cluster enhancement to account for spatially correlated changes.31

RESULTS

General Demographic and Clinical Characteristics
Table 1 shows demographic and clinical characteristics of the 3 study groups. There were no significant differences among the study groups for age and sex. On the basis of the disease-severity scores, both subjects with NPSLE and those with MS were determined to have mild-to-moderate disease severity. The median Expanded Disability Status Scale score, used for quantifying disability in MS, was 3.3 for the patients with MS,32 while the mean Systemic Lupus Activity Measure, used for quantifying disability in SLE, was 9.9 for patients with NPSLE.15 No significant differences in disease duration were seen between the 2 patient groups. Medications taken by the study subjects are listed in Table 1. None of the HCs were on prescribed medications.
Of the 23 patients with NPSLE, 6 had migraine, mood disorder, and cognitive impairment; 6 had migraine and mood disorder; 5 had migraine and cognitive impairment; 2 had mood disorder and cognitive impairment; and 4 had migraine. In addition to CNS-related NPSLE syndromes, 14 of the 23 patients had peripheral involvement (8 had peripheral neuropathy and cranial neuropathy and 6 had peripheral neuropathy).

Neuropsychological Characteristics

Table 2 shows the neuropsychological measures of the 3 groups. Significant ANCOVA differences among the 3 groups were found for the California Verbal Learning Test, 2nd ed (P = .001); the Brief Visuospatial Memory Test–Revised (P = .005), and the Delis-Kaplan Executive Function System (P = .011). There was also a trend toward significance for the PASAT (P = .061).

There were no significant differences in cognitive performance between the subjects with MS and those with NPSLE on any of the neuropsychological measures. Patients with MS performed significantly worse than HCs on the California Verbal Learning Test, 2nd ed (P = .003); the Brief Visuospatial Memory Test–Revised (P = .004); and the Delis-Kaplan Executive Function System (P = .010). There were no significant differences in performance between patients with MS and HCs on the Symbol Digit Modalities Test or the PASAT. Subjects with NPSLE performed significantly worse than HCs on the California Verbal Learning Test, 2nd ed (P = .009). In general, there was a clear trend of cognitive dysfunction in patients with NPSLE compared with HCs.

General Conventional MR Imaging Characteristics

Table 3 shows lesion and brain volumetry outcomes in the 3 study groups.

Patients with MS showed a significantly higher T2 lesion number and volume compared with HCs (P < .0001 for both). Patients with MS also had an increased T2 lesion number and volume compared with patients with NPSLE (P < .0001 for both). There were no significant T2 lesion number differences between patients with NPSLE and HCs. Patients with NPSLE showed significantly increased T2 lesion volume compared with HCs (P = .023). Figure 1 shows areas where patients with MS had significantly greater lesion attenuation than patients with NPSLE, including the left superior corona radiata and a small portion of the right posterior corona radiata.

Patients with MS showed significantly decreased whole-brain volume compared with HCs (P < .0001) and also compared with patients with NPSLE (P = .003). No significant whole-brain volume differences were found between patients with NPSLE and HCs.

Table 1: Demographic and clinical characteristics of the study groups

<table>
<thead>
<tr>
<th></th>
<th>MS (n = 30)</th>
<th>dNPSLE (n = 23)</th>
<th>HC (n = 43)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sex (% No.) (%)</td>
<td>23 (76.7%)</td>
<td>22 (95.7%)</td>
<td>37 (86.0%)</td>
<td>.150</td>
</tr>
<tr>
<td>Age (yr) (mean)</td>
<td>43.8 (8.6)</td>
<td>48.9 (12.5)</td>
<td>44.7 (9.8)</td>
<td>.170</td>
</tr>
<tr>
<td>Disease duration (yr) (mean)</td>
<td>11.7 (8)</td>
<td>15 (9.6)</td>
<td>NA</td>
<td>.237</td>
</tr>
<tr>
<td>SLAM checklist (mean)</td>
<td>3.3 (2.1–6.0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>EDSS (median) (IQR)</td>
<td>3.3 (2.1–6.0)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Note:—NA indicates not applicable; dNPSLE, neuropsychiatric systemic lupus erythematosus with diffuse syndromes; SLAM, systemic lupus activity measure; EDSS, Expanded Disability Status Scale; IQR, interquartile range.

* Disease-modifying medications for treatment of MS included interferon β (n = 18), natalizumab (n = 8), and glatiramer acetate (n = 4). Other treatment included antianxiety (dNPSLE, n = 2; MS, n = 0), antiepileptic (dNPSLE, n = 0; MS, n = 5), antidepressants (dNPSLE, n = 10; MS, n = 11), antifatigue (dNPSLE, n = 0; MS, n = 4), antispastic (dNPSLE, n = 0; MS, n = 8), antiparesis (dNPSLE, n = 0; MS, n = 8), hydroxychloroquine (Plaquenil) (dNPSLE, n = 2); imuran (dNPSLE, n = 4), immunosuppressive (dNPSLE, n = 2; MS, n = 5), steroids or nonsteroidal antiinflammatory drugs (dNPSLE, n = 17; MS n = 1).

* The χ² test was used to evaluate significant differences in sex distribution among the groups, and analysis of variance was used to evaluate significant differences in age and disease duration.

Table 2: Comparison of subject groups on neuropsychological measures

<table>
<thead>
<tr>
<th></th>
<th>MS (Mean) (SD)</th>
<th>dNPSLE (Mean) (SD)</th>
<th>HC (Mean) (SD)</th>
<th>ANOVA (P Value)</th>
<th>MS vs HC (P Value)</th>
<th>dNPSLE vs HC (P Value)</th>
<th>MS vs dNPSLE (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDMT</td>
<td>54.6 (16.1)</td>
<td>54.8 (10.3)</td>
<td>60.7 (10.4)</td>
<td>.091</td>
<td>.337</td>
<td>.373</td>
<td>1.0</td>
</tr>
<tr>
<td>CVLT2</td>
<td>49.3 (12.3)</td>
<td>50.35 (9.7)</td>
<td>57.9 (7.9)</td>
<td>.001</td>
<td>.003</td>
<td>.009</td>
<td>1.0</td>
</tr>
<tr>
<td>BVMT-R</td>
<td>21.7 (7.4)</td>
<td>24.3 (6.9)</td>
<td>26.9 (5.7)</td>
<td>.005</td>
<td>.004</td>
<td>.571</td>
<td>.359</td>
</tr>
<tr>
<td>D-KEFS</td>
<td>9.2 (2.8)</td>
<td>10.3 (2.6)</td>
<td>119 (2.2)</td>
<td>.011</td>
<td>.010</td>
<td>.252</td>
<td>.722</td>
</tr>
<tr>
<td>PASAT</td>
<td>41.6 (16)</td>
<td>42 (12.3)</td>
<td>48.3 (12.3)</td>
<td>.061</td>
<td>.111</td>
<td>.226</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Note:—CVLT2 indicates California Verbal Learning Test, 2nd ed; BVMT-R, Brief Visuospatial Memory Test–Revised; D-KEFS, Delis-Kaplan Executive Function System; SDMT, Symbol Digit Modalities Test; dNPSLE, neuropsychiatric systemic lupus erythematosus with diffuse syndromes.

* Reported measures are raw scores. The statistical analysis of the groups was performed using 1-way analysis of covariance, adjusted for age and sex. Post hoc tests between the individual groups were performed using a Bonferroni correction.

Table 3: Comparison of conventional MR imaging characteristics among the study groups

<table>
<thead>
<tr>
<th></th>
<th>MS (n = 30)</th>
<th>dNPSLE (n = 23)</th>
<th>HC (n = 43)</th>
<th>ANOVA (P Value)</th>
<th>MS vs HCs (P Value)</th>
<th>dNPSLE vs HCs (P Value)</th>
<th>MS vs dNPSLE (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 lesion number (mean) (SD)</td>
<td>31 (19.2)</td>
<td>11.7 (9.3)</td>
<td>7.9 (4.8)</td>
<td><.0001</td>
<td>.06</td>
<td><.0001</td>
<td><.0001</td>
</tr>
<tr>
<td>T2 lesion volume (mean) (SD)</td>
<td>15.2 (3.1)</td>
<td>19 (1.3)</td>
<td>16 (4)</td>
<td><.0001</td>
<td>.023</td>
<td><.0001</td>
<td><.0001</td>
</tr>
<tr>
<td>Normalized WB volume (mean) (SD)</td>
<td>1490.4 (113.5)</td>
<td>1570.3 (79)</td>
<td>1596.5 (64.2)</td>
<td><.0001</td>
<td>.465</td>
<td><.0001</td>
<td>.003</td>
</tr>
<tr>
<td>Normalized WM volume (mean) (SD)</td>
<td>784.5 (58.0)</td>
<td>829.3 (45.1)</td>
<td>849.0 (40.8)</td>
<td><.0001</td>
<td>.285</td>
<td><.0001</td>
<td>.005</td>
</tr>
<tr>
<td>Normalized GM volume (mean) (SD)</td>
<td>704 (63.9)</td>
<td>751.5 (58.8)</td>
<td>755.3 (42)</td>
<td>.001</td>
<td>.964</td>
<td><.0001</td>
<td>.008</td>
</tr>
</tbody>
</table>

Note:—WB indicates whole-brain; dNPSLE, neuropsychiatric systemic lupus erythematosus with diffuse syndromes.

* The statistical analysis among the groups was performed using 1-way analysis of variance with post hoc Tukey correction, except for the T2 lesion number and volume, which were analyzed using the Mann-Whitney U test. All volumes are given in milliliters.

* P value for MS vs HCs.

* P value for SLE vs HCs.

* P value for MS vs SLE.
Patients with MS showed significantly decreased WM volume compared with HCs (P < 0.001). The patients with MS also showed significantly decreased WM volume compared with patients with NPSLE (P = 0.005). No significant WM volume differences were found between patients with NPSLE and HCs.

Patients with MS showed significantly decreased GM volume compared with patients with NPSLE (P = 0.008) and also compared with HCs (P = 0.001). No significant GM volume differences were found when comparing patients with NPSLE and HCs.

Diffusion Tensor Imaging White Matter Characteristics among the Study Groups

Figure 2 summarizes the results of WM tract differences by using the TBSS analysis. Highlighted areas represent significant diffusivity differences among the 3 study groups corrected for multiple comparisons at the family-wise P < 0.05 level on the threshold-free cluster-enhanced images. Table 4 shows the global WM differences among the study groups.

In the TBSS analysis comparing patients with MS and HCs, patients with MS showed significant widespread damage throughout WM tracts across all diffusion metrics without any specific regional predilection for FA, MD, AD, and RD (Fig 2, left column). Global WM measures also revealed significantly different diffusivity characteristics across all diffusivity metrics (FA, P = 0.001; MD, P < 0.0001; AD, P = 0.006; and RD, P < 0.0001; Table 4).

TBSS contrasts between patients with NPSLE and HCs also revealed widespread differences in WM tract diffusivity in MD, RD, and AD measures; however, no significant differences were found for FA (Fig 2, middle column). Global WM measures also revealed significant differences for MD (P = 0.001), AD (P = 0.003), and RD (P < 0.0001), but not for FA (Table 4).

TBSS contrasts between patients with MS and those with NPSLE showed prevalent FA differences throughout central WM pathways, including the corpus callosum; the inferior longitudinal and fronto-occipital fasciculi; and also parts of the forceps major, forceps minor, cingulum, and thalamic radiation (Fig 2, right column). Figure 3 provides additional sagittal and coronal views of decreased FA in patients with MS compared with patients with NPSLE. There were no significant differences in TBSS analysis between patients with MS and those with NPSLE for MD, AD, and RD measures. Global WM measures showed no significant differences between patients with MS and those with NPSLE for any diffusion metrics.

White Matter Tract Integrity and Cognitive Function Associations among the Study Groups

Figure 4 shows the results of within-group comparisons of cognitive performance and WM tract integrity diffusion metrics for each subject group.
Lower cognitive scores in patients with MS were significantly associated with decreased FA and MD for all examined domains, while in patients with NPSLE, only decreased FA in the superior WM pathways was significantly associated with executive functioning (Delis-Kaplan Executive Function System). Lower PASAT scores were significantly associated with increased MD in the HC group.

DISCUSSION

While the full extent of NPSLE and MS pathology is not completely understood, both diseases involve inflammatory autoimmune processes that lead to axonal loss with consequent neurologic impairment and deficits in cognitive performance. Lower cognitive scores in patients with MS were significantly associated with decreased FA and MD for all examined domains, while in patients with NPSLE, only decreased FA in the superior WM pathways was significantly associated with executive functioning (Delis-Kaplan Executive Function System). Lower PASAT scores were significantly associated with increased MD in the HC group.

Lower PASAT scores were significantly associated with increased MD in the HC group.

DISCUSSION

While the full extent of NPSLE and MS pathology is not completely understood, both diseases involve inflammatory autoimmune processes that lead to axonal loss with consequent neurologic impairment and deficits in cognitive performance. Numerous studies have also revealed WM abnormalities in patients with NPSLE, including the presence of WM lesions and increased WM tract diffusivity. The pathogenesis of CNS involvement in SLE is likely related to an inflammatory response secondary to auto-antibody-mediated vasculitis.

The increased sensitivity in DTI has proved useful for detecting WM tract deterioration. DTI allows quantitative measurements of diffusion anisotropy along WM tracts. FA is a widely used measure that reflects the degree of directionality of water diffusion. For example, the myelin within intact WM tracts generally is uniformly oriented parallel to the overall tracts, and molecular water movement is much greater parallel to the tracts than perpendicular to the tracts. This myelin orientation results in highly directional, anisotropic diffusion and therefore high FA values. However, as tracts become damaged due to demyelination or other pathologic processes, the tissue structure becomes less orderly and FA decreases as water diffuses more freely in multiple directions. While FA reflects the directionality of diffusion, MD reflects the magnitude of diffusion. AD corresponds to the diffusivity along the principal axis, whereas RD corresponds to the average of the diffusivities along the 2 minor axes.

The results of this study are consistent with those in prior studies showing significant WM damage in patients with MS compared with HCs across measures of FA, MD, RD, and AD, by using both TBSS and global WM analysis. The results are also consistent with prior studies showing that subjects with MS perform significantly worse than HCs on cognitive tests assessing processing speed, working and visual-spatial processing/memory, sustained attention, and executive function.

The diffuse SLE syndromes such as anxiety disorders, mood disorders, headache, and cognitive impairment may be the result of diffuse damage, whereas focal SLE syndromes such as seizures, strokes, and transient ischemic attacks, result in high-attenuation focal lesions. Several studies have shown regionally-specific decreased FA and increased MD in patients with NPSLE compared with HCs. In our comparison of patients with diffuse NPSLE and HCs, we found significant differences in MD, AD, and RD in both the TBSS and global WM measures; however, we did not

Table 4: Comparison of global white matter diffusion tensor imaging characteristics among the study groups

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>dNPSLE</th>
<th>HC</th>
<th>MS vs HCs</th>
<th>dNPSLE vs HC</th>
<th>MS vs dNPSLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA (mean)</td>
<td>.398</td>
<td>.411</td>
<td>.418</td>
<td>.001</td>
<td>.112</td>
<td>.310</td>
</tr>
<tr>
<td>MD \times 10^{-3} (mean)</td>
<td>.786</td>
<td>.775</td>
<td>.734</td>
<td><.0001</td>
<td>.001</td>
<td>.780</td>
</tr>
<tr>
<td>AD \times 10^{-3} (mean)</td>
<td>1.149</td>
<td>1.150</td>
<td>1.096</td>
<td>.006</td>
<td>.003</td>
<td>.784</td>
</tr>
<tr>
<td>RD \times 10^{-3} (mean)</td>
<td>.604</td>
<td>.587</td>
<td>.553</td>
<td><.0001</td>
<td><.0001</td>
<td>.528</td>
</tr>
</tbody>
</table>

Note: dNPSLE indicates neuropsychiatric systemic lupus erythematosus with diffuse syndromes.

*The statistical analysis between the groups was performed using 1-way analysis of variance controlling for age and sex. FA is a dimensionless measure. Diffusivity is given in square millimeters second$^{-1}$.

P value for MS vs HCs.

***P** value for SLE vs HCs.

****P** value for MS vs SLE.

FIG 3. Details of TBSS FA comparison between patients with MS and those with NPSLE with diffuse syndromes. Red areas show where FA is significantly lower in patients with MS compared with patients with NPSLE in central white matter pathways, including the corpus callosum, inferior longitudinal fasciculus, and fronto-occipital fasciculus ($P < .05$).
detect differences in FA in either of the analyses. These findings may be because the present study included only subjects with SLE with diffuse neuropsychiatric syndromes, unlike the previous studies, which included patients with focal neuropsychiatric SLE syndromes. Diffusivity changes in patients with NPSLE might be due to increased extracellular water, resulting in more isotropic WM changes affecting both RD and AD; this increased extracellular water would account for differences in MD, but not in FA, between patients with NPSLE and HCs.

No significant differences were found between patients with NPSLE and HCs in WM volume. This finding is consistent with a recent study by Zivadinov et al. but contrary to the study of Appenzeller et al. In addition, no differences were found between patients with NPSLE and HCs in GM volume, contrary to findings in our previously published study.

Prior studies of cognitive impairment in SLE have most commonly found deficits in processing speed and working and verbal memory. Kozora et al. also found that subjects with SLE

FIG 4. Highlighted tracts display significant correlations between TBSS differences and performance on neuropsychological tests ($P < .05$). Red-highlighted tracts represent positive correlations, and blue-highlighted tracts represent negative correlations. For patients with MS, decreased neuropsychological scores significantly correlated with decreased FA and increased MD for each of the neuropsychological tests. For patients with NPSLE, decreased Delis-Kaplan Executive Function System scores significantly correlated with decreased FA. For HCs, increased PASAT scores correlated significantly with decreased MD. CVLT2 indicates California Verbal Learning Test, 2nd ed; BVMT-R, Brief Visuospatial Memory Test-Revised; D-KEFS, Delis-Kaplan Executive Function System; SDMT, Symbol Digit Modalities Test; dNPSLE, neuropsychiatric systemic lupus erythematosus with diffuse syndromes.
showed impaired working memory on the PASAT, which inversely correlated to WM abnormalities. In this study, patients with NPSLE generally performed worse than HCs on all the administered cognitive tests, though the differences were only significant for auditory and verbal memory.

In the TBSS analysis comparing patients with MS with those with NPSLE, there was more diffuse damage in MS as evidenced by decreased FA throughout the central WM, including the corpus callosum and the inferior longitudinal and fronto-occipital fasciculi. However, no significant differences between patients with NPSLE and patients with MS were found for MD, AD, or RD; and the global WM measures failed to reveal differences in these diffusivity metrics.

It is possible that the positive findings of FA differences between MS and NPSLE and negative findings of MD, AD, and RD merely reflect insufficient statistical power. However, given the reasonably large group sizes involved, one should consider the true biologic mechanisms for this seemingly contradictory result. Increased RD has been shown to be a marker of decreased myelin content in postmortem MS brains.50 Studies using MS mouse models have also established that changes in RD are attributed to myelin damage and additionally that AD characteristics are a strong predictor of axonal attenuation.51,52 Recent studies suggest that while axonal loss is characteristic of NPSLE pathology, demyelination is a less specific finding in patients with NPSLE.34,53 Although not significant between the disease groups, in MS versus HC, RD was increased by 9.2% compared with 4.8% for AD. In contrast, in NPSLE, RD was only increased by 6.1%, closer to the 4.9% difference in AD.

In patients with MS, it is likely that cognitive deficits are associated with the loss of WM integrity. However, in patients with NPSLE, the explanation for cognitive deficits was less clear. Executive function was the only domain that showed a significant association with decreased WM integrity. However, the lack of association between diffusivity and performance of other cognitive domains may be related to greater local anatomic heterogeneity of WM damage in the subjects. Most surprising, HCs also showed a correlation between MD and cognitive performance on the PASAT. It would be interesting in the near future to explore changes of diffusivity and attention and processing speed in relation to the age and sex of healthy individuals.

There are some limitations in the current study. Ideally, diffusion images can be corrected by field maps, which analytically remove distortion errors, or by the acquisition of 2 datasets with opposite phase-encoding directions, which can correct for both distortion errors and intensity artifacts. We were not able to acquire data in this way during clinical routine scanning and so used an ad hoc technique of nonlinearly aligning to FLAIR. While this corrects substantially for spatial distortions, it cannot recover lost intensity information near sinuses and other air/bone interfaces. Another limitation is that both MS and NPSLE had different clinical disease characteristics, so matching these 2 types of patients from the disease severity point of view is a difficult task. However, we matched the patients for disease duration and disease severity on the basis of the respective criteria for each condition, which certainly does not overcome the elimination of differences between the 2 disease states.

CONCLUSIONS

MS has provided an interesting comparison for the less studied disease, NPSLE. Our analyses confirmed the results of prior studies showing that patients with both MS and NPSLE experience significant decreases in WM tract integrity, compared with HCs. Global WM measures comparing patients with MS and those with NPSLE showed no significant differences, but more specific TBSS investigation indicated FA differences specifically in the central WM pathways between the groups. The decrease in WM tract integrity was associated with reduced cognitive function in all explored cognitive domains only in patients with MS, while the decline in verbal and auditory memory in patients with NPSLE was not associated with altered WM integrity. A larger and longitudinal study would be necessary to better evaluate how changes in MR imaging findings correlate with cognitive dysfunction in patients with NPSLE.

ACKNOWLEDGMENTS

We thank Ofir Pasternak for allowing us to use his free water elimination code.

REFERENCES

Disclosures: Michael G. Dwyer—UNRELATED: Consultancy: EMD Serono, Claret Medical, Comments: Michael Dwyer has served as a consultant for Claret Medical and on a scientific advisory board for EMD Serono; Grants/Grants Pending: Novartis, Comments: Michael Dwyer has received research grant support from Novartis; Janet L. Shucard—RELATED: Grant: National Institutes of Health*; Support for Travel to Meetings for the Study or Other Purposes: National Institutes of Health.* Ralph H.B. Benedict—UNRELATED: Consultancy: Biogen, Genentech, Genzyme, Sanofi, Adamas; Grants/Grants Pending: Biogen, Novartis, Genzyme, Acorda, Questcor; Payment for Lectures (including service on Speakers Bureaus): EMD Serono; Royalties: Psychological Assessment Resources; Other: Ralph H.B. Benedict received research support from Biogen Idec and Shire and serves on advisory panels for Bayer, Biogen, Novartis, and Actelion. Biance Weinstock-Guttman—UNRELATED: Consultancy: Biogen Idec, Teva Neuroscience, EMD Serono, Novartis, Genzyme, Sanofi; Grants/Grants Pending: Biogen Idec,* Teva Neuroscience,* EMD Serono,* Novartis,* Genzyme,* Sanofi,* Payment for Lectures (including service on Speakers Bureaus): Biogen Idec, Teva Neuroscience, EMD Serono, Novartis, Genzyme, Sanofi; Other: Biance Weinstock-Guttman received honoraria as a speaker and as a consultant for Biogen Idec, Teva Pharmaceuticals, EMD Serono, Pfizer, Novartis, and Acorda. Dr Weinstock-Guttman received research funds from Biogen Idec, Teva Pharmaceuticals, EMD Serono, Pfizer, Novartis, Pfizer, and Cyberonics. David W. Shucard—RELATED: Grant: National Institutes of Health—National Institute of Neurological Disorders and Stroke,* Comments: grant title: Neurological Indices of CNS Involvement in “Non CNS” SLE; Support for Travel to Meetings for the Study or Other Purposes: National Institutes of Health—National Institute of Neurological Disorders and Stroke.* Robert Zivadinov—UNRELATED: Consultancy: Teva, Genzyme, Biogen, Novartis, Claret Medical, Grants/Grants Pending: Teva, Genzyme, Biogen, Novartis, Claret Medical, Payment for Lectures (Including service on Speakers Bureaus): Teva, Genzyme, Biogen, Novartis, Claret Medical, *Money paid to the institution.

Cytotoxic Edema in Posterior Reversible Encephalopathy Syndrome: Correlation of MRI Features with Serum Albumin Levels

B. Gao, B.X. Yu, R.S. Li, G. Zhang, H.Z. Xie, F.L. Liu, and C. Lv

ABSTRACT

BACKGROUND AND PURPOSE: Posterior reversible encephalopathy syndrome is a clinicoradiologic entity with typical MR imaging showing predominant vasogenic and occasional cytotoxic edema. It is unclear whether MR imaging correlates with levels of serum albumin. We determined potential risk factors for development of cytotoxic edema in posterior reversible encephalopathy syndrome.

MATERIALS AND METHODS: Seventy-nine cases with typical clinical symptoms and characteristic neuroradiologic findings conformed to posterior reversible encephalopathy syndrome diagnostic criteria and were included in this study. FLAIR, DWI, and ADC maps were interpreted to evaluate the severity and type of edema. MR imaging was correlated with the levels of serum albumin, and cytotoxic edema was compared with the location and severity of brain edema.

RESULTS: Pure vasogenic edema was found in 53 cases (67.09%), and vasogenic edema complicated with cytotoxic components, in 26 patients (32.91%). There was no difference in serum albumin levels between patients with cytotoxic components and those with vasogenic edema (P = .983). There was a significant difference in the edema scale scores between patients with cytotoxic edema and those with vasogenic edema (P = .006). The percentage of cytotoxic edema located in the area with higher scale scores of edema was significantly larger than that in areas with lower scale scores of edema (P = .002).

CONCLUSIONS: Serum albumin may contribute to the development of edema in PRES but is not a decisive factor for edema type. Cytotoxic edema in posterior reversible encephalopathy syndrome is probably related to regional decreased perfusion and arteriolopathy. Further work should be undertaken to discover the pathophysiologic mechanisms involved.

ABBREVIATIONS: COP = colloid osmotic pressure; PRES = posterior reversible encephalopathy syndrome

Posterior reversible encephalopathy syndrome (PRES) is a clinicoradiologic entity presenting with headache, visual blurring, alteration of mental state, and acute onset of seizures. MR imaging typically demonstrates evidence of vasogenic edema in the subcortical white matter and cortex, which predominantly involves the bilateral parieto-occipital lobes.1,2 DWI most commonly shows isointensities in the region of vasogenic edema as demonstrated by abnormalities on T2-weighted imaging or FLAIR images. However, although referred to as a reversible process, foci of reduced diffusion have been described in 17%–26% of patients with PRES.3,4 Cytotoxic edema in or outside the massive vasogenic edema was found in a relatively lower proportion of patients with PRES and could be differentiated from vasogenic edema by using DWI. Early detection of cytotoxic edema in PRES is critical to prevent vasogenic edema from progressing into irreversible insult.

Several theories exist as to why regions of reduced diffusion are seen in some cases of PRES.5 The most popular theory is hyper-perfusion causing severe mass effect from vasogenic edema with compression of local microcirculation.6,7 Ay et al6 suggested that increased tissue pressure eventually impairs the microcirculation and leads to ischemia in areas of massive vasogenic edema. Covarrubias et al7 found that cytotoxic edema developed in the cortex immediately adjacent to the area with intensely elevated ADC values in subcortical white matter, which is consistent with a
heavy burden of fluid in the interstitium. It has also been suggested that edema with resultant vasoconstriction or vasospasm (with or without subarachnoid hemorrhage) leads to cytotoxicity. Bartynski et al confirmed a high incidence of vascular abnormality in PRES (focal vasoconstriction, vasodilation, and string-of-beads appearance) at conventional angiography and demonstrated these observations and the reversibility at MRA. It remains unclear why vasogenic edema in PRES develops into cytotoxic edema. Unchecked vasogenic edema may develop into cytotoxic edema or irreversible insults. Pirker et al recently reported that vasogenic edema in PRES was much more frequent in patients with decreased levels of serum albumin, whereas cytotoxic components occurred more frequently in patients with normal levels. However, the extent to which vasogenic edema is associated with reduced serum albumin levels remains unclear, as does the cause of cytotoxic edema development.

Some studies have demonstrated that cytotoxic edema is more commonly seen in PRES. In the present study, we determined the association of edema type with the levels of serum albumin in patients with PRES. We hypothesized the following: 1) the level of serum albumin would correlate with edema type, 2) severe vasogenic edema could progress into cytotoxic edema, and 3) the location of cytotoxic edema would relate to the extent and location of vasogenic edema.

MATERIALS AND METHODS
Seventy-nine patients clinically diagnosed with PRES were identified during admission to Yantai Yuhuangding Hospital from January 1, 2008, to October 31, 2014, and were pooled with a data base containing complete electronic clinical records. Our institutional review board approved this study with a waiver of informed consent. The definition of PRES used in this study fulfills the following criteria: 1) presentation with acute clinical symptoms such as headache, altered mental status, seizures, or visual disturbance with or without elevated systemic blood pressure; 2) presence of known risk factors such as hypertension, eclampsia, renal failure, use of immunosuppressive drugs, or other known causes; 3) distributions of T2WI or T2-FLAIR hyperintensities compatible with typical PRES imaging patterns; 4) clinical and imaging abnormalities mostly or completely resolved after proper therapy; and 5) other possible causes of encephalopathy or vasogenic edema ruled out. Exclusion criteria included the inability to complete the imaging examination or severe motion degradation resulting in nondiagnostic images and known systematic factors that would affect the results of blood sampling.

The presence or absence of hypertension and evidence of endothelial injury and hemolysis (lactate dehydrogenase, liver function, kidney function) was recorded. Serial venous blood samples were collected at admission to our hospital at symptom onset. The time interval from symptom onset to the collection of blood samples was recorded in all patients. MR imaging was performed at our institution on 3T MR imaging equipment. Conventional axial T1WI, T2WI, FLAIR, and DWI sequences were acquired, and coronal or sagittal T2WI scanning was available for all patients. MR imaging was performed as soon as possible on the day of symptom onset, and the time interval from symptom onset to MR imaging examinations was recorded in all patients.

All MR imaging results were reviewed by 2 senior neuroradiologists (G.B., L.F.-L.) blinded to clinical data. Each reviewer thoroughly interpreted the location, distribution, and severity of the signal abnormality; the presence of hemorrhage; and reduced diffusion. The locations of hyperintensities were defined as frontal lobe, parieto-occipital region, temporal lobe, basal ganglia, cerebellum, brain stem, deep white matter, cortical zone, subcortical zone, or watershed zone. We scored 1 for any region with signal abnormality in the bilateral hemispheres. The sum of scores of all affected locations in an individual patient provided the score of brain edema. The severity of the abnormality was graded on a scale of 0–3 based on FLAIR images (0, normally appearing brain parenchyma; 1, subtle signal abnormalities that were only faintly visible; 2, larger confluent areas of hyperintense abnormalities that were easily perceptible; and 3, complete involvement of the brain region) modified from McKinney et al. Images of patients with multiple MR examinations were analyzed for resolution of imaging abnormalities.

The type of edema can be categorized as vasogenic or cytotoxic. Vasogenic edema was determined by T2WI hyperintensity without reduced diffusion, while cytotoxic edema was considered in cases of T2WI hyperintensity with reduced diffusion. When we measured molecular motion with DWI, only the ADC value could be calculated. Reduced diffusion was determined by the ADC value, which was calculated as follows:

\[\text{ADC} = \ln \left(\frac{S_0}{S} \right) / (b_1 - b_0) \]

where \(S_0 \) and \(S \) are the image intensities at b-values of \(b_0 \) and \(b_1 \), respectively.

The PASW statistical package (IBM, Armonk, New York) was used for all statistical analyses. Data normality was tested with the Shapiro-Wilk test. Normally distributed data are expressed as mean ± SD, and data that are not normally distributed are presented as median (interquartile range). Intergroup comparison was performed by using the Student t test for normally distributed variables and the Mann-Whitney U test for variables not normally distributed.

RESULTS
Seventy-nine patients (34 male, 45 female; age range, 7–66 years; mean age, 32.1 ± 11.5 years) with complete in-hospital clinical records were included in this study. Thirty-five (44.3%) of all 76 cases were patients with eclampsia or pre-eclampsia, 25 cases (31.6%) were patients with chronic renal failure, 14 (17.7%) were patients with hypertension, and 5 (6.3%) had different clinical conditions (autoimmune disease in 3 and cancer chemotherapy in 2). Clinical symptoms included headache in 68 patients (86.07%), altered mental state in 59 (74.68%), seizures in 40 (50.63%), visual disturbances in 25 (31.64%), and focal neurologic deficit in 11 patients (13.92%).

All patients had typical clinical symptoms and characteristic MR imaging findings of PRES. The parietal and occipital regions were involved in all 79 (100%) patients; the frontal region, in 70 (88.61%); and the temporal region, in 36 (45.57%). The cerebellum was involved in 30 (37.97%) patients; the deep gray matter, in 22 (27.85%); the brain stem, in 15 (18.99%); the periventricular region, in 12 (15.19%); and the corpus callosum, in 10 (12.66%) patients. Hemorrhages were present in 16 (20.25%) patients. Nine had intraparenchymal hemorrhages, 5 had cerebral micro-
leeds, and 2 had subarachnoid hemorrhages. MR venography examinations were performed in 56 patients (70.89%) and did not reveal an abnormality in any patient.

After analyzing all the study images including T1WI, T2WI, FLAIR, DWI sequences, and ADC maps, we found pure vasogenic edema in 53 cases (67.09%) and vasogenic edema complicated with cytotoxic components in 26 patients (32.91%). The type of edema was not associated with the interval between the onset of symptoms and MR imaging examinations (P = .58, Mann-Whitney U test) or with the interval between the onset of symptoms and blood sample collection (P = .34, Mann-Whitney U test).

There was no difference in the time from presentation to imaging or to blood sample collection across subjects (P = .61, Mann-Whitney U test).

Serum albumin levels were normally distributed in all patients with PRES (P = .059, Shapiro-Wilk test), and a decrease of serum albumin concentration (<35 mg/dL) was observed in 67/79 patients (84.8%; mean, 23.6 ± 5.8 mg/dL). There was no difference in the serum albumin levels between patients with cytotoxic edema and those without (P = .983, Mann-Whitney U test) (Fig 1). There was no significant difference in the percentage of serum albumin decrease between patients presenting with cytotoxic edema (21/26, 80.77%) and those without (46/53, 86.79%) (Table). The scale scores of edema in all patients were not normally distributed (P = .002, Fisher exact test) (Fig 2).

Comparison of clinical parameters in patients with present and absent cytotoxic edema

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cytotoxic Edema Present (n = 26)</th>
<th>Cytotoxic Edema Absent (n = 53)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>34.51 ± 11.42</td>
<td>33.21 ± 15.01</td>
<td>.74</td>
</tr>
<tr>
<td>Sex</td>
<td>11/15</td>
<td>21/32</td>
<td>.077</td>
</tr>
<tr>
<td>Cause<sup>a</sup></td>
<td>4/33</td>
<td>5/46</td>
<td>.19</td>
</tr>
<tr>
<td>MAP (mm Hg)</td>
<td>138.51 ± 28.63</td>
<td>124.83 ± 30.22</td>
<td>.13</td>
</tr>
<tr>
<td>ALB (mg/mL)</td>
<td>522.00 ± 241.47</td>
<td>388.00 ± 191.38</td>
<td>.98</td>
</tr>
<tr>
<td>ALB decreased ratio</td>
<td>22/26</td>
<td>45/53</td>
<td>.12</td>
</tr>
<tr>
<td>SBE</td>
<td>20.36 ± 11.43</td>
<td>10.24 ± 7.20</td>
<td>.003<sup>b</sup></td>
</tr>
</tbody>
</table>

Note: MAP indicates mean arterial pressure; ALB, albumin; SBE, score of brain edema.

^aPercentage of patients with eclampsia or pre-eclampsia.

^bSignificant.

Scores of brain edema in all patients were not normally distributed (P = .037, Shapiro-Wilk test), and serum albumin levels were not correlated with scores of brain edema (P = .145). There was a significant difference in scores of brain edema between patients with cytotoxic components and those without (Z = 2.969, P = .003, Mann-Whitney U test). The extent of edema in patients with cytotoxic components was significantly larger than that of patients without (Table). The percentage of cytotoxic edema located in the area with higher scale scores of edema (≥3) was significantly larger than that in those with lower scale scores (≤2) (P = .002, Fisher exact test) (Fig 2).

FIG 1. Comparison of serum albumin levels between patients with PRES with cytotoxic edema and those only with vasogenic edema. A. A 26-year-old pregnant woman presented with eclampsia, with a serum albumin level of 37 mg/dL. Hyperintense abnormalities are found in bilateral frontoparietal lobes on FLAIR (left), hyperintense on DWI (middle) and hypointense on ADC (right), and are also noted in the right parietal lobe, indicating cytotoxic edema. B. A 22-year-old woman with systemic vasculitis with a serum albumin level of 34.2 mg/dL and blood pressure of 175/110 mm Hg at onset. Symmetric hyperintensities are found in the bilateral frontoparietal lobes on FLAIR (left), isointense on DWI (middle) and hypointense on ADC (right), indicating vasogenic edema.
DISCUSSION

In the present study, decreased levels of serum albumin were found in 84.8% of all patients, suggesting that a change in serum albumin levels may be one of the potential factors resulting in edema development in PRES. Serum albumin is a main contributor to colloid osmotic pressure (COP). Decrease of serum albumin levels would result in retention of intravascular fluid by reducing perfusion pressure.11 In conditions with endothelial damage due to inflammatory processes, reduction of COP may facilitate fluid extravasation and edema development.10 Vasoergic edema can be aggravated by a marked decrease of COP, as shown by Pirker et al.10 However, we observed that serum albumin concentration was not associated with edema type and was decreased in patients with cytotoxic edema. Albumin contributes to up to 80% of COP in healthy subjects. However, its contribution toward COP is only 17% in critically ill individuals.12 Reduction of COP alone would not cause edema in the normal brain tissue, which is largely due to the properties of capillary endothelium that constitute the BBB.13 The failure of autoregulatory mechanisms involved in the maintenance of CBF might also lead to hyperperfusion and vasogenic edema in the presence of excessive elevations in systemic blood pressure. Low serum albumin may be a surrogate marker of disease severity rather than an indicator of low COP. Therefore, when one treats patients with PRES with hypoalbuminemia, the underlying cause of hypoalbuminemia should probably be treated first. Two of our patients hardly improved with hypoalbuminemia treatment. While improving hypoalbuminemia may or may not help the patient, correction of the underlying disorder is more critical than merely reversal of hypoalbuminemia.14

The pathogenesis of brain lesions in PRES is not fully understood, and 2 opposing theories have been proposed.15 Endothelial dysfunction seems to better account for the mechanisms of PRES, given that both vasogenic and cytotoxic edema could occur in PRES, as well as hypoperfusion or hyperperfusion.16 Forced dilation of cerebral arteries and disruption of the integrity of the BBB are considered the most important mechanisms underlying vasogenic edema observed in patients with PRES and hypertension. Alternatively, ischemia triggered by systemic inflammation, endothelial injury, and vascular dysfunction is also suggested to contribute to vasogenic edema observed in PRES, as well as active leakage of fluid due to other processes affecting the vascular wall. Parenchymal contrast enhancement, typically seen only with injury to the BBB, also supports this theory. Although most patients do not show any abnormal enhancement on postcontrast T1WI, it has been reported to occur in 21%–38% of patients with PRES.3,4 Typically, the enhancement is a mild, gyri form, and there is leptomeningeal or cortical enhancement within the lesions on postcontrast imaging studies. More commonly than in adults, contrast enhancement in children showed that pathophysiology was related to the BBB breakdown and also supported the theory of toxic endothelial injury.17 BBB dysfunction might not only be restricted to areas with apparent lesions but could also involve the normal-appearing cerebral tissue, and even the retinal circulation.18 Therefore, endothelial injury or injury to the BBB is

FIG 2. Comparison of the scores of brain edema between patients with PRES with cytotoxic edema and those only with vasogenic edema. A, A 25-year-old woman with eclampsia and seizures after cesarean delivery. FLAIR image shows symmetric confluent heterogeneous hyperintensities in the bilateral, frontal, and parietal lobes (left) with a scale score 3 of edema severity and marked hyperintensity in the adjacent cortex on DWI (middle), with hypointensity on the ADC map (right), indicating cytotoxic edema. B, A 27-year-old man with hypertension and nephritis had headache with blood pressure of 180/120 mm. Symmetric hyperintensities are found in the bilateral occipital lobes on FLAIR (left) with a scale score 1 of edema severity, isointense on DWI (middle) and hyperintense on ADC (right), indicating vasogenic edema.
probably more likely than the other mechanism to account for the spectrum and variety of physiologic findings noted in PRES.

In this study, cytotoxic components in vasogenic edema were found in 33% of all patients, a slightly higher percentage compared with 17%–26% of patients with PRES with foci of reduced diffusion in prior studies of these patients.3,4 This slightly higher percentage may be attributable to either case selection criteria or case source.

Several studies have reported radiologic findings of cytotoxic edema or ischemia in PRES,3,4 which were associated with fibrinoid necrosis and microinfarction in pathologic studies.19,20 Cytotoxic edema manifests as DWI hyperintensity with decreased ADC values. Moreover, in patients with cytotoxic edema, there is partial reversal or nearly complete resolution of the abnormality, and even patients with cytotoxic edema would not show conversion to infarction or may have mild atrophy. Cytotoxic edema in the acute phase does by no means imply conversion to infarction, and DWI does not seem to be a valid prognostic marker.21 The value of DWI and ADC maps in predicting the clinical prognosis of PRES warrants further investigation.22 Cytotoxic edema in PRES may be attributable to cerebral vasospasm, with endothelial activation or injury leading to reduced CBF with consequent hypoxia, as described in several PRES studies using MR imaging or conventional angiography.9 Most interesting, a recent study reported that the high incidence of cerebral microbleeds was not correlated with edema severity/extent and the presence of DWI-positive findings.23 Atypical neuroimaging appearances, such as intracranial hemorrhage, cytotoxic edema, and abnormal enhancement, may reflect endothelial injury or disruption and would contribute to early diagnosis and prognosis evaluation.24 Vascular imaging and perfusion imaging would be helpful to further elucidate the mechanism of edema development in PRES.25

We showed that the scale scores of edema in patients with cytotoxic components were significantly higher than those in patients with pure vasogenic edema, and the percentage of patients with cytotoxic edema in areas with higher scale scores was significantly higher than that in those areas with lower scale scores. The presence of ischemia within areas of vasogenic edema has been observed in several retrospective studies.3,4,8,7 However, to the best of our knowledge, the development of ischemia with an increasing degree of brain edema has not been well-described. A correlation between the presence of vasculopathy and ischemia was recently reported, suggesting a causal relationship between cytotoxic edema and larger areas of vasogenic edema.26 The normally protective vasoconstrictive response can progress into vasospasm, leading to local hypoxia, BBB disruption, fluid extravasation, and subsequent edema.27 Enhanced systemic endothelial activation (swelling) and leukocyte trafficking and vasoconstriction, alone or in combination, may result in brain and systemic hypoperfusion.15 Therefore, higher scale scores of brain edema often develop and progress into ischemia. We also found that most cytotoxic edema was superimposed on, or adjacent to, the larger areas of vasogenic edema. A larger area of edema is typically contiguous and crosses large vessel boundaries, rather than being a watershed pattern. The mass effect induced by larger areas of vasogenic edema would compress or shift the vessels passing through or around the edema region, which may result in regional hypoperfusion, elevation of tissue pressure, and reduction of CBF to ischemic levels, as well as vasoconstriction.5,28 Subsequently, the areas surrounding marked vasogenic edema may progress to cytotoxic edema. We agree with the proposal that cytotoxic edema in PRES is probably related to local decreased perfusion and arteriolopathy.28 However, further work should be performed to uncover the pathophysiologic mechanisms involved.

Eclampsia or pre-eclampsia is the primary clinical cause of PRES. During a normal pregnancy, the BBB adapts to prevent circulating permeable factors from entering the brain. Plasma from women with pre-eclampsia has been found to increase the permeability of the BBB; the latter would permit the passage of damaging antivasogenic and antiendothelial proteins into the brain and result in neurologic symptoms of eclampsia.29,30 A higher percentage (44.3%) of patients with eclampsia was also found in this study than was typically seen in past studies, which may be related to either our university hospital type or case-selection criteria. Ishikura et al31 even reported 7 pediatric patients with nephrotic syndrome who developed PRES and had low levels of serum albumin, implying a possible correlation between them. In these patients, PRES rapidly abated after the addition of albumin, despite further treatment with cytotoxic substances. Infusion of human serum albumin at early and reversible phases to increase oncotic pressure and restore antioxidative potential could theoretically prevent widespread oxidative and/or ischemic damage to vulnerable tissue in PRES.10 Many cases of acute toxic leukoencephalopathy may share common causes and pathophysiologic features with PRES. Reduced diffusion is typically seen in association with acute toxic leukoencephalopathy but less commonly in PRES, which could account for the differences of the mechanism and location in white matter involvement between the 2 processes.32

Because clinical factors, imaging findings, and CSF laboratory results may influence the prognosis of PRES, a few limitations of this prospective study should be noted. First, selection bias toward the etiology of PRES may result in significant heterogeneity as to the relative proportion of patients for the study, and it is difficult to determine a single underlying etiology for PRES, often having multiple etiologies. Second, although vasculopathy is thought to play an important part in the pathophysiology of PRES, MR angiography was not routinely performed in our study. Additionally, the extent to which inflammatory changes contribute to vasculopathy has not been clarified. Third, because urine testing is not routinely performed at the onset in our patients with PRES, urine albumin concentrations could not be appreciated with serum albumin levels and neither could albumin concentration in CSF based on lumbar puncture.33 Prospective exploration is warranted to establish the association of biochemical values with unfavorable outcome in patients with PRES, and this might prove useful to clinicians of various disciplines involved in the care of these patients.34,35

CONCLUSIONS

Serum albumin may be a potential contributor to the development of edema in PRES, but it is not a decisive factor for edema type. Cytotoxic edema or ischemia is often seen in larger areas or to a higher extent of vasogenic edema, which is probably related to
local decreased perfusion and arteriolopathy. Further work should be performed to uncover and understand the pathophysiological mechanisms involved.

ACKNOWLEDGMENTS

The authors are grateful for the assistance of Dr Ri-ming Liu in the laboratory tests.

Disclosures: Bo Gao—RELATED: Grant: National Natural Science Foundation of China [Grant No. 81471646].

REFERENCES

13. Drummond JC. Colloid osmotic pressure and the formation of posttraumatic cerebral edema. Anesthesiology 2010;112:1079–81
25. Hinchey JA. Reversible posterior leukoencephalopathy syndrome: what have we learned in the last 10 years? Arch Neurol 2008;65:175–76
Seizure Frequency Can Alter Brain Connectivity: Evidence from Resting-State fMRI

ABSTRACT

BACKGROUND AND PURPOSE: The frequency of seizures is an important factor that can alter functional brain connectivity. Analysis of this factor in patients with epilepsy is complex because of disease- and medication-induced confounders. Because patients with hot-water epilepsy generally are not on long-term drug therapy, we used seed-based connectivity analysis in these patients to assess connectivity changes associated with seizure frequency without confounding from antiepileptic drugs.

MATERIALS AND METHODS: Resting-state fMRI data from 36 patients with hot-water epilepsy (18 with frequent seizures [≥2 per month] and 18 with infrequent seizures [≤2 per month]) and 18 healthy age- and sex-matched controls were analyzed for seed-to-voxel connectivity by using 106 seeds. Voxel-wise paired t-test analysis (P < .005, corrected for false-discovery rate) was used to identify significant intergroup differences between these groups.

RESULTS: Connectivity analysis revealed significant differences between the 2 groups (P < .001). Patients in the frequent-seizure group had increased connectivity within the medial temporal structures and widespread areas of poor connectivity, even involving the default mode network, in comparison with those in the infrequent-seizure group. Patients in the infrequent-seizure group had focal abnormalities with increased default mode network connectivity and decreased left entorhinal cortex connectivity.

CONCLUSIONS: The results of this study suggest that seizure frequency can alter functional brain connectivity, which can be visualized by using resting-state fMRI. Imaging features such as diffuse network abnormalities, involvement of the default mode network, and recruitment of medial temporal lobe structures were seen only in patients with frequent seizures. Future studies in more common epilepsy groups, however, will be required to further establish this finding.

ABBREVIATIONS: DMN = default mode network; HWE = hot-water epilepsy; PCC = posterior cingulate cortex; FDR = false-discovery rate

Behind the unquestionable clinical and electroencephalographic manifestations of an epileptic seizure, there lie several molecular, metabolic, cellular, and hemodynamic events that alter the function of the brain in a complex manner. These alterations may be transient, but many such events can have a cumulative effect, resulting in psychological and memory deficits, personality changes, and reduced functioning in patients with epilepsy. Advances in neurophysiology, functional imaging, and computational neurosciences have made it possible to derive models mathematically to describe such complex diseases.

Disease-state network analysis with resting-state fMRI is becoming increasingly popular because of its superior spatial resolution, nondependence on task, ease of acquisition, and ability to visualize whole-brain functional networks, which are amenable to long-term changes related to disease states.1 Application of connectivity principles to these data has promoted research in various aspects of epileptic seizures, and there has been overwhelming report of decreased connectivity around the seizure-onset zone2-6 and the default mode network (DMN) by several groups.7,8 In 2012, Jehi7 and Morgan et al9 reported that connectivity patterns were different in patients with right and left mesial temporal sclerosis and that there was decreased connectivity between the regions of the DMN and the hippocampus and amygdala in patients with mesial temporal sclerosis. Similarly, hemispheric connectivity analysis in patients with unilateral mesial temporal sclerosis revealed decreased local and intrahemispheric connectivity and...
increased interhemispheric connectivity. In contradistinction to the aforementioned results, there have been reports on increased hippocampal connectivity that was presumed to be a compensatory mechanism because it linearly correlated with a disease duration of >10 years. Graph-theory analysis of resting-state fMRI data from patients with epilepsy also revealed decreased functional nodal topologic properties of the DMN that were positively correlated with disease duration. Regional homogeneity analysis of resting-state fMRI data was even used as a presurgical tool for seizure identification in patients with MR-negative focal epilepsy. Thus, various models of data analysis have helped in understanding epilepsy further, and now there is increasing interest in using these models to reclassify epilepsy as a focal epileptogenic area or as a network of seizure-generating areas.

Gower’s clinical observation that “seizures beget seizures” in 1881 triggered several studies, especially animal models that addressed the genesis of epilepsy. Kindling is a phenomenon in which the repetition of subconvulsive electrical stimuli results in a progressive epileptic state and an increased frequency of seizures. Kindling is a continuous temporal process that remodels the mechanisms and circuits in the brain. Early changes, beginning with modulation of presynaptic and postsynaptic functioning in glutamate, N-methyl-D-aspartate, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and late changes, including mossy fiber sprouting, synaptogenesis/neurogenesis, and neurotrophic factor regulation, are known to occur as a result of kindling. The increased risk for seizure recurrence with increasing numbers of seizures was first demonstrated clinically by Hauser and Lee. The effects of seizure frequency and chronic epilepsy have been studied sparsely by using imaging techniques. For example, Wijdaja et al found no significant correlation with seizure frequency, age of seizure onset, or duration of epilepsy in a group of children with medically refractory epilepsy.

Apart from other disease-related confounders such as type of seizure, duration of epilepsy, age of onset, family history of epilepsy, etc, each of which can induce connectivity differences independently, a major limitation of interpreting the results of functional connectivity in patients with epilepsy is the use of antiepileptic drugs. Patients with hot-water epilepsy (HWE) present with a history of complex partial seizures clinically suggestive of temporal lobe onset with or without secondary generalization. Most patients are drug naive at their first evaluation, which provided us an opportunity to study networks that were affected by seizure frequency and matched for other disease-related confounders but not antiepileptic drugs. On the basis of the phenomenon of kindling, we hypothesized that seizures can alter brain connectivity and that the frequency of seizures can influence the magnitude of this alteration. We predicted that patients with a higher seizure frequency would have widespread changes in comparison with patients with a lower seizure frequency. We used seed-to-voxel–based resting-state fMRI connectivity in 36 drug-naive patients with HWE who were comparable in terms of various factors such as age, sex, education, and epilepsy-related confounders. We hope that such quantifiable noninvasive in vivo evidence further enhances knowledge of the etiopathogenesis of HWE and, if applicable to refractory epilepsy, can identify such patients early to avoid time-consuming trial-and-error methods of pharmacotherapy and facilitate early intervention to minimize cognitive deficits.

MATERIALS AND METHODS

This prospective study was conducted at a university hospital, a major tertiary care referral center for neurologic disorders. Written informed consent was obtained from each participant, and the study was approved by the institutional ethics committee of the National Institute of Mental Health and Neuro Sciences.

Participants. The participants were 36 drug-naive patients with HWE (male-to-female ratio, 3:1; mean age ± standard deviation, 28.86 ± 10.07 years) who were categorized into 1 of 2 groups: 18 patients (mean age, 29.06 ± 9.61 years; mean age at first seizure, 22.61 ± 8.39 years; mean duration of epilepsy, 6.56 ± 6.48 years) with a seizure frequency of >2 per month were assigned to the frequent-seizure group, and another 18 patients (mean age, 28.67 ± 10.78 years; mean age at first seizure, 20.69 ± 10.36 years; mean duration, 7.39 ± 9.76 years) with a seizure frequency of ≤2 per month were assigned to the infrequent-seizure group. The diagnosis of reflex HWE was based on criteria of the Commission of the International League Against Epilepsy.

Recruitment and evaluation were carried out under the supervision of 2 epileptologists (P.S. and S.S.). The demographic and phenotypic details were recorded. Eighteen healthy controls (male-to-female ratio, 3:1; mean age, 29.1 ± 9 years) matched in terms of age, sex, and years of education were recruited from the hospital staff. Only healthy participants who did not have any history of neurologic or psychiatric illnesses were enrolled in the study. Morphologic evaluation of brain MR imaging including the hippocampus revealed that none of the participants had any structural abnormalities.

Image Acquisition. All the participants underwent resting-state fMRI and structural MR imaging by using a 3T Skyra MR scanner (Siemens, Erlangen, Germany) with a 20-channel head coil. Foam pads were used to reduce head motion. The acquisition parameters for EPI using blood oxygen level–dependent contrast were as follows: volumes, 185; TR, 3000 ms; TE, 30 ms; sections, 34; section thickness, 4 mm; FOV, 192 × 192 mm; resolution, 64 × 64; refocusing pulse, 90°; and voxel size, 3 × 3 × 4 mm. The total time of acquisition for resting-state fMRI was 9 minutes 24 seconds. Anatomic images were acquired by using a 3D T1-weighted MPRAGE sequence in 192 sections with a TR of 1900 ms, a TE of 2.43 ms, a TI of 900 ms, an FOV of 256 × 256, a resolution of 256 × 256, and a section thickness of 1 mm. Axial FLAIR, T2, and gradient sequences were used to rule out structural abnormalities.

Image Analysis

Preprocessing. The functional and structural MR imaging preprocessing was performed by using statistical parametric map-
time-series for each subject was extracted and bandpass filtered for resting-state fMRI analyses, the blood oxygen level–dependent (BOLD) signal was modeled with autocorrelation and crosscorrelation of predefined duration (0.009–0.09 Hz). Because neural activation is localized to gray matter, fluctuations in white matter and CSF regions should primarily reflect signals of non-neural origin, such as cardiac or respiratory fluctuations. Hence, WM- and CSF-related physiologic noise source reduction was carried out by using the CompCor algorithm. The seed ROIs consisted of 3-mm-radius spheres centered on Montreal Neurological Institute coordinates used to identify the corresponding networks. Bivariate analysis was performed between each pair of ROIs. The general linear modeling was designed with canonical hemodynamic response function to determine significant connections at the individual level (first-level analysis). The connectivity maps were estimated for correlating seed region signals with voxel signals throughout the whole brain, thereby creating seed region–to-voxel Fisher-transformed connectivity maps. Second-level random-effects analysis was used to create within-group statistical parameter maps for each network and to examine connectivity differences between groups. The group mean effects were estimated for the 3 groups.

Statistical Analysis

Voxel wise paired t-test analyses between the 1) infrequent-seizure and control groups, 2) frequent-seizure and control groups, and 3) frequent-seizure and infrequent-seizure groups were performed to detect regions with significant intergroup differences. Between-group statistical parameter maps were thresholded at a whole-brain cluster-level–corrected value of .05 for a voxel wise P value of .005 with false-discovery rate (FDR) correction, which was more stringent than the required adjusted P value of ≤.017.

RESULTS

The demographic and phenotypic details of the patients are provided in Table 1. At the time of recruitment, each patient was drug naive and had never been prescribed antiepileptic drugs. On average, there was a gap of 10.5 ± 7.5 days between the last seizure and MR imaging (frequent-seizure group, 10.6 ± 7.5 days; infrequent-seizure group, 9.38 ± 7.9 days). These differences between the groups were not statistically significant (P = .753). Only 2 patients in the infrequent-seizure group revealed focal EEG abnormalities as spike-and-wave epileptiform discharges over the right temporo-occipital region. A family history of seizures was present in 6 patients in the frequent-seizure group and 5 patients in the infrequent-seizure group. Most were complex partial seizures or secondarily generalized tonic-clonic seizures (Table 1). Among all the demographic variables, only the frequency of seizures was statistically significant when the independent-sample t test was used (P < .001). The seed-to-voxel–based connectivity analysis revealed that patients in the frequent-seizure group had a widespread decrease in connectivity, predominantly involving the

Table 1: Demographic and clinical features of 2 groups (with frequent or infrequent seizures) of patients with HWE

<table>
<thead>
<tr>
<th>Clinical Feature</th>
<th>Frequent-Seizure Group (>2/mo)</th>
<th>Infrequent-Seizure Group (≤2/mo)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male/female ratio, n</td>
<td>14.4</td>
<td>13.5</td>
<td>.700</td>
</tr>
<tr>
<td>Mean (±SD) age at evaluation, y</td>
<td>29.06 ± 9.86</td>
<td>28.67 ± 10.78</td>
<td>.910</td>
</tr>
<tr>
<td>Mean (±SD) age at onset, y</td>
<td>22.61 ± 8.39</td>
<td>20.69 ± 10.36</td>
<td>.546</td>
</tr>
<tr>
<td>Mean (±SD) duration of illness, y</td>
<td>6.56 ± 6.48</td>
<td>7.39 ± 9.76</td>
<td>.546</td>
</tr>
<tr>
<td>HWE attacks per month</td>
<td></td>
<td></td>
<td><.0001</td>
</tr>
<tr>
<td>Mean (±SD) Mean (range) Median (range)</td>
<td>2.61 ± 0.69</td>
<td>0.62 ± 0.52</td>
<td>2.5 (2–4)</td>
</tr>
<tr>
<td>familial history of any type of epilepsy, n (%)</td>
<td>6 (33)</td>
<td>5 (27)</td>
<td>.463</td>
</tr>
<tr>
<td>History of febrile convulsion, n</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Family history of HWE, n (%)</td>
<td>4 (22)</td>
<td>1 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Self-induction phenomena, n (%)</td>
<td>2 (11.1)</td>
<td>2 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Abnormal EEG, n</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Focal abnormalities in EEG, n</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mean (±SD) time between last seizure and fMRI, days</td>
<td>10.6 ± 7.5</td>
<td>9.38 ± 6.9</td>
<td>.735</td>
</tr>
<tr>
<td>Complex partial seizures, n</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Generalized tonic-clonic seizures, n</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

*Patients who were having seizures every time they took a hot-water bath.

Anatomic Parcellation. The fMRI data were segmented into 106 anatomic ROIs on the basis of a Talairach atlas for whole brain regions (47 Brodmann areas, cerebellar tonsils, pyramids, and the posterior and anterior thalami of both the hemispheres) by using the anatomically labeled template reported by Tzourio-Mazoyer et al in 2002 and per several previous studies.

Functional Connectivity Analysis. A seed-to-voxel–based functional connectivity analysis was performed by computing the temporal correlation between the blood oxygen level–dependent signals to create a correlation matrix showing connectivity from the seed region to all other voxels in the brain by using the functional connectivity toolbox (CONN, version 13.L) implemented in SPM8 (http://www.nitrc.org/projects/conn; cited by Whitfield-Gabrieli and Ford, 2012) and was used to create individual subject seed-to-voxel connectivity maps. The preprocessed images were used for seed-based connectivity analysis. Motion correction was performed by using rigid-body transformation. We used 3 translational and 3 rotational parameters as covariates. Because the spontaneous, coherent, and low-frequency fluctuations of the blood oxygen level–dependent signal are used for resting-state fMRI analyses, the blood oxygen level–dependent time-series for each subject was extracted and bandpass filtered.
Frequent-Seizure Group versus Healthy Controls
In the analysis of healthy controls versus the frequent-seizure group, it was found that patients had significantly decreased connections of the posterior cingulate cortex (PCC) with the angular gyrus, temporopolar region, and medial prefrontal cortex (*P < .001*). Various seeds in the left parietal lobe also showed significantly (FDR-corrected *P < .001*) decreased connections with bilateral motor cortices, the dorsal frontal cortex, superior temporal lobes, and cerebellar tonsils. The right dorsal frontal cortex had significantly (FDR-corrected *P < .005*) decreased connections with the bilateral superior temporal gyrus. It was interesting to note that patients in the frequent-seizure group also had significantly (FDR-corrected *P < .005*) increased connections of primary and secondary visual cortices to the precuneus. The mean images of the connectivity analyses of the most significant ROIs are presented in the composite Fig 1, and the areas are detailed in Table 2.

Infrequent-Seizure Group versus Healthy Controls
The patients in the infrequent-seizure group were similar to the healthy controls in most of the connections. Only the left posterior entorhinal cortex showed a significant (FDR-corrected *P < .005*) decrease in connectivity with the left fusiform gyrus. Patients in the infrequent-seizure group had increased connections of the DMN with the PCC and of the anterior prefrontal cortex. There was also increased connectivity of the anterior cingulate cortex with the superior temporal region. It should be noted that patients with infrequent seizures had no areas with decreased connections to the DMN. The mean image-of-connectivity analysis of these ROIs is presented in the composite Fig 1, and the most significant areas are listed in Table 3.

Frequent- versus Infrequent-Seizure Group
The patients in the frequent-seizure group were significantly (FDR-corrected *P < .001*) different from those in the infrequent-seizure group in their left parietal and PCC connections. The most significant (FDR-corrected *P < .001*) among these areas were the connections of the left angular gyrus, precuneus, and left parietal lobes with the PCC and medial prefrontal cortex. The left somatosensory cortex, bilateral premotor cortex, and left lower parietal lobe also showed significant (FDR-corrected *P < .005*) decreased connections. The bilateral prefrontal cortex, right superior frontal gyrus, and dorsal frontal cortex also revealed significant (FDR-corrected *P < .005*) decreased connections with the superior and middle temporal gyrus. The anterior cingulate showed significant decreased connections with the left piriform cortex. The patients with frequent seizures had a significant (FDR-corrected *P < .005*) increase in connections within the temporal lobes bilaterally involving the seizure-prone entorhinal, perirhinal with primary auditory cortex bilaterally. The mean image-of-connectivity analysis of these ROIs is presented in the composite Fig 1, and the most significant areas are listed in Table 4.

DMN Connectivity
To assess the functional connectivity differences encompassing the DMN, seed-based connectivity analysis of the PCC (FDR-corrected *P < .001*) was performed for each of the 3 groups. Patients in the infrequent-seizure group revealed increased DMN connectivity with increased connections between the anterior prefrontal lobe, PCC, anterior cingulate cortex, and medial temporal lobe in comparison with those in the healthy controls. Patients in the frequent-seizure group had poor connections of the PCC seed with no connectivity to the anterior cingulate, medial frontal, bilateral parietal, or temporal lobes. These differences are highlighted in Fig 2.

Discussion
The exact etiopathogenesis of hot-water epilepsy is not clear, but several factors, including genetic factors, environmental factors, consanguineous marriage, and a habit of taking baths in water at a high temperature, have been postulated as probable reasons. We conducted a study to evaluate the functional connectivity in 2 groups of patients with HWE. Initially, we performed a seed-based analysis to understand connectivity patterns in 106 brain seeds of the Talairach coordinates with all the voxels in the brain to determine which of the seeds are significantly involved in patients with HWE and also to decipher how they differ between patients in the frequent-seizure group and those in the infrequent-seizure group. In patients with frequent seizures, we noted highly significantly reduced connectivity within several temporal and frontoparietal regions and increased temporal region connections. In patients with infrequent seizures, the disruptions were much less widespread and involved predominantly the temporal regions. Subsequent analysis of the DMN showed a grossly reduced connectivity of the DMN in the frequent-seizure group compared with increased connections in the infrequent-seizure group.

The connectivity differences could mean inherent differences between the groups. These differences could suggest disease focus, or could be indicators of disease progression and associated compensatory mechanisms. We found that there were several areas of decreased connectivity with associated decreased connectivity of the DMN, as found by many other researchers and as has been observed in children with refractory epilepsy, which is known to correlate with disease duration. Decreased connectivity was limited to the temporal lobes in patients with infrequent seizures and was widespread and involved the frontal, parietal, and temporal lobes, thalamus, and cerebellum in patients with frequent seizures. Because evidence of decreased connectivity has also been associated with several neuropsychiatric diseases such as dementia, stroke, traumatic brain injury, depression, and schizophrenia, it is possible that decreased connectivity might be indicative of the cognitive and social deficits associated with the disease together with the disease burden. We found that patients in the frequent-seizure group had increased connections within the temporal lobes bilaterally involving the seizure-prone medial temporal structure and bilateral primary auditory cortex, and...
FIG 1. Whole-brain cluster-correlation maps of seed-to-voxel–based resting-state functional connectivity (FDR-corrected $P < 0.001$) with seed regions in the medial prefrontal cortex (A and B), right anterior prefrontal cortex (C), left anterior prefrontal cortex (D), left primary somatosensory cortex (E), right middle temporal gyrus (F), left angular gyrus (G), left precuneus (H), left posterior entorhinal cortex (I), and right medial temporal gyrus (J). The columns represent the healthy controls (column 1), the infrequent-seizure group (column 2), the frequent-seizure group (column 3), the frequent-seizure group versus healthy controls (column 4), and the frequent-seizure group versus the infrequent-seizure group (column 5). The colors represent the significance of connectivity; red indicates an increase in connectivity, and blue indicates a decrease in connectivity.
those in the infrequent-seizure group had increased connections of the DMN. Observations of increased connectivity with other types of epilepsy, such as in the medial temporal lobes with mesial temporal sclerosis,37 and frontal lobes with idiopathic generalized epilepsy,38,39 make us surmise that increased connections are probably more specific to understand epileptogenesis. Previous studies also pointed to a temporal lobe origin in 67%–100% of patients.

Table 3: Seed-to-voxel–based connectivity results in the infrequent-seizure and healthy control groups

<table>
<thead>
<tr>
<th>Seed Region</th>
<th>Connectivity Region</th>
<th>P Value (FDR Corrected)</th>
<th>Cluster Size (No. of Voxels)</th>
<th>β Value<sup>a</sup></th>
<th>T Value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>L posterior entorhinal cortex</td>
<td>L fusiform gyrus (decreased)</td>
<td>.004</td>
<td>140</td>
<td>0.15</td>
<td>6.73</td>
</tr>
<tr>
<td>L anterior entorhinal cortex</td>
<td>L ventral posterior cingulate cortex (increased)</td>
<td>.003</td>
<td>136</td>
<td>0.12</td>
<td>7.34</td>
</tr>
<tr>
<td>R anterior cingulate cortex</td>
<td>R posterior superior temporal gyrus (increased)</td>
<td>.002</td>
<td>172</td>
<td>0.10</td>
<td>6.82</td>
</tr>
</tbody>
</table>

Note:—L indicates left hemisphere; R, right hemisphere.

^a β values represent Fisher-transformed correlation coefficient values.

^b T values represent the strength of connectivity between the source seed region and correlated-voxels regions.

Table 4: Seed-to-voxel–based connectivity results in the frequent- and infrequent-seizure groups

<table>
<thead>
<tr>
<th>Seed Region</th>
<th>Connectivity Region</th>
<th>P Value (FDR Corrected)</th>
<th>Cluster Size (No. of Voxels)</th>
<th>β Value<sup>a</sup></th>
<th>T Value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial prefrontal cortex</td>
<td>Precuneus (decreased)</td>
<td>.00004</td>
<td>279</td>
<td>0.19</td>
<td>9.76</td>
</tr>
<tr>
<td>R anterior prefrontal cortex</td>
<td>R dorsal frontal cortex (decreased)</td>
<td>.005</td>
<td>284</td>
<td>0.27</td>
<td>9.17</td>
</tr>
<tr>
<td>L anterior prefrontal cortex</td>
<td>L middle temporal gyrus (decreased)</td>
<td>.005</td>
<td>147</td>
<td>−0.18</td>
<td>6.13</td>
</tr>
<tr>
<td>L anterior prefrontal cortex</td>
<td>L posterior cingulate cortex (decreased)</td>
<td>.005</td>
<td>77</td>
<td>−0.11</td>
<td>5.82</td>
</tr>
<tr>
<td>L primary somatosensory cortex</td>
<td>L pyramis (decreased)</td>
<td>.005</td>
<td>110</td>
<td>−0.10</td>
<td>5.43</td>
</tr>
<tr>
<td>L primary somatosensory cortex</td>
<td>L premotor cortex (decreased)</td>
<td>.0001</td>
<td>192</td>
<td>−0.26</td>
<td>9.31</td>
</tr>
<tr>
<td>L primary somatosensory cortex</td>
<td>L premotor cortex (decreased)</td>
<td>.002</td>
<td>148</td>
<td>−0.18</td>
<td>8.66</td>
</tr>
<tr>
<td>L angular gyrus</td>
<td>L superior temporal gyrus (decreased)</td>
<td>.002</td>
<td>108</td>
<td>−0.11</td>
<td>6.63</td>
</tr>
<tr>
<td>Anterior cingulate</td>
<td>L piriform cortex (decreased)</td>
<td>.005</td>
<td>56</td>
<td>−0.11</td>
<td>5.39</td>
</tr>
<tr>
<td>L lateral parietal cortices</td>
<td>Precuneus (decreased)</td>
<td>.0006</td>
<td>309</td>
<td>−0.18</td>
<td>8.17</td>
</tr>
<tr>
<td>Posterior cingulate cortex</td>
<td>L somatosensory association area (decreased)</td>
<td>.003</td>
<td>164</td>
<td>−0.13</td>
<td>7.96</td>
</tr>
<tr>
<td>L thalamus</td>
<td>L angular gyrus (decreased)</td>
<td>.00006</td>
<td>321</td>
<td>−0.17</td>
<td>7.84</td>
</tr>
<tr>
<td>L thalamus</td>
<td>L inferior parietal cortex (decreased)</td>
<td>.0009</td>
<td>191</td>
<td>−0.16</td>
<td>6.52</td>
</tr>
<tr>
<td>L posterior and anterior entorhinal cortex</td>
<td>L primary auditory cortex (increased)</td>
<td>.005</td>
<td>112</td>
<td>0.10</td>
<td>5.34</td>
</tr>
</tbody>
</table>

Note:—L indicates left hemisphere; R, right hemisphere.

^a β values represent Fisher-transformed correlation coefficient values.

^b T values represent the strength of connectivity between the source seed region and correlated-voxels regions.
with HWE.40-42 Interictal EEG results are usually normal in most of the cases, but a few case studies showed localized temporal lobe discharges.41,43 Isolated case reports of associated hippocampal sclerosis have also been reported. In a recent study that involved 5 patients with HWE, 2 of 3 patients who underwent ictal SPECT had hyperperfusion in the temporal region,44 and an fMRI-EEG study in 1 patient revealed frontoparietal occipital abnormalities.45 Studies in rat models have found widespread kindling and hippocampal mossy fiber sprouting in hot-water–induced hyperthermic seizures at temperature ranges known to precipitate HWE in humans.46 Thus, the evidence of increased connectivity of the temporal lobe in patients in the frequent-seizure group in this study supports the temporal lobe focus of HWE seen in the literature, and the absence of it in the infrequent-seizure group could indicate that this phenomenon is probably associated with disease progression. There have been few reports of increased DMN connectivity in patients with epilepsy.6,14 Our findings of differential DMN connectivity, which was increased in the infrequent-seizure group and decreased in the frequent-seizure group, directly supports the reports by Bettus et al2 and Greicius et al47 of increasing DMN connectivity as a compensatory mechanism. Hence, we presume that increasing DMN connectivity is a protective response and might indicate good seizure control in patients with epilepsy.

In this study, an attempt was made to overcome the widely accepted limitation of antiepileptic drugs on network connectivity, and it needs to be noted that the potential effect of interictal discharges on the network was not assessed because we did not record simultaneous EEG with fMRI. However, because only 2 patients in the infrequent-seizure group had 1–2 focal spike-and-wave discharges in routine EEG, it might be of lesser significance in our study. Per the design of the study, we performed seed-based connectivity analysis in only certain regions of the brain. It is possible that there are many more areas that have been excluded because of the threshold and ranges applied. There was no attempt to overcome the limitations of parcellation algorithms, thresholding effects, or confounders caused by physiologic motion correction on resting-state fMRI. It is also possible that placing these patients into multiple lower- or higher-frequency groups rather than into 2 dichotomized groups might have revealed varying frequency-specific connectivity patterns. Additional studies should address these factors to detect early and potentially reversible connectivity abnormalities.

CONCLUSIONS

This network analysis of 36 patients with hot-water epilepsy revealed that repeated seizures affect brain connectivity and that patients with frequent seizures have widespread connectivity changes, involvement of the DMN, and recruitment of several seizure-prone areas in the medial temporal lobes bilaterally. Whether in the future one could predict the course of chronic epilepsy on the basis of these findings requires further studies on groups of patients with more common epilepsy types.

ACKNOWLEDGMENTS

We acknowledge the support of the Department of Science and Technology, Government of India, for providing the 3T MR imaging scanner exclusively for research in the field of neurosciences. We acknowledge that the data analysis was greatly bene-

FIG 2. Whole-brain cluster-correlation maps of seed-to-voxel–based resting-state functional connectivity for the PCC seed region (FDR-corrected \(P < .001 \)). Shown is DMN connectivity using PCC seed at 3 different axial levels: at the level of ventricles in the top row, midbrain in the middle row, and the cerebellum in the bottom row for healthy controls (A), the infrequent-seizure group (B), the frequent-seizure group (C), the infrequent-seizure group versus healthy controls (D), the frequent-seizure group versus healthy controls (E), and the infrequent-seizure group versus the frequent-seizure group (F). The colors represent the significance of connectivity; red indicates an increase in connectivity, and blue indicates a decrease in connectivity.
fited by our interactions with Bharat Biswal and his team at the New Jersey Institute of Technology. We thank all the patients who participated in this study without expecting anything in return. We are grateful to the staff, especially the radiographers (at the Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neuro Sciences, India) for their odd-hour support during data collection.

REFERENCES

33. Woodward ND, Rogers B, Heckers S. Functional resting-state networks are differentially affected in schizophrenia. Schizophr Res 2011;130:86–93 CrossRef Medline
34. Satoshi N. Hot-water epilepsy. Epilepsia 2003;44:29–32 CrossRef Medline
Meta-Analysis of CSF Diversion Procedures and Dural Venous Sinus Stenting in the Setting of Medically Refractory Idiopathic Intracranial Hypertension

S.R. Satti, L. Leishangthem, and M.I. Chaudry

ABSTRACT

BACKGROUND AND PURPOSE: In medically refractory idiopathic intracranial hypertension, optic nerve sheath fenestration or CSF shunting is considered the next line of management. Venous sinus stenosis has been increasingly recognized as a treatable cause of elevated intracranial pressure in a subset of patients. In this article, we present the results of the largest meta-analysis of optic nerve sheath fenestration, CSF shunting, and dural venous sinus stenting. This is the only article that compares these procedures, to our knowledge.

MATERIALS AND METHODS: We performed a PubMed search of all peer-reviewed articles from 1988 to 2014 for patients who underwent a procedure for medically refractory idiopathic intracranial hypertension.

RESULTS: Optic nerve sheath fenestration analysis included 712 patients. Postprocedure, there was improvement of vision in 59%, headache in 44%, and papilledema in 80%; 14.8% of patients required a repeat procedure with major and minor complication rates of 1.5% and 16.4%, respectively. The CSF diversion procedure analysis included 435 patients. Postprocedure, there was improvement of vision in 54%, headache in 80%, and papilledema in 70%; 43% of patients required at least 1 additional surgery. The major and minor complication rates were 7.6% and 32.9%, respectively. The dural venous sinus stenting analysis included 136 patients. After intervention, there was improvement of vision in 78%, headache in 83%, and papilledema in 97% of patients. The major and minor complication rates were 2.9% and 4.4%, respectively. Fourteen additional procedures were performed with a repeat procedure rate of 10.3%. Three patients had contralateral stent placement, while 8 had ipsilateral stent placement within or adjacent to the original stent. Only 3 patients required conversion to CSF diversion or 2.2% of patients with stents.

CONCLUSIONS: Patients with medically refractory idiopathic intracranial hypertension have traditionally undergone a CSF diversion procedure as the first intervention. This paradigm may need to be re-examined, given the high technical and clinical success and low complication rates with dural venous sinus stenting.

ABBREVIATIONS: BMI = body mass index; IIH = idiopathic intracranial hypertension; ONSF = optic nerve sheath fenestration

Received December 10, 2014; accepted after revision March 3, 2015.

From the Department of Neurointerventional Surgery (S.R.S., L.L.), Christiana Care Health Center, Wilmington, Delaware; and Department of Neuroradiology (M.I.C.), Medical University of South Carolina, Charleston, South Carolina.

Please address correspondence to Sudhakar R. Satti, MD, 4755 Ogletown-Stanton Rd, Newark, DE 19718; e-mail: ssatti@christianacare.org

Indicates article with supplemental on-line tables.

Evidence-Based Medicine Level I.

http://dx.doi.org/10.3174/ajnr.A4377
Jackson and Snodgrass. These studies are level 3 evidence, comprising case series and individual case reports. There are no prospective randomized controlled studies on lumbarperitoneal shunt, ventriculoperitoneal shunts, or optic nerve sheath fenestration, to our knowledge.

Venous sinus stenosis has been increasingly recognized as a treatable cause of elevated intracranial pressure. Venous sinus stent placement was first described by Higgins et al. During the past 20 years, an increasing number of case reports and larger case series have described dural venous sinus stent placement, and reported high rates of technical success and favorable clinical outcomes.

In this article, we present the results of the largest meta-analysis of optic nerve sheath fenestration, CSF diversion procedure, and venous sinus stent placement for medically refractory IIH from 1988 to present. We then compare these interventions with a focus on symptom improvement, complications, and the need for repeat procedures.

MATERIALS AND METHODS

Search Criteria

We performed a PubMed search of all peer-reviewed articles from 1988 to date with a combination of key words including “Idiopathic Intracranial Hypertension,” “Pseudotumor Cerebri” and “Benign Intracranial Hypertension” and “Lumbarperitoneal Shunts,” “Ventriculoperitoneal Shunts,” and “Optic Nerve Sheath Decompression” and “Intracranial Venous Shunts.” References from the articles that were identified in the initial search were also reviewed for extraction of additional studies.

Eligibility Criteria

Studies reporting patients with IIH and other secondary causes of increased intracranial pressure were separated into 2 groups, and only the patients with IIH who had undergone a procedure were included.

Because these studies were conducted with different aims and protocols, some data on visual acuity, visual fields, CSF pressure, and mean body mass index (BMI) were not available. We attempted to standardize the data as much as possible. The means, ranges, and percentages were calculated for the combined subset of patients with data available for each parameter or outcome. Patients without adequate data were excluded from the analysis to avoid bias and to produce reliable results. Symptom-resolution analysis was performed for only those patients with reported data. Symptom resolution and improvement are presented as improvement, except in the optic nerve sheath fenestration (ONSF) analysis, due to lack of homogeneity of the data. In dural venous sinus stenting and CSF flow-diversion articles, visual acuity and visual fields were combined and described as visual acuity changes.

Exclusion

All studies written before 1988; series with <9 patients for venous sinus stent placement, <6 for ONSF, and <7 for CSF flow diversion; non-English articles; and reports with inadequate information regarding patient selection and follow-up were excluded.

Data Extraction

Effort was made to standardize the data for ease of comparison among treatment modalities with a focus on the following end points:

- Presenting symptoms and patient characteristics (BMI and CSF opening pressure).
- Resolution of symptoms (including headache and visual loss).
- Resolution of papilledema.
- Revision rates of the CSF flow-diversion procedures.
- Complication rates.
- Technical success.

In the analysis of CSF-diversion procedures, patients needing revisions were considered as having complications because they needed repeat procedures, though indications were variable.

RESULTS

Optic Nerve Sheath Fenestration

ONSF (On-line Table 2) is usually the intervention of choice for patients with medically refractory IIH presenting with severe visual loss but minimal headache. The procedure has been shown to rapidly improve visual function (both visual acuity and visual fields) and stabilize the visual changes, thus preventing progression.

Our PubMed search identified 18 clinical studies with patients undergoing ONSF, including 712 patients and 1153 eyes. The mean age at presentation was 32.4 years (range, 4.4–74 years), and the mean follow-up period was 21 months (range, 0–160 months).

Sixty percent of patients presented with headaches, 92% presented with visual acuity changes, and 86% presented with visual field change. Females represented 82% (391/476 patients). Unilateral surgeries (53%, 252/476 patients) were slightly more common than bilateral surgeries. Eighty-nine percent of patients (389/439) had ONSF as their first surgical procedure for medically refractory IIH.

After optic nerve sheath fenestration, visual acuity improved in 59% (152/257 eyes) and improved or remained stable in 95% (1011/1066 eyes). Visual fields improved in 68% (470/688 eyes). Headache improved in 44% (56/127 patients), and papilledema improved in 80% (76/95 patients).

In the total 712 patients who underwent ONSF, there were 128 documented complications. Complications included diplopia (55; 43%), pupillary complications (32; 25%), late failure (13; 10%), and dellen (shallow excavations along the outer edge of the cornea caused by localized dehydration) (8; 6%).

The total average complication rate (including major and minor complications) was 18% (128/712). We defined major complications as esotropia, exotropia, retrobulbar hemorrhage, orbital hematoma, orbital apex syndrome, orbital cellulitis, and traumatic optic neuropathy. The rate of major complications was 1.5% based on the total number of patients in the study group, 712. We defined minor complications as diplopia, late failure, dellen, synepheic, atomic pupil, tonic pupil, anosocoria, pupillary dysfunction, periplimal conjunctival bleb, peripapillary hemorrhages, disc hemorrhage, cyst formation, and conjunctival abscess. The rate of minor complications was 16.4%.
On the basis of the total number of procedures performed, 14.86% required a repeat procedure: 9.21%, repeat ONSF and 5.65%, CSF diversion. In the series of Spoer et al,26 31.4% (11 of 35) of patients with acute presentation required a second procedure (but a total of 16 procedures if both eyes were included in some patients).

Because all the data were not available for all the cases, denominators used in the calculation for percentages differed.

Unfortunately, BMI was only available for 1 study included in the analysis, Gupta et al,35 with an average BMI of 24.4. Opening pressures were only available in 2 studies (Thuente et al32 and Gupta and Rosenberg et al41), with 30 patients and a mean opening pressure of 29.28 cm H2O (range, 13–70 cm H2O).

CSF Flow Diversion

Seventeen studies with a CSF-diversion (On-line Table 3)8,40–46,48,55–60 procedure meeting the inclusion criteria were analyzed, including 435 patients; 85% (310/363) were females. Sex was not reported in 3 studies (Abubaker et al,46 Tulipan et al,43 and Rosenberg et al41). The mean age was 31.9 years (range, 6 months to 68 years).

The mean follow-up time was 41 months (range, 1–278 months). Eighty-six percent (164/190) of patients had CSF diversion as their first surgery. The mean CSF opening pressure, reported in 120 cases, was 41.4 mm Hg (range, 29–60 mm Hg). After the procedure, headache improved in 80% (231/287) of cases. Papilledema improved in 70% (107/153) of cases. Visual acuity improved after treatment in 54% (104/193).

Forty-three percent of patients required at least 1 additional surgery. Most surprising, 154 of 435 patients undergoing CSF flow diversion underwent an additional 428 procedures (not reported in 2 studies: Thambisetty et al47 and Tarnaris et al,48) or 2.78 additional procedures for each failure. These additional procedures were mainly revisions of the shunt. The most common reason for the shunt revision was shunt obstruction (41%), followed by low-pressure headache (15%), shunt failure (11%), radicular pain (3%), and others (25%), which included abdominal pain, tonsillar herniation, valve dysfunction, shunt disconnection, shunt malposition, subdural hematoma, and CSF fistula.

The rate of major complications was 7.6% (33/435). We defined major complications as shunt infection, tonsillar herniation, subdural hematoma, and CSF fistula.

The rate of minor complications was 32.9% (143/435). We defined minor complications as abdominal pain, valve dysfunction, radicular pain, shunt disconnection, shunt malposition, low pressure headache and/or CSF leak, and catheter migration. In Rosenberg et al,41 operative complications (2/37 patients) were not clearly defined.

Venous Stent Placement

Our meta-analysis of dural venous sinus stent placement (On-line Table 4)6,7,16–21 included 8 studies with 136 patients. Eighty-eight percent were female (119/136 cases). The mean age was 34.5 years (range, 10–64 years), and the mean follow-up time was 22.9 months (range, 1–136 months). The mean BMI was 34 kg/m² (range, 22–73 kg/m²). The mean CSF pressure was 34.3 mm Hg (range, 22–73 mm Hg). Seventy-three percent (88/121 cases) of patients who were medically refractory underwent venous stent placement as the first intervention.

Nearly all of the stents used were self-expanding nitinol stents; however, <5% of studies described placement of balloon-mounted stents. Stents included the following: Bridge X3 stent (Medtronic, Santa Rosa, California),46 S.M.A.R.T. stent (CORDIS, Fremont, California),46 Complete SE stent (Medtronic),19 Zilver biliary stent (Cook Medical, Bloomington, Indiana),6,20,21 (Worthington Biochemical, Lakewood, New Jersey), Precise self-expanding stent (CORDIS),21 or Acculink stent (Guidant, St. Paul, Minnesota).21

After the intervention, headache improved in 83% (101/121 cases) and papilledema improved in 97% of patients (104/108 cases). Visual acuity changes improved in 78% (40/51 cases) after treatment. The mean prestent pressure gradient was 20.6 mm Hg (range, 4–50 mm Hg), and the mean poststent pressure gradient was 2.7 mm Hg (range, 0–23 mm Hg). Sixty-seven percent (n = 83) of stents were placed in the right transverse sinus, 29% (n = 36) of stents were placed in the left transverse sinus, and 4% were not specified. Stent location was not reported in 16 cases (Higgins et al17 and Ahmed et al19).

Of the 136 patients who underwent stent placement, 7.4% (10/136 cases) had complications, though no fatalities were reported. The major complication rate was 2.9% (4/136) and was defined as a subdural hematoma. The minor complication rate was 4.4% (6/136) and was defined as transient hearing loss, femoral pseudoaneurysm, retroperitoneal hematoma, urinary tract infection, and syncope.

Fourteen additional procedures were performed; therefore, the rate of repeat procedures was 10.3% (14/136). Additional procedures were performed in 8% of patients. Contralateral stent placement was performed in 3 patients, and additional ipsilateral stent placement at or near the original stent for restenosis, in 8 patients. Conversion to CSF diversion was seen in only 3 patients or 2.2% of total patients initially receiving stents.

Here again, similar to the ONSF studies, because all data were not available for all the cases, denominators used in calculation for percentages differed.

DISCUSSION

Idiopathic intracranial hypertension has been described dating back to 1893, by Quinke, who proposed the term “meningitis serosa.”49,50 The presenting symptoms included headache, blurred vision, and vomiting. The clinical syndrome was later described as “pseudotumor cerebri” by Nonne in 190449 and then “benign intracranial hypertension” by Foley in 1955.10,49,50 The inclusion of “benign” in the description was challenged in 1969 by Buchheit et al,45,51 who recognized that papilledema was present in almost 95% of the patients, which, if left untreated, could progress to optic atrophy and irreversible blindness. The term “idiopathic intracranial hypertension” was introduced in 201150 and may be increasingly used because the etiology and pathophysiology are poorly understood.

Idiopathic intracranial hypertension is currently defined by the Modified Dandy Criteria1,9 and includes an elevation of intracranial pressure with a normal composition of CSF and no intra-
cranial mass or venous sinus thrombosis. By using the Modified Dandy’s Criteria, patients with a heterogeneous group may potentially be combined, confounding management and outcomes.

The underlying pathophysiology of elevated intracranial pressure can be divided into 2 groups, CSF overproduction and decreased CSF absorption. Some early hypotheses for IIH included serous meningitis resulting in decreased CSF outflow (Quincke), increased CSF in the subarachnoid space (Passot), hydrocephalus due to remote effects of bacterial toxins or otitis media (Warrington), and altered vasomotor control of the intracranial vascular bed (Dandy).52

The mainstays of conservative therapy include weight loss, medications to reduce CSF production, and repeated high-volume lumbar punctures. Despite these measures, some patients may have progressive symptoms or develop visual changes. Patients who fail conservative measures are generally referred for CSF flow-diversion procedures such as lumboperitoneal shunting, ventriculoperitoneal shunting, optic nerve sheath fenestration. More recently, dural venous sinus stent placement has been described in the literature.

ONSF appears to have the highest success rate in patients with visual field changes or vision loss, 86%–92% compared with CSF flow diversion or sinus stent placement, 58% and 65%, respectively. ONSF was associated with the lowest improvement of headache, 60%, compared with sinus stent placement (89%) or CSF flow diversion (80%). ONSF was also associated with a low major complication rate of 2%, a minor complication rate of 16%, and a revision rate of 15%. From a practical standpoint, ONSF may not be as readily available, and recovery from the procedure should be considered.

The most common indication for CSF flow-diversion procedures is severe headache or progressive visual change. There was a major complication rate of 8% and a minor complication rate of 33% in the 435 patients included. Considering this young population, with an average age of 31.9, the high reported repeat procedure rate of 43% is concerning. Most repeat procedures were shunt revisions. Forty-three percent of patients ultimately needed an additional procedure during the average follow-up period of 41 months. Of 358 patients (some patients were excluded in the denominator because of missing data), 154 patients underwent 428 additional procedures, or 2.78 additional procedures in >45% of patients undergoing CSF flow diversion.

There is limited but growing literature for dural venous sinus stenting when using strict patient selection, dual antiplatelet therapy, and modern devices. We would argue that evaluation for underlying venous sinus stenosis should be undertaken with MRV (and confirmed, if present, with conventional catheter-based venography and pressure measurements) before any CSF flow-diversion procedure.

Limitations
Meta-analysis by definition is limited by a retrospective design; therefore, data collection was inconsistent and/or incomplete for both pre- and postoperative parameters. This was further compounded by inclusion of different surgical modalities and specialists. Ophthalmologists focused on vision, and most ONSF studies lacked CSF pressure and BMI. Neurosurgeons focused on headache, while neurointerventionalists focused on headaches and papilledema. All studies lacked consistent data on visual acuity and field changes. Different studies had different definitions for improvement, indications for surgery, and variable long-term follow-up (1–278 months). Although there were fewer patients included in the dural venous sinus stenting group than in the others, 136 patients who met inclusion should generate reliable data for comparison.

Despite these challenges, we summarized the available data as rigorously as possible, with an emphasis on presenting symptoms, resolution of presenting symptoms, repeat procedure rates, and complication rates.

In the CSF flow-diversion group, some pediatric patients were included because they could not be separated because individual data were not available. In the ONSF studies by Corbett et al24 and Spoor et al,26 complications were given in terms of eyes and not patients. We considered the number of eyes as the number of patients for calculation consistency. Nithyanandam et al38 reported complications in terms of percentages, which we had to convert.

In studies in which values of certain parameters were marginally available (eg, CSF pressure >40 cm of H2O in 73% of cases in the CSF diversion study by El-Saadany et al57), values were pre-
presented as "NR" or not reported in On-line 3 and excluded from the mean CSF pressure.

Future Directions
Surgery for medically refractory IIH is performed by different specialties; therefore, the data are inconsistent. Future CSF flow-diversion, ONSF, and dural venous sinus stenting studies for IIH should include documentation of the following:

1. Patient characteristics (age, comorbidities, BMI, symptoms, medications).
2. Formal ophthalmologic examination (pre- and post-intervention).
3. CSF studies (pre- and post-intervention).
4. For dural sinus stent placement, angiography confirming stenosis and pressure gradients.
5. Long-term clinical follow-up and stent patency.

CONCLUSIONS
Patients with medically refractory idiopathic intracranial hypertension have traditionally undergone CSF flow-diversion procedures as the first intervention. On the basis of our meta-analysis comparing traditional CSF flow-diversion procedures with venous sinus stent placement, this paradigm may need to be re-examined, given high technical and clinical success with low complications and low repeat-procedure rates associated with stent placement compared with traditional surgical interventions.

ACKNOWLEDGMENTS
We would like to thank Ene O. Belleh, MLS, AHIP (Academy of Health Information Professionals), reference and instruction services librarian at the Christiana Care Medical Library, for her evidence-based research support.

Disclosures: M. Imran Chaudry—UNRELATED: Board Membership: Covidien Scientific Advisory Board; Consultancy: Covidien, MicroVention, Penumbra, Codman and Shurtleff.

REFERENCES

37. Laryngoscope 2011;37:12–19
ABSTRACT

BACKGROUND AND PURPOSE: Tentorial dural arteriovenous fistulas are characterized by a high hemorrhagic risk. We evaluated trends in outcomes and management of tentorial dural arteriovenous fistulas and performed a meta-analysis evaluating clinical and angiographic outcomes by treatment technique.

MATERIALS AND METHODS: We performed a comprehensive literature search for studies on surgical and endovascular treatment of tentorial dural arteriovenous fistulas. We compared the proportion of patients undergoing endovascular, surgical, and combined endovascular/surgical management; the proportion of patients presenting with ruptured tentorial dural arteriovenous fistulas; and proportion of patients with good neurologic outcome across 3 time periods: 1980–1995, 1996–2005, and 2006–2014. We performed a random-effects meta-analysis, evaluating the rates of occlusion, long-term good neurologic outcome, perioperative morbidity, and resolution of symptoms for the 3 treatment modalities.

RESULTS: Twenty-nine studies with 274 patients were included. The proportion of patients treated with surgical treatment alone decreased from 38.7% to 20.4% between 1980–1995 and 2006–2014. The proportion of patients treated with endovascular therapy alone increased from 16.1% to 48.0%. The proportion of patients presenting with ruptured tentorial dural arteriovenous fistulas decreased from 64.4% to 43.6%. The rate of good neurologic outcome increased from 80.7% to 92.9%. Complete occlusion rates were highest for patients receiving multimodality treatment (84.0%; 95% CI, 72.0%–91.0%) and lowest for endovascular treatment (71.0%; 95% CI, 56.0%–83.0%; P = .01). Long-term good neurologic outcome was highest in the endovascular group (89.0%; 95% CI, 80.0%–95.0%) and lowest for the surgical group (73.0%; 95% CI, 51.0%–87.0%; P = .03).

CONCLUSIONS: Patients with tentorial dural arteriovenous fistulas are increasingly presenting with unruptured lesions, being treated endovascularly, and experiencing higher rates of good neurologic outcomes. Endovascular treatment was associated with superior neurologic outcomes but lower occlusion rates.

ABBREVIATIONS: DAVF = dural arteriovenous fistula; TDAVF = tentorial dural arteriovenous fistula

Intracranial dural arteriovenous fistulas (DAVFs) are abnormal direct shunts between the dural arteries and dural veins. The shunt is located in the intracranial dura mater with venous drainage directed to the dural venous sinuses or cortical veins. Dural arteriovenous fistulas account for 10%–15% of all intracranial vascular shunts. Tentorial dural arteriovenous fistulas (TDAVFs) constitute only 4% of DAVFs and are characterized by a high hemorrhagic risk. Because of this, these lesions are treated aggressively on diagnosis. Traditionally, surgical resection was the only treatment available for these lesions. However, endovascular embolization, either alone or in combination with surgery, is increasingly used. Stereotactic radiosurgery is also increasingly used as an adjunct to surgical and endovascular treatment. We performed a systematic review of the literature on surgical and endovascular treatment of TDAVFs from 1980 to 2014. The purpose of our study was the following: 1) to determine whether there was a shift from primarily surgical treatments to endovascular and multimodality treatment during this time period, 2) to determine whether the proportion of patients presenting with ruptured TDAVFs during this
time period has changed, 3) to determine whether the rate of good neurologic outcome has changed, and 4) to evaluate clinical and angiographic outcomes in endovascular, surgical, and combined treatments by performing a random-effects meta-analysis.

MATERIALS AND METHODS
A comprehensive literature search of the data bases (PubMed, Ovid MEDLINE, and Ovid EMBASE) was designed and conducted by an experienced librarian with input from the authors. The key words “endovascular,” “catheterization,” “percutaneous,” “embolization,” “coil,” “cerebral veins,” “intracranial,” “arteriovenous fistula,” “surgery,” “DAVF,” “resection,” and “tentorial” were used in both “AND” and “OR” combinations. The search was limited to articles published from 1980 to June 2014 in the English language only. All studies reporting patients treated with surgery or endovascular therapy for TDAVFs were selected. Inclusion criteria were the following: 1) series of >5 patients, with available data on clinical and/or angiographic outcomes. Studies with fewer than 5 patients were included only if they were published before 1995. Two reviewers selected the included studies. For each study, we extracted the following information: patient presentation (ruptured or unruptured), treatment technique (endovascular, surgical, or combined), long-term good neurologic outcome, long-term neurologic morbidity, angiographic occlusion status at last follow-up, resolution of symptoms for unruptured TDAVFs, and year of publication. Good neurologic outcome was defined as a modified Rankin Scale score of ≤2. In cases in which a modified Rankin Scale score was not available, good neurologic outcome was determined if the study used terms such as “no morbidity” or “good recovery.”

The primary objective of this study was to determine the clinical and angiographic outcomes of patients with endovascular, surgical, or multimodality treatment. The secondary objective was to determine trends in patient presentations, treatment type, and clinical outcome following treatment of TDAVFs. For this secondary objective, studies were divided into 3 periods: 1) studies published from 1995 and earlier, 2) studies published from 1996 to 2005, and 3) studies published from 2006 to 2014. For this secondary objective, we performed the following analyses: 1) the proportion of patients presenting with ruptured TDAVFs in each period; 2) the proportion of patients receiving endovascular, surgical, and combined treatments; and 3) the proportion of patients with good neurologic outcome.

Study Quality
We modified the Newcastle-Ottawa Quality Assessment Scale for case-control studies to assess the quality of the studies included in this meta-analysis. The Newcastle-Ottawa score is designed for use in case-control-type studies; however, because none of the studies included in our analysis were of this type, we assessed study quality on the basis of the following: 1) The study included all patients or consecutive patients versus a selected sample, 2) the angiographic and clinical follow-up was satisfactory, thus allowing ascertainment of all outcomes, 3) the case definition was adequate (ie, the location and presen-
tation of the DAVF were clearly stated), 4) outcomes were clearly reported, and 5) the interventionalists/surgeons treating the patients were the same as those who assessed angiographic and clinical outcomes. High-quality studies were defined as those with ≥20 patients, high rates of clinical follow-up with clearly reported outcomes, and independent assessment of angiographic and clinical outcomes.

Statistical Analysis
All included studies were noncomparative. We estimated from each cohort the cumulative incidence (event rate) and 95% confidence interval for each outcome. Event rates for each intervention were pooled in a meta-analysis across studies by using the random-effects model.8 Anticipating heterogeneity between studies, we chose this model a priori because it incorporates within-study and between-study variances. We also extracted a 2 x 2 table for each studied outcome for interaction testing and calculated P values for the comparisons between endovascular and surgical groups, surgical and multimodality groups, and endovascular and multimodality groups. Heterogeneity of treatment effect across studies was evaluated by using the I² statistic.9

RESULTS
Literature Review
Studies included in our review are summarized in Table 1. Our literature search yielded 986 articles; 879 articles were excluded after reading the abstract alone, with a total of 107 articles reviewed. Of these, 78 were excluded for either not including TDAVFs in their patient population or not reporting patient presentation or angiographic outcomes. In total, 29 studies with 274 patients met our inclusion criteria. The search results are summarized in Fig 1.

Meta-Analysis Outcomes: All Patients
Meta-analysis outcomes are summarized in Table 2. Forest plots are provided as On-line Figs 1–5. The rates of complete occlusion at last follow-up were 71.0% (95% CI, 56.0%–83.0%) for the endovascular-only group, 81.0% (95% CI, 61.0%–92.0%) for the surgery-only group, and 84.0% (95% CI, 72.0%–91.0%) for the combined-treatment group. The combined-treatment group had a statistically significantly higher rate of complete occlusion (P < .01). The rate of long-term neurologic morbidity was 5.0% (95% CI, 2.0%–11.0%) for the endovascular group, 8.0% (95% CI, 2.0%–21.0%) for the surgery-only group, and 6.0% (95% CI, 2.0%–15.0%) for the combined-treatment group. There was no difference between groups in the rates of long-term neurologic morbidity. Perioperative morbidity occurred in 6.0% (95% CI, 3.0%–13.0%) for the endovascular group, 18.0% (95% CI, 8.0%–35.0%) for the surgery-only group, and 14.0% (95% CI, 8.0%–24.0%) for the combined-treatment group. Patients treated with endovascular therapy had significantly lower perioperative morbidity rates than those treated with surgery (P = .03) and combined treatments (P < .01). The long-term good neurologic outcome rates were 89.0% (95% CI, 80.0%–95.0%) for the endovascular group, 73.0% (95% CI, 51.0%–87.0%) for the surgical group, and 87.0% (95% CI, 71.0%–94.0%) for the combined-treatment group.
Long-term good neurologic outcome rates were significantly higher in the endovascular group than in the surgery group ($P < .03$).

Meta-Analysis Outcomes: Patients with Unruptured TDAVs

Meta-analysis outcomes are summarized in Table 2. Forest plots are provided as Online Figs 1–5. The rates of complete occlusion at last follow-up were 76.0% (95% CI, 54.0%–89.0%) for the endovascular-only group, 89.0% (95% CI, 69.0%–97.0%) for the surgery-only group, and 78.0% (95% CI, 53.0%–92.0%) for the combined-treatment group. The rates of long-term neurologic morbidity were 10.0% (95% CI, 3.0%–27.0%) for the endovascular group, 11.0% (95% CI, 3.0%–31.0%) for the surgery-only group, and 10.0% (95% CI, 3.0%–28.0%) for the combined-treatment group. Perioperative morbidity occurred in 10.0% (95% CI, 3.0%–27.0%) for the endovascular group, 21.0% (95% CI, 8.0%–46.0%) for the surgery-only group, and 21.0% (95% CI, 8.0%–46.0%) for the combined-treatment group. The rates of resolution of symptoms were 82.0% (95% CI, 59.0%–94.0%) for the endovascular group, 50.0% (95% CI, 18.0%–82.0%) for the surgery-only group, and 73.0% (95% CI, 37.0%–92.0%) for the combined-treatment group. There were significantly higher rates of symptom resolution in the endovascular group compared with the surgical group ($P < .03$). The long-term good neurologic outcome rates were 95.0% (95% CI, 91.1%–99.0%) for the endovascular group, 56.0% (95% CI, 20.0%–86.0%) for the surgical group, and 88.0% (95% CI, 68.0%–96.0%) for the combined-treatment group, with significantly better outcomes in the endovascular compared with surgical group ($P < .03$).
Increased from 80.7% to 92.9% (Fig 4). The rate of good neurologic outcome of patients presenting with ruptured TDAVFs decreased from 64.4% to 43.6% (Fig 3). The rate of good neurologic outcome rates were 87.0% (95% CI, 71.0%–94.0%) for the combined-treatment group. The long-term good neurologic outcome rates were 78.0% (95% CI, 61.0%–88.0%) for the endovascular-only group, 88.0% (95% CI, 63.0%–97.0%) for the surgery-only group, and 88.0% (95% CI, 62.0%–93.0%) for the combined-treatment group. The combined-treatment group. There were no significant differences among groups for any of the outcomes.

Meta-Analysis Outcomes: Patients with Ruptured TDAVFs

Meta-analysis outcomes are summarized in Table 2. Forest plots are provided as On-line Figs 1–5. The rates of complete occlusion at last follow-up were 78.0% (95% CI, 61.0%–88.0%) for the endovascular-only group, 88.0% (95% CI, 63.0%–97.0%) for the surgery-only group, and 82.0% (95% CI, 62.0%–93.0%) for the combined-treatment group. The rates of long-term neurologic morbidity were 7.0% (95% CI, 3.0%–19.0%) for the endovascular group, 12.0% (95% CI, 3.0%–37.0%) for the surgery-only group, and 9.0% (95% CI, 3.0%–28.0%) for the combined-treatment group. Perioperative morbidity occurred in 7.0% (95% CI, 3.0%–19.0%) for the endovascular group, 20.0% (95% CI, 6.0%–49.0%) for the surgery-only group, and 21.0% (95% CI, 10.0%–38.0%) for the combined-treatment group. There were no significant differences among groups for any of the outcomes.

Secondary Outcomes

The proportion of patients treated with surgical treatment alone decreased from 38.7% to 20.4% between 1980–1995 and 2006–2014. The proportion of patients treated with endovascular therapy alone increased from 16.1% to 48.0% (Fig 2). The proportion of patients presenting with ruptured TDAVFs decreased from 64.4% to 43.6% (Fig 3). The rate of good neurologic outcome increased from 80.7% to 92.9% (Fig 4).

DISCUSSION

The results of this study confirm that contemporary treatment of TAVF leads to a high percentage of both angiographic cure and favorable clinical outcomes. Successful treatment is achieved uniformly among ruptured and unruptured lesions, with comparable low morbidity, among endovascular, surgical, and combined-treatment modalities. Endovascular and multimodality approaches appear to be associated with a higher rate of symptom resolution in patients with nonhemorrhagic presentation, compared with stand-alone surgical approaches. Furthermore, our study reveals a sustained shift from surgery toward an endovascular approach as the preferred treatment technique of TAVF in the past 2 decades. Advances in the understanding of the pathologic anatomy of TAVFs coupled with significant improvement in microcatheter and embolic material technology and microsurgical technique are reflected in the achievement of improved neurologic outcomes in this period. Finally, an increasing number of TAVFs are now diagnosed and treated before they present with hemorrhage, presumably due to wide availability and improved resolution of noninvasive angiography and the recognition of venous hypertension as a prominent cause of neurologic morbidity.

Dural arteriovenous fistulas of the tentorium have been traditionally considered among the most likely to present with hemorrhage or aggressive nonhemorrhagic neurologic dysfunction. In their review of 337 DAVF cases in 1990, Awad et al. found that 97% of DAVFs presented with either hemorrhage or symptomatic venous hypertension. In fact, the overwhelming majority of patients with DAVFs who present with hemorrhage have TAVFs. It is now recognized that the presence of retrograde leptomeningeal drainage, not DAVF location, is the major determining factor of the mode of clinical presentation, and TAVFs are universally associated with retrograde leptomeningeal drainage. The natural history of sympt-
atic DAVF with retrograde leptomeningeal drainage is particularly unfavorable. In 1 study of 20 patients who received either no or partial treatment for DAVFs with retrograde leptomeningeal drainage, the annual mortality rate was calculated at 10.4% and the annual risk for hemorrhage or nonhemorrhagic neurologic deficits after the first presentation were 8.1% and 6.9%, respectively. Five patients in this series had DAVFs of the tentorium, of whom 3 died and 1 had moderate disability on follow-up. On the other hand, recent studies have shown that asymptomatic DAVFs with retrograde leptomeningeal drainage may have a relatively benign natural course. Careful inspection reveals that this may not necessarily be valid in the case of TDAVFs, as evidenced in a series of 17 asymptomatic patients, in which only 1 patient had a DAVF of the tentorium and who, in fact, presented with subarachnoid hemorrhage after partial treatment.

FIG 2. Treatment technique type by time period. E indicates endovascular; S, surgical; M, combined.

FIG 3. Rate of good neurologic outcome by time period.
Until recently, DAVFs of the tentorium were considered candidates only for surgical interruption in the form of microsurgical disconnection of the proximal leptomeningeal venous drainage. The introduction of ethylene-vinyl alcohol (Onyx; Covidien, Irvine, California), a permanent, nonadhesive, liquid embolic agent, has revolutionized DAVF treatment and may be the leading cause of the shift toward a predominantly endovascular treatment paradigm in TDAVFs. In transarterial DAVF Onyx embolization, a proximal plug is created around the distal tip of the microcatheter to produce sufficient proximal flow arrest and allow distal penetration of ethylene-vinyl alcohol into the proximal venous outlet while allowing retrograde occlusion of contributing arterial feeders. More recently, dual-lumen balloon microcatheters are used that allow the unopposed forward penetration of Onyx, without the time-consuming effort of plug formation, while concurrently decreasing the risk of premature proximal reflux. The posterior branch of the middle meningeal artery almost always provides arterial supply to a TDAVF and provides a natural direct access to the venous collector system of the fistula. Furthermore, the middle meningeal artery and its branches run a relatively straight course and are anchored on the dura, making failed microcatheter retrieval rare despite substantial Onyx reflux. Although proximal Onyx reflux may occur with a high margin of safety in the middle meningeal artery, reflux should not be allowed in proximity to the level of the foramen spinosum to avoid inadvertent compromise of the arterial supply to the trigeminal and facial nerves.

Even though we have attempted to summarize data on all published series of treated TDAVFs, our study has certain limitations. The results of separate case series were published by multiple authors who reported independently assessed data and who determined different specific variables that are included in this article. However, the extracted data have been derived from a fairly homogeneous and strictly defined patient population. Furthermore, our study has publication bias, because patients who had either uneventful or poor outcomes may have been excluded from published results. Moreover, treatment modalities have varied during the time course of the published series; this variation makes standardization of treatment paradigms difficult. Last, uniform assessment and reporting of complications in a standardized fashion were lacking. On the basis of the Grading of Recommendations, Assessment, Development and Evaluation framework, the quality of evidence (confidence in estimates) is very low because of imprecision, heterogeneity, and methodologic limitations of the included studies. Nevertheless, this meta-analysis provides useful data to share with patients and families when assessing the risks of treatment of TDAVFs and represents a benchmark against which future studies can be compared. With analysis of >270 patients, this is currently the largest study examining outcomes of surgical and endovascular treatment of TDAVFs, to our knowledge.

CONCLUSIONS

During the past 35 years, patients with TDAVFs have been increasingly presenting with unruptured lesions, receiving endovascular treatment, and experiencing higher rates of good neurologic outcomes. Endovascular treatment was associated with the best long-term neurologic outcomes but lower occlusion rates. Combined endovascular and surgical treatment was associated with high occlusion rates and low morbidity. Increasing use of Onyx may continue to shift the balance more and more toward increasing endovascular treatment as the sole mode of therapy.

Disclosures: Giuseppe Lanzino—UNRELATED: Consultancy: Covidien/ev3.* *Money paid to the institution.
REFERENCES

40. van Rooij WJ, Sluzewski M, Beute GN. Tentorial artery embolization in intracranial arteriovenous fistulas. *Neuroradiology* 2006;48:737–43

Progressive versus Nonprogressive Intracranial Dural Arteriovenous Fistulas: Characteristics and Outcomes

ABSTRACT

BACKGROUND AND PURPOSE: A minority of intracranial dural arteriovenous fistulas progress with time. We sought to determine features that predict progression and define outcomes of patients with progressive dural arteriovenous fistulas.

MATERIALS AND METHODS: We performed a retrospective imaging and clinical record review of patients with intracranial dural arteriovenous fistula evaluated at our hospital.

RESULTS: Of 579 patients with intracranial dural arteriovenous fistulas, 545 had 1 fistula (mean age, 45 ± 23 years) and 34 (5.9%) had enlarging, de novo, multiple, or recurrent fistulas (mean age, 53 ± 20 years; P = .11). Among these 34 patients, 19 had progressive dural arteriovenous fistulas with de novo fistulas or fistula enlargement with time (mean age, 36 ± 25 years; progressive group) and 15 had multiple or recurrent but nonprogressive fistulas (mean age, 57 ± 13 years; P = .0059, nonprogressive group). Whereas all 6 children had fistula progression, only 13/28 adults (P = .020) progressed. Angioarchitectural correlates to chronically elevated intracranial venous pressures, including venous sinus dilation (41% versus 7%, P = .045) and pseudophlebitic cortical venous pattern (P = .048), were more common in patients with progressive disease than in those without progression. Patients with progressive disease received more treatments than those without progression (median, 5 versus 3; P = .0068), but as a group, they did not demonstrate worse clinical outcomes (median mRS, 1 and 1; P = .39). However, 3 young patients died from intracranial venous hypertension and intracranial hemorrhage related to progression of their fistulas despite extensive endovascular, surgical, and radiosurgical treatments.

CONCLUSIONS: Few patients with dural arteriovenous fistulas follow an aggressive, progressive clinical course despite treatment. Younger age at initial presentation and angioarchitectural correlates to venous hypertension may help identify these patients prospectively.

ABBREVIATIONS: CVD = cortical venous drainage; DAVF = dural arteriovenous fistula

Intracranial dural arteriovenous fistulas (DAVFs) are rare arteriovenous shunts involving the epidural space and adjacent dura mater, which receive arterial supply from meningeal vessels and drain directly to dural venous sinuses or cortical veins.1 In the early days of cerebral angiography, DAVFs were considered a subset of AVMs: Newton and Cronqvist2 classified AVMs by arterial supply as pure dural, mixed pial-dural, or pure pial malformations. Unlike brain AVMs, however, DAVFs are most often thought to be acquired (as opposed to congenital), and DAVFs lack a nidus of vessels in the brain parenchyma. DAVF is also distinguished from nongalenic pial arteriovenous fistula by its fistula location in the dura.

Management of a DAVF is based on its expected clinical course: Fistulas demonstrating cortical venous drainage (CVD) generally warrant curative therapy to prevent intracranial hemorrhage, and fistulas without CVD are managed for either symptom palliation or cure.3-6 Treatment modalities include transarterial or transvenous endovascular embolization to occlude the arteriovenous fistula site, microsurgical interruption of the fistula site, stereotactic radiosurgery, or multimodality therapy. Endovascular procedures are used to treat a most DAVFs and are the treatment of choice for lesions accessible to catheterization.3-6 A small number of patients with DAVFs respond poorly to conventional therapies and demonstrate progressive neurologic and angiographic deterioration with enlargement of...
existing fistulas, formation of de novo fistulas, and development of features that increase the risk of intracranial hemorrhage.7 Reports of such rapidly progressive “runaway” DAVFs are scarce. Only a few cases have been published in the past 15 years; therefore, the pathogenesis, presentation, clinical course, and treatment remain unclear.4,8-12 The purpose of this single-institution retrospective cohort study was to compare the clinical characteristics, angioarchitecture, and treatment outcomes of patients with progressive (enlarging fistulas or developing de novo fistulas) versus nonprogressive (recurrent original fistula or the presence of multiple unchanging fistulas) intracranial DAVFs.

MATERIALS AND METHODS

Subjects

In this institutional review board–approved study, a neurointerventional radiology database was used to identify 579 subjects diagnosed with or treated for intracranial DAVFs at the University of California, San Francisco between 1986 and 2013 (Fig 1). Data were cross-referenced with a larger institutional brain AVM database for cases between 2000 and 2012. Imaging reports and medical records of 141 patients who underwent ≥2 cerebral DSA studies were reviewed. Thirty-four patients with angiographically confirmed multiple, recurrent, enlarging or de novo DAVFs were identified. This search and classification approach was taken to be certain that fistula progression or nonprogression could be confirmed by angiographic images acquired at our institution by using selective DSA techniques that have been standard during a long period.

Medical Record and Imaging Review

Baseline demographic and clinical variables were recorded for each subject (Table 1). Angioarchitectural characteristics noted from initial pretreatment angiograms are outlined in Online Table 1. Treatment and outcome variables are outlined in Table 2, and detailed information is included in Online Table 2.

Preintervention diagnostic cerebral angiograms and accompanying reports were available for 32 of 34 patients. Angiographic images for these 32 patients were reviewed and scored (S.W.H., T.T., D.L.C.) according to a structured data-collection sheet previously developed for brain AVMs and nongalenic pial arteriovenous fistulas and modified to highlight features of DAVFs.13,14 Two patients were reviewed by using only structured angiography reports, which are of the same format and authored by the same group of angiographers (S.W.H., D.L.C., C.F.D., R.T.H., V.V.H.) for the entire study period.

Individual DAVFs were graded according to the Borden-Shucart and Cognard scales.15,16 "Multiple" was defined as the simultaneous occurrence of ≥2 fistulas at anatomically different locations. "Recurrent" was defined as the recanalization of a fistula at its original location on follow-up DSA after apparent initial angiographic cure. "De novo" was defined as the development of ≥1 fistula during treatment or on follow-up DSA that was not detected on initial DSA. "Enlarging" was defined as the interval enlargement, increase in arterial flow, recruitment of new arterial feeders, or worsening of the venous drainage pattern of an existing fistula during treatment or on follow-up. When we combined these descriptions for analysis, the progressive fistula group included patients with enlarging and/or de novo fistulas and the nonprogressive group included patients with unchanging multiple or recurrent fistulas.

FIG 1. Cohort selection.

Table 1: UCSF intracranial dural arteriovenous fistula cohort with single fistulas versus subset with confirmed enlarging, de novo, multiple, or recurrent fistulas

<table>
<thead>
<tr>
<th>Enlarging, De Novo, Multiple, or Recurrent Fistulas</th>
<th>Remainder of UCSF Intracranial DAVFs</th>
<th>P Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at dx ± SD</td>
<td>45 ± 23 y</td>
<td>53 ± 20 y</td>
</tr>
<tr>
<td>Median age (range)</td>
<td>52.5 y (0.2–77 y)</td>
<td>56 y (0–87 y)</td>
</tr>
<tr>
<td>Male</td>
<td>35%</td>
<td>49%</td>
</tr>
</tbody>
</table>

a Enlarging, de novo, multiple, or recurrent vs remainder of UCSF cohort.

b Two-tailed t test.

c Two-sided Fisher exact test.

Note:—UCSF indicates University of California at San Francisco; dx, diagnosis.
eters in situ during embolization procedures—were reviewed when available in DSA reports. Brain CT or MR imaging was reviewed for evidence of acute or prior hemorrhage, hydrocephalus, encephalomalacia, and intracerebral calcifications.

Treatment

Management of DAVFs at our institution is based on the expected clinical course of the lesion. Low-grade fistulas with antegrade dural sinus drainage and no CVD are managed conservatively, though endovascular repair is often considered for patients presenting with debilitating symptoms such as severe pulsatile tinnitus. DAVFs with CVD are treated in order to lower the risk of intracranial hemorrhage.12,17-19 Endovascular procedures are the treatment of choice for most lesions at our institution except in cases in which CVD cannot be eliminated by endovascular embolization, in which case an operation is undertaken.5,6 During the study period, patients were treated by endovascular intervention, a combination of endovascular and surgical intervention, radiosurgery, or observation. In the absence of clinical worsening, we typically perform DSA and clinical follow-up of DAVFs without CVD at 12 months following treatment and of DAVFs with CVD at 3 months following curative treatment.

Outcomes Assessment

Medical records from each patient’s last clinical follow-up were assessed for neurologic or developmental disability by 2 investigators (T.T., S.W.H.). The mRS of neurologic disability was used for retrospective classification of initial clinical function and ultimate clinical outcome in all patients. Good clinical outcome was defined as an mRS of 0–2. At the time of last follow-up, records and images were assessed for evidence of change since initial presentation by 2 investigators (T.T., S.W.H.). Follow-up duration was the time from clinical presentation to the last clinical or imaging report.

Statistical Analysis

In a descriptive analysis, subjects were stratified by DSA findings into those with progressive DAVFs compared with those with nonprogressive DAVFs. Student t tests were used to compare normally distributed continuous data, Wilcoxon rank sum tests were used to compare ordinal data, and Fisher exact tests were used to compare proportions. Descriptive statistics and Student t tests were calculated in Excel for Macintosh 2011 (Microsoft, Redmond, Washington). Risk ratios, 95% confidence intervals, odds ratios, and Wilcoxon rank sum and Fisher exact tests were performed in STATA SE, Version 12.1 (StataCorp, College Station, Texas).

Results

Demographic Information

Multiple, recurrent, de novo, or enlarging DAVFs were present in 5.9% of the 579 patients diagnosed with intracranial DAVFs at our hospital during the study period. Patients with multiple DAVFs presented clinically at a mean age of 45 years (range, 2 months to 87 years), whereas patients with single fistulas presented at a mean age of 53 years (range, 0 days to 87 years, \(P < 1.10^{10} \)). Of the 34 patients included for further analysis, 12 (35%) were male and 22 (65%) were female. Patients with progressive DAVFs presented at a younger age compared with patients with nonprogressive fistulas (18 years of age or younger at time of initial presentation) in our cohort had fistula progression, only 13/28 adults (46%, \(P = .02 \)) had fistula progression.
Baseline patient characteristics and clinical presentations are presented in Table 1.

Clinical Presentation

Initial clinical presentation did not differ significantly between subjects with progressive DAVFs and those with nonprogressive DAVFs. Headache and pulsatile tinnitus were the most common symptoms in both groups and occurred at similar rates. The likelihood of aggressive presentation, such as seizure or intracranial hemorrhage, did not differ between the 2 groups. Similarly, the median presentation mRS did not differ between subjects with progressive DAVFs and those with nonprogressive DAVFs. Prior head trauma also occurred at similar rates in both groups.

Angioarchitecture

Angioarchitectural characteristics of the DAVFs are presented in On-line Table 1, and are illustrated in Figs 3–5. The initial venous drainage pattern in progressive fistulas did not differ from that of nonprogressive fistulas, as graded by the Cognard and Borden-Shucart classification systems. Venous sinus dilation was more common in patients with progressive fistulas (41%) than in patients with nonprogressive fistulas (7%, \(P = .045 \)). The presence of a pseudophlebitic cortical venous pattern20 was also more common in progressive fistulas than nonprogressive fistulas (\(P = .048 \)). The median degree of sinus stenosis/occlusion (grouped ordinally into 0%–24%, 25%–49%, 50%–74%, 75%–99% stenosis, and 100% occlusion categories) was higher in progressive fistulas (100%) compared with nonprogressive fistulas (0%–24%, \(P = .091 \)), though this trend did not reach statistical significance. There was no significant difference in the presence of venous ectasia or in the median number of arteriovenous connections when progressive DAVFs were compared with nonprogressive DAVFs. The location of progressive fistulas also did not differ from that of nonprogressive fistulas. Venous pressures were provided in angiographic reports of 6 patients, all of whom had progressive fistulas. The mean venous pressure was markedly elevated: 53 mm Hg (range, 37–81 mm Hg, by using 8 mm Hg as the upper limit of normal).21-24

FIG 2. Age of diagnosis for patients with progressive-versus-nonprogressive fistulas.

FIG 3. Multiple and progressive DAVFs. A 25-year-old female patient with large skull base DAVFs refractory to multiple endovascular treatments. She was initially diagnosed at 18 years of age and died of intracranial hemorrhage 6 years later in the setting of intractable intracranial venous hypertension. CTA images demonstrate an extensive skull base vascular abnormality with dilated cortical veins suggestive of intracranial venous hypertension.
Treatment
Treatments are described in Table 2. Patients received between 2 and 19 endovascular, surgical, and/or radiosurgical treatments. Subjects with progressive DAVFs underwent more treatment procedures than did subjects with nonprogressive fistulas (median, 5 versus 3; \(P = .0068 \)). There was no significant difference in the type of embolic materials used to treat progressive fistulas compared with those used for nonprogressive fistulas.

Clinical Outcomes
The median follow-up time was 2.5 years (range, 56 days to 23.3 years) for all patients. Median follow-up was longer in patients with progressive fistulas (3.9 years) than in those with nonprogressive fistulas (1.4 years), but this difference did not reach statistical significance \((P = .37) \). Angiographic progression from lower risk to higher risk venous drainage on the basis of the Borden-Shucart or Cognard classification was noted in 9% of all patients. Good clinical outcome, defined as a last mRS of 0–2, was achieved in 74% of all patients. Median change in mRS did not differ between subjects with progressive fistulas compared with those with nonprogressive fistulas. Three deaths occurred in the progressive DAVF group (16%) due to intracranial hemorrhage, compared with no deaths among subjects with nonprogressive DAVFs \((P = .24) \).

DISCUSSION
DAVFs are rare and present a variable clinical risk to patients.25,26 Although many DAVFs are curable by embolization,27-29 some DAVFs require surgery or a combination of embolization and surgery for effective treatment.30 Despite the overall good success rates of treating even complex DAVFs by using modern techniques,31 progressive DAVFs, by definition, have eluded cure. Such lesions can often be palliated with stabilization or regression of clinical symptoms, but a minority of DAVFs progress and result in significant morbidity. As reported in the current study, a small number of progressive intracranial DAVFs are ultimately fatal.

Large series of DAVFs indicate that multiplicity is uncommon, with rates between 6.7% and 8.1%.19,28,31,32 The frequency of de novo or enlarging progressive DAVFs is difficult to assess due to the paucity of published data.33-35 In the present study, 19 (3.2%) of 579 patients had de novo or enlarging progressive fistulas, supporting the contention that such lesions are exceedingly rare. Our series may under-report the number of multiple DAVFs (15 of 579; 2.6%), given our approach requiring follow-up DSAs at our own institution with reviewable images.

Multiple synchronous DAVFs may be associated with a more aggressive clinical presentation compared with solitary lesions.19,28,32 In our cohort of patients with multiple, recurrent, de
novo, or enlarging DAVFs, we observed relatively high rates of intracranial hemorrhage (26%), cranial neuropathy (47%), and other focal neurologic deficits (32%). Fistulas that eventually progressed with enlargement or de novo fistula formation were not more likely to present initially with aggressive symptoms, suggesting that neurologic symptoms at presentation cannot necessarily be extrapolated to predict a malignant clinical course. A bias in our study, however, is that we would treat DAVFs with CVD at presentation aggressively at our institution, seeking prompt cure to reduce the risk of subsequent intracranial hemorrhage. Thus, one would expect that lesions with CVD at initial presentation would preferentially be extirpated and thus not persist to have progression in follow-up studies. Of course, the most complex lesions with CVD were not curable with embolization, surgery, or radiosurgery and thus did persist to show progression on follow-up.

Cortical venous drainage is a well-established risk factor for aggressive clinical presentation15,16,36,37 and is related to poor clinical outcome in untreated lesions: Venous hypertension can lead to not only cortical edema and seizures but, more seriously, vein rupture and intracranial hemorrhage.38 Few studies to date have explored the prognostic significance of CVD in the setting of definitive management.39 Our series demonstrates similar rates of CVD on initial angiography in nonprogressive DAVFs and lesions that ultimately progressed. The Cognard and Borden-Shucart scales—and other scales that also rely primarily on the presence of CVD to stratify lesion risk—do not fully capture features of progressive DAVFs because new arteriovenous shunts can form and existing shunts can enlarge without necessarily changing venous drainage categories in the Cognard and Borden-Shucart systems.

There have been attempts to refine classification to improve stratification of neurologic risk in patients with DAVFs.40 Geibprasert et al1 proposed a different classification scheme based on 3 craniospinal epidural spaces, noting an aggressive clinical presentation in lateral epidural fistulas in contrast to the predominantly benign presentation in ventral epidural fistulas; the predictive validity of the scheme has not yet been established.

The pathophysiology of venous hypertension in DAVF genesis—in truly “runaway,” rapidly progressive malignant DAVFs in particular—likely involves a kindling effect of angiogenic factors, as supported by experimental and molecular data from small animal models.7,41,42 A positive feedback loop generates an increased number of arteriovenous shunts that result in arterialized pressures within veins, thus substantially increasing the risk of intracranial hemorrhage and death. Progressive intracranial hypertension may also result from impaired resorption of CSF at the arachnoid granulations in the setting of intracranial venous hypertension. The relationship among thrombophilia, localized venous ischemia, and angiogenesis in progressive DAVF has yet to be elucidated.17,43,44 Young patient age at the time of fistula diag-

FIG 5. Multiple and progressive DAVFs. Same patient as in Figs 3 and 4. DSA demonstrates progression of a left middle meningeal artery to a torcular DAVF with interval enlargement of a feeding artery (arrow in upper left panel versus arrow in upper right panel) during 7 months. Lateral CT scanograms obtained at the same time as DSA provide an overview of treatment with interval deposition of embolic coils and n-BCA glue (lower left versus lower right panel).
nosis also appears to play a role in the likelihood of fistula progression (Fig 2), perhaps because these patients are primed for angiogenesis as part of normal development in contrast to a more static angiogenic milieu in adults. 45

There are several important limitations to our study. This is a retrospective, single-center study during a 27-year time span. Treatment modalities and criteria for definitive management have evolved during this period. Although it is likely that embolization with a temporary agent such as polyvinyl alcohol leads to more fistula recurrences than embolization with a permanent agent such as n-BCA, the frequency of the use of particular embolic agents did not differ between progressive and nonprogressive groups in our small cohort. In addition, patients with exceptionally malignant DAVFs who did not survive the initial presentation and treatment or who refused or were ineligible for treatment would not have been identified from our data base in this series. Similarly, patients who underwent a single treatment session at our institution but had multiple prior or subsequent sessions at another hospital would have also been excluded from our retrospective review. Finally, because our institution is a quaternary care center, the duration of follow-up was highly variable; subsequent treatments and significant outcomes in the community may have been unavailable for analysis.

CONCLUSIONS
Intracranial DAVF is a heterogeneous disease. A small subset of young patients with intracranial DAVFs follow a malignant clinical course with progressive fistula formation and expansion, intractable intracranial venous hypertension, and recurrent intracranial hemorrhage, despite aggressive endovascular and surgical management. Better characterization of the molecular mechanisms underlying angiogenesis gone awry in runaway DAVFs is necessary and will potentially provide insight into new medical therapies for this rare and serious disease.

REFERENCES
29. Shi ZS, Ziegler J, Feng L, et al. Middle cranial fossa sphenoideal region
Additional Value of Intra-Aneurysmal Hemodynamics in Discriminating Ruptured versus Unruptured Intracranial Aneurysms

ABSTRACT

BACKGROUND AND PURPOSE: Hemodynamics are thought to play an important role in the rupture of intracranial aneurysms. We tested whether hemodynamics, determined from computational fluid dynamics models, have additional value in discriminating ruptured and unruptured aneurysms. Such discriminative power could provide better prediction models for rupture.

MATERIALS AND METHODS: A cross-sectional study was performed on patients eligible for endovascular treatment, including 55 ruptured and 62 unruptured aneurysms. Association with rupture status was tested for location, aneurysm type, and 4 geometric and 10 hemodynamic parameters. Patient-specific spatiotemporal velocities measured with phase-contrast MR imaging were used as inflow conditions for computational fluid dynamics. To assess the additional value of hemodynamic parameters, we performed 1 univariate and 2 multivariate analyses: 1 traditional model including only location and geometry and 1 advanced model that included patient-specific hemodynamic parameters.

RESULTS: In the univariate analysis, high-risk locations (anterior cerebral arteries, posterior communicating artery, and posterior circulation), daughter sacs, unstable inflow jets, impingements at the aneurysm body, and unstable complex flow patterns were significantly present more often in ruptured aneurysms. In both multivariate analyses, only the high-risk location (OR, 3.92; 95% CI, 1.77–8.68) and the presence of daughter sacs (OR, 2.79; 95% CI, 1.25–6.25) remained as significant independent determinants.

CONCLUSIONS: In this study population of patients eligible for endovascular treatment, we found no independent additional value of aneurysmal hemodynamics in discriminating rupture status, despite high univariate associations. Only traditional parameters (high-risk location and the presence of daughter sacs) were independently associated with ruptured aneurysms.

ABBREVIATIONS: CFD = computational fluid dynamics; 3DRA = 3D rotational angiography; PC = phase-contrast

The prevalence of intracranial aneurysms in the general population is approximately 1%–5%.1,2 Although most aneurysms remain asymptomatic, a minority rupture, and this scenario is associated with high morbidity and case fatality rates.2 For unruptured aneurysms, the risk of treatment complications has to be carefully balanced against the future risk of rupture. At present, risk assessment of unruptured intracranial aneurysms and the decision to treat or observe are mainly based on patient age, family history, aneurysm size, and location.3-5 However, the predictive value of these characteristics is limited. For example, most ruptured aneurysms are smaller than the recommended minimum of 7 mm for treatment.6

Several researchers have attempted to better stratify rupture risk by assessments of the associations between local hemodynamic features and aneurysm formation, growth, and rupture by using computational fluid dynamics (CFD).7-10 In general, due to the difficulty of obtaining patient-specific velocity measurements, assumptions are made for the inflow boundary conditions. However, several studies have shown a large inter-patient variation of intracranial artery flow.11,12

The purpose of this study was to test whether estimation of local hemodynamics has additional value in discriminating ruptured and unruptured aneurysms. Thus, high-resolution 3D
geometry and patient-specific measurements of local flow velocities in the afferent artery as boundary conditions for hemodynamic simulations were used.13–15

MATERIALS AND METHODS
Patients with intracranial aneurysms were invited to participate in this study by a consulting neurointerventionalist during a visit at the outpatient clinic in our tertiary care referral center from January 2009 to October 2011. Patients with ruptured aneurysms were invited to participate at their first consultation after discharge from the hospital. Patients with unruptured aneurysms were asked to participate during their work-up for aneurysm treatment. Inclusion criteria were the following: aneurysm size of >3 mm, 18–75 years of age, and the ability to give informed consent. Exclusion criteria were contraindications for 3T MR imaging and previous aneurysm clipping. One hundred thirty-eight patients (with 172 aneurysms) agreed to participate. The study was approved by the institutional review board. Written informed consent was obtained from all patients.

We excluded 55 aneurysms (37 patients) for the following reasons: missing 3D rotational angiography (3DRA) source data ($n = 24$); insufficient quality of 3DRA due to vasospasm ($n = 3$); missing ($n = 13$) or failed ($n = 14$) phase-contrast MR imaging (PC-MR imaging) measurements due to inaccurate cardiac gating; or failed CFD simulation ($n = 1$) (Fig 1).

The location of the ruptured or unruptured aneurysms was determined (Table). Because aneurysms located at the anterior cerebral arteries (anterior communicating artery, anterior cerebral artery, pericallosal artery), posterior communicating artery, and in the posterior circulation (basilar artery, vertebral artery, cerebellar arteries) are associated with a higher risk of rupture,4 dichotomization was performed by grouping these high-risk locations and comparing them with the other, lower risk locations.

In patients with multiple aneurysms with 1 rupture (6 patients), 2 experienced neuroradiologists (C.B.L.M.M., R.v.d.B., both with >10 years of experience) inspected all clinical and radiologic data in consensus to select the most likely source of hemorrhage. The other aneurysms were classified as unruptured.

Imaging Protocols
Acquisition of 3DRA was part of the standard clinical work-up. Images were acquired with either local (patients with unruptured aneurysms) or general anesthesia (during endovascular treatment in patients with ruptured aneurysms) by using a single-plane angiographic unit (Integris Allura Neuro; Philips Healthcare, Best, the Netherlands) following institutional protocol. 3DRA was acquired during a 6-second run, with 21 mL of contrast (iodixanol, Visipaque; GE Healthcare, Piscataway, New Jersey), which was administered at 3 mL/s, resulting in a 2563 isotropic image volume. The 3DRA was started 3 seconds after contrast injection.
MR imaging was performed at 3T (Intera; Philips Healthcare) and included a multiple overlapping thin-slab-acquisition 3D TOF MRA sequence and a 3D PC-MR imaging sequence with heart rate monitoring by electrocardiography or by a Peripheral Pulse Unit (Siemens, Erlangen, Germany) for velocity measurements in the afferent artery proximal to the aneurysm. The multiple overlapping thin-slab-acquisition 3D TOF had a scan resolution of 0.39 × 0.6 × 1 mm. Other parameters were the following: TE/TR/flip angle, 4.2/21.4 ms/20°; parallel imaging factor, 2.5; scanning time, 6 minutes and 16 seconds.

3D PC-MR imaging (time-resolved measurement of velocity in 3 directions in a single plane perpendicular to the artery) was performed with a resolution of 0.64 × 0.65 × 3 mm; TE/TR/flip angle, 5.7/8.5 ms/10°; receiver bandwidth, 172 kHz; parallel imaging factor, 2. Velocity-encoding was 100 cm/s and could be adjusted to 70 cm/s if needed. The velocity information was acquired in 23–36 cardiac phases. We ensured that the location of the 3D PC-MR imaging measurement was distal to any proximal branching artery (>1 mm) to obtain the most accurate velocity and flow information.

Patients with unruptured aneurysms were asked to undergo an additional PC-MR imaging study before endovascular treatment. In patients with ruptured aneurysms who were treated in an acute setting, it was not possible to perform PC-MR imaging very early. In case of an anterior communicating artery aneurysms, DSA images were reviewed by 2 neuroradiologists to determine the afferent artery. None of the anterior communicating artery aneurysms filled from both A1s.

The outflow ratio of the distal arteries was calculated by using the Murray law. A no-slip boundary was set at the vessel wall, and rigid walls were assumed. Density and dynamic viscosity were, respectively, 1060 kg m⁻³ and 0.004 kg m⁻³ s⁻¹. Three complete cardiac cycles were calculated; the third cycle was used for analysis. The flow patterns resulting from the CFD simulations were visualized with streamlines and isosurfaces as movie clips by using Paraview 3.6 (Kitware; Los Alamos National Laboratory and Sandia National Laboratories, Los Alamos, New Mexico) (Fig 2).

Hemodynamic Modeling and Visualization

 Fluent 6.3 (ANSYS, Canonsburg, Pennsylvania) was used to simulate hemodynamics. In-house-developed software was used to impose PC-MR imaging–measured spatiotemporal velocity profiles as inflow boundary conditions. In case of an anterior communicating artery aneurysms, DSA images were reviewed by 2 neuroradiologists to determine the afferent artery. None of the anterior communicating artery aneurysms filled from both A1s.

The outflow ratio of the distal arteries was calculated by using the Murray law. A no-slip boundary was set at the vessel wall, and rigid walls were assumed. Density and dynamic viscosity were, respectively, 1060 kg m⁻³ and 0.004 kg m⁻³ s⁻¹. Three complete cardiac cycles were calculated; the third cycle was used for analysis. The flow patterns resulting from the CFD simulations were visualized with streamlines and isosurfaces as movie clips by using Paraview 3.6 (Kitware; Los Alamos National Laboratory and Sandia National Laboratories, Los Alamos, New Mexico) (Fig 2).

Quantitative Parameter Assessment

The following geometric aneurysm parameters were determined from 3D models by a research physician (J.J.S.): size (largest diameter in millimeters), aspect ratio (height divided by the neck size), and spheric or nonspheric nature of the aneurysm ("spheric" defined as an aneurysm height within 80%–125% of its width). Quantitative hemodynamic parameters (mean wall shear stress, maximum wall shear stress, and oscillatory shear index) were derived from the hemodynamic data provided by CFD by using in-house-developed software. The quantitative hemodynamic parameters were derived from the surface of the aneurysm sac. Time-dependent indices (oscillatory shear index) were calculated with a time-averaged method by using all the cardiac phases available.

Qualitative Parameter Assessment

Qualitative parameters were assessed by 2 interventional neuroradiologists (C.B.L.M.M., R.v.d.B.). Qualitative geometric parameters were assessed from the 3D model and included aneurysm type (sidewall or bifurcation) and the presence or absence of neck size overestimation.

Vascular Models and Vascular Model Correction

A level set algorithm was used to segment the vascular tree in 3DRA image data. The segmentations were converted into a tetrahedral element mesh with >1,000,000 tetrahedral elements (±3000 elements × mm⁻³). Neck size overestimation was reviewed by 2 neuroradiologists, by comparing the segmentations with those in 2D DSA. Twenty-six of 117 aneurysm segmentations showed neck size overestimation and required modification according to a previously described method.

Location, aneurysm type, and rupture status of 117 aneurysms (101 patients)

<table>
<thead>
<tr>
<th>Location</th>
<th>No. of Cases</th>
<th>Total (n = 117)</th>
<th>Bifurcation (n = 90)</th>
<th>Sidewall (n = 27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PcomA</td>
<td>12 (10%)</td>
<td>4</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>BA</td>
<td>11 (9%)</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>VA</td>
<td>1 (1%)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ACA</td>
<td>8 (7%)</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>AcomA</td>
<td>28 (24%)</td>
<td>7</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Subtotal</td>
<td>60 (51%)</td>
<td>22</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Low-risk location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCA</td>
<td>36 (31%)</td>
<td>27</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ICA</td>
<td>21 (18%)</td>
<td>13</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal</td>
<td>57 (49%)</td>
<td>40</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>Total</td>
<td>117 (100%)</td>
<td>62</td>
<td>55</td>
<td>46</td>
</tr>
</tbody>
</table>

Note: AcomA indicates anterior communicating artery; PcomA, posterior communicating artery; VA, vertebral artery.

Schneiders Oct 2015 www.ajnr.org
daughter sacs. An aneurysm was classified as a sidewall aneurysm when it originated from a major vessel trunk with either no or a very small side branch (with a diameter of less than one-fifth of the parent vessel). All other aneurysms were classified as bifurcation aneurysms.

Qualitative hemodynamic parameters were assessed from movie clips and included the number of inflow jets (single or multiple), inflow jet concentration (concentrated or diffuse), inflow jet stability (stable or unstable), vortex complexity (simple or complex), vortex stability (stable or unstable) flow pattern category according to Cebal et al,9 and location of the impingement zone.

The inflow jet was considered unstable if its main direction changed throughout the cardiac cycle. The inflow jet was considered concentrated if the inflow width was less than half the aneurysm neck. Vortices were assessed for complexity (simple/complex) and stability (stable/unstable). Vortices were considered complex if there was >1 major flow structure; they were categorized as unstable when ≥1 flow structure disappeared during a cardiac cycle. The stability and complexity of intra-aneurysmal flow were classified by assigning 1 of the following 4 flow types: 1) stable-simple: stable direction of the inflow jet with a single associated vortex, 2) stable-complex: stable direction of the inflow jet

FIG 2. Intra-aneurysmal hemodynamics in 3 typical aneurysms. Diastole is depicted in the top row; systole, in the bottom row. The columns represent: A, Isosurface of the velocity, B, 3D streamlines colored by velocity magnitude, C, 2D slice of the velocity magnitude, D, Wall shear stress distribution displayed on 3D geometry. The rows represent cases 1–3. Case 1: Ruptured anterior communicating artery aneurysm with a concentrated inflow jet (A and C) and a stable-simple flow pattern: single vortex that is stable throughout the cardiac cycle (B). The impingement zone is located at the body (D). Case 2: Unruptured posterior communicating artery aneurysm with a concentrated inflow jet (A and C) and a stable-complex flow pattern: multiple flow structures that remain stable throughout the cardiac cycle (B). The impingement zone is located at the dome (D) and 2 daughter sacs (D). Case 3: Ruptured anterior communicating artery aneurysm with a concentrated inflow jet (A and C) and an unstable-simple flow pattern: a single flow structure that is unstable throughout the cardiac cycle. The primary direction of flow is different between systole and diastole (B). The impingement zone is located at the neck (D) and 2 daughter sacs (D).
with multiple associated vortices and no change in the number of vortices during the cardiac cycle, 3) unstable-simple: changing direction of inflow jet with the creation of a single vortex, and 4) unstable-complex: changing direction of the inflow jet associated with the creation or destruction of multiple vortices.9

Images of the wall shear stress magnitude were used to categorize the location of the impingement zone as neck, body, dome, or in a daughter sac.19 The “impingement zone” was defined as the area on the aneurysm sac where the inflow jet deflects.

Statistical Analysis

The Shapiro-Wilk test was used to assess the normality of the distribution of continuous variables (normally distributed if the W statistic was >0.9). The normally distributed variable (size) was expressed as mean with SD, whereas not normally distributed variables were presented as medians with interquartile ranges (interquartile range, 25%–75%).

To evaluate the relation between determinants and rupture status, we performed univariate and multivariate analyses by using logistic regression analysis. Variables that were significantly associated with rupture status in the univariate analysis were included in the multivariate analysis by using manual backward variable selection. To test for multicollinearity, we calculated the variance inflation factor. We generated 2 multivariate models: a “traditional” model including only the location and geometric determinants, and an advanced model including location and geometric and hemodynamic determinants. Interobserver agreement of all parameters was assessed by calculation of the intraclass correlation coefficient and the percentage of agreement. A P value <.05 was considered statistically significant in all analyses. All analyses were performed by using the SPSS, Version 20.0 (IBM, Armonk, New York).

RESULTS

In the analysis, 101 patients (63 women; mean age, 54.8 years) with 117 aneurysms (62 unruptured, 55 ruptured) were included (Fig 1). The distribution of aneurysm locations is depicted in the Table. The unruptured aneurysms had a mean size of 7.4 ± 3.7 mm; the ruptured aneurysms, 6.6 ± 2.8 mm (On-line Table 1). Eleven of the included patients had multiple aneurysms: 7 patients with 2 aneurysms, 3 with 3 aneurysms, and 1 with 4 aneurysms. Multiple aneurysms per patient were included if specific PC-MR imaging measurements were available for each aneurysm. None of the unruptured aneurysms showed geometric changes during the interval between 3DRA and MR imaging.

The univariate associations with aneurysm rupture status are depicted in On-line Table 1. There was no indication of severe multicollinearity. The interobserver agreement for qualitatively scored hemodynamic parameters is displayed in On-line Table 2. Aneurysms located at high-risk locations were more often associated with rupture compared with the aneurysms at other locations (OR, 4.06; 95% CI, 1.88–8.81). The only geometric parameter that was significantly associated with rupture status was the presence of a daughter sac (OR, 2.93; 95% CI, 1.37–6.29). Regarding the hemodynamic parameters, unstable inflow jet (OR, 13.56; 95% CI, 1.67–110), impingement zone location at the aneurysm body (OR, 2.49; 95% CI, 1.00–6.19), and complex vortices (OR, 2.34; 95% CI, 1.11–4.96) were significantly associated with ruptured aneurysms. In addition, an unstable-complex flow pattern was present significantly more often in ruptured aneurysms (OR, 2.59; 95% CI, 1.05–6.37) compared with a stable-simple flow pattern. The presence of stable-complex and unstable-simple flow patterns was not different in ruptured and unruptured aneurysms.

In the traditional multivariate model, both high-risk location (OR, 3.92; 95% CI, 1.77–8.68) and the presence of daughter sacs (OR, 2.79; 95% CI, 1.25–6.25) were independently associated with ruptured aneurysms (Nagelkerke R^2 of 0.21; area under the curve, 0.72; 95% CI, 0.63–0.82). The advanced multivariate model added (univariate significant) hemodynamic parameters: unstable inflow jet, vortex complexity, flow-pattern category, and location of the impingement zone. In this advanced model, high-risk location and the presence of daughter sacs were independently associated with ruptured aneurysms (OR values equal to the traditional model), resulting in exactly the same area under the curve (area under the curve, 0.72; 95% CI, 0.63–0.82; Nagelkerke R^2 of 0.21). Thus, hemodynamic parameters did not improve the traditional multivariate model.

DISCUSSION

In this study, which compared geometric and hemodynamic parameters in 117 aneurysms, no additional value of aneurysmal hemodynamics for the characterization of ruptured-versus-unruptured aneurysms was found. Rather, only the presence of daughter sacs and location at the anterior cerebral arteries, posterior communicating artery, or posterior circulation significantly characterized ruptured aneurysms, and this was the case for multivariate models with or without inclusion of hemodynamics.

Various hemodynamic aspects of aneurysms have been implicated as potential predictors of the risk of rupture, such as disturbed flow patterns, small impingement regions, narrow jets, wall shear stress, and oscillatory shear index.9,10,22 In addition, these complex and unstable flow patterns have been correlated with a clinical history of prior aneurysm rupture.8 This study does not address the causality of hemodynamics and aneurysm rupture and does not allow any statements considering causality. While univariate analyses in the current work and previous studies clearly argue for hemodynamic data as discriminators and candidate predictors for rupture, our multivariate models do not show additional value when we account for geometric data.

The independent association of location at the anterior cerebral arteries, posterior communicating artery, and posterior circulation with rupture is in accordance with a recently published pooled analysis based on 6 prospective studies with 8382 patients with unruptured aneurysms.4 That analysis, however, did not include hemodynamic parameters. Despite the evidence, several studies on hemodynamic risk factors for aneurysm rupture did not include location as a determinant in their analyses.5,10 A post hoc analysis of the findings of Xiang et al10 indicates that also in that study, location at the anterior cerebral arteries, posterior communicating artery, and posterior circulation is positively associated with rupture, with 84% in the ruptured group, as opposed to 33% in the unruptured group. It is not clear whether the
shear parameters would remain significantly involved if location had been included in their model.

Daughter sacs were present significantly more often in ruptured aneurysms compared with unruptured aneurysms. The importance of aneurysm shape for the risk profile has previously been acknowledged in a study comparing ruptured and unruptured cerebral aneurysms, in which 10% of unruptured aneurysms showed a multibulbar appearance on DSA compared with 20% of ruptured aneurysms. In the Unruptured Cerebral Aneurysm Study of Japan, daughter sacs were also associated with an increased rupture rate. Aneurysm geometry and the presence of daughter sacs may change before, during, or after rupture. Two studies on 13 and 9 patients before and after rupture showed that indeed geometry after rupture may be different due to growth and displacements by hematomas. While rupture might have affected the percentage of aneurysms with visible daughter sacs, the Unruptured Cerebral Aneurysm Study of Japan underlines the view that the significant association in our study with ruptured aneurysms is not merely a consequence of rupture.

Aneurysm size did not significantly contribute to characterization of the rupture state, while it is a proved risk factor for aneurysm rupture in longitudinal follow-up studies. The reason for this finding is that in patients with ruptured aneurysms, 3DRA was routinely performed in the standard work-up protocol in all aneurysms regardless of size. However, patients with unruptured aneurysms were only scheduled for treatment when aneurysm size was >7 mm or when aneurysm growth was seen during follow-up. Unruptured MCA aneurysms were over-represented in our study compared with the patient population of the institution, though this number was comparable with that in a study by Morita et al. This difference might have been related to the more frequent application of 3DRA imaging in relation to decisions for treatment.

In a recent study of Baharoglu et al., rupture risk factors were assessed for sidewall and bifurcation aneurysms separately. This assessment is promising for dealing with multicollinearity. The design and number of included patients in this study did not allow us to also compare all variables against these 2 aneurysm types. Patient-specific inflow patterns for CFD, based on PC-MR imaging, were not always obtained within a short interval of 3DRA. Patients with unruptured aneurysms were asked to participate right before or after 3DRA, either in the pretherapeutic work-up or during an elective coiling procedure. Patients with a recent 3DRA (<1 year) were asked to participate during regular checkups at the outpatient clinic. For ruptured aneurysms, PC-MR imaging was performed 6 months after treatment. We do not believe that these timing differences biased the estimation of hemodynamic patterns. Cebral et al. indicated that for variation of inflow within a ~25% range, calculated flow patterns remain unchanged. In the absence of major events such as rupture or stroke, no such variation is expected.

Data on flow changes after coiling are sparse. However, in a pilot study, we found that flow changes in inlet and outlet vessels before and after coiling are within this 25% range. These results, therefore, allow the PC-MR imaging flow measurements performed 6 months after coiling to serve as a boundary condition for CFD simulating pretreatment hemodynamics.

Several assumptions for the CFD simulations had to be made, including traction-free boundary conditions, rigid walls, and outlet boundary conditions. However, these assumptions are believed to have relatively limited influence on the predicted flow patterns. The influence of mesh resolution is reported in an article by Valen-Sendstad and Steinman, in which they have shown that lower resolution meshes can result in different oscillatory shear index values as opposed to higher resolution models. Not using the very-high-resolution models may have disguised the associations between oscillatory shear index and rupture status; however, this issue was beyond the scope of this study.

A limitation of this study is the absence of other established clinical risk factors for rupture, including multiple aneurysms, a history of previous SAH, hypertension, female sex, and descent. Including such factors was not possible because it would have affected the power of tests for the hemodynamic parameters. It remains to be established whether such clinical factors interact with hemodynamics in risk prediction.

We reported the interobserver agreement for the classifications of our experts before consensus was reached. The agreement of the variables flow concentration, inflow stability, and flow complexity is, on average, 85%, compared with 99% in a previous study. The lower agreement and relatively low intraclass correlation coefficient for most variables may reduce the discriminating power of the analysis. Therefore, in the final analysis, we used the consensus of the 2 observers for all scored variables.

The current cross-sectional design does not allow straightforward estimation of rupture risk from the included parameters. For example, unruptured aneurysms included in this study may still have a high risk for future rupture, and this study cannot discriminate between aneurysms that have not yet ruptured and those that will never rupture.

The lack of additional value of hemodynamic parameters raises the question of whether and how such hemodynamics could be part of risk of rupture models. Larger longitudinal studies will provide more insight than could possibly be generated in the current cross-sectional design.

CONCLUSIONS
In this study population of patients eligible for endovascular treatment, we found no independent additional value of aneurysm hemodynamics in discriminating rupture status, despite high univariate associations. Only traditional parameters (high-risk location and the presence of daughter sacs) were independently associated with ruptured aneurysms.

REFERENCES

Hemodynamic Differences in Intracranial Aneurysms before and after Rupture

ABSTRACT

BACKGROUND AND PURPOSE: Rupture risk of intracranial aneurysms may depend on hemodynamic characteristics. This has been assessed by comparing hemodynamic data of ruptured and unruptured aneurysms. However, aneurysm geometry may change before, during, or just after rupture; this difference causes potential changes in hemodynamics. We assessed changes in hemodynamics in a series of intracranial aneurysms, by using 3D imaging before and after rupture.

MATERIALS AND METHODS: For 9 aneurysms in 9 patients, we used MRA, CTA, and 3D rotational angiography before and after rupture to generate geometric models of the aneurysm and perianeurysmal vasculature. Intra-aneurysmal hemodynamics were simulated by using computational fluid dynamics. Two neuroradiologists qualitatively assessed flow complexity, flow stability, inflow concentration, and flow impingement in consensus, by using flow-velocity streamlines and wall shear stress distributions.

RESULTS: Hemodynamics changed in 6 of the 9 aneurysms. The median time between imaging before and after rupture was 678 days (range, 14–1611 days) in these 6 cases, compared with 151 days (range, 34–183 days) in the 3 cases with unaltered hemodynamics. Changes were observed for flow complexity (n = 3), flow stability (n = 3), inflow concentration (n = 2), and region of flow impingement (n = 3). These changes were in all instances associated with aneurysm displacement due to rupture-related hematomas, growth, or newly formed lobulations.

CONCLUSIONS: Hemodynamic characteristics of intracranial aneurysms can be altered by geometric changes before, during, or just after rupture. Associations of hemodynamic characteristics with aneurysm rupture obtained from case-control studies comparing ruptured with unruptured aneurysms should therefore be interpreted with caution.

ABBREVIATIONS: CFD = computational fluid dynamics; 3DRA = 3D rotational angiography; OSI = oscillatory shear index; WSS = wall shear stress

Intracranial aneurysms are found in 1%–5% of the adult population.1,2 For ruptured intracranial aneurysms, case morbidity and fatality rates are high.1,3 However, 50%–80% of all intracranial aneurysms do not rupture during an individual’s lifetime.4 More commonly, unruptured aneurysms are incidentally found due to increasing use of imaging.5,6 The risk of rupture should be balanced against the risk of treatment when deciding whether an aneurysm should be treated. In clinical practice, the location and size of the aneurysm are the most important parameters for determining the risk of rupture.1,6 However, these geometric predictors are insufficient for optimal treatment selection. Therefore, the search for better predictors for rupture continues.7–9 Previous studies have associated intra-aneurysmal flow patterns and wall shear stress (WSS) distributions with aneurysm rupture status.7,8,10 However, these results are still controversial. For example, both high and low aneurysmal WSS were separately associated with aneurysm growth and rupture.11,12 In these risk-assessment studies, potential changes in hemodynamics due to the rupture itself were systematically neglected. Recently, 2 studies have shown changes in aneurysm geometry after rupture.13,14 These rupture-associated geometric changes may result in differences in hemodynamic characteristics as well.
In this study, we had the opportunity to use high-quality 3D imaging data of 9 patients with intracranial aneurysms, obtained before and after rupture, to assess potential differences in hemodynamic characteristics associated with rupture.

MATERIALS AND METHODS

3D image data of intracranial aneurysms for 9 patients before (MRA \(n = 6 \), CTA \(n = 3 \)) and after (CTA \(n = 2 \)) 3D rotational angiography (3DRA, \(n = 7 \)) rupture were collected. The imaging parameters are shown in Table 1.14 Clinical data and aneurysmal geometric data are shown in the On-line Table. The image data were collected during 6 years in 3 different institutions. Four male and 5 female patients were included, with aneurysms located at the basilar artery (\(n = 3 \)), posterior communicating artery (\(n = 2 \)), middle cerebral artery (\(n = 2 \)), anterior communicating artery (\(n = 1 \)), and anterior choroidal artery (\(n = 1 \)). The mean age at the time of rupture was 60 ± 12 years. The median time between imaging before and after rupture was 183 days, with a range of 14 days to 4 years 1 day. The median time between rupture and subsequent imaging was 1 day, with a range of 0–9 days. Informed consent was waived by the medical ethics committee because no diagnostic tests other than routine clinical imaging were used in this retrospective study.

Vascular Model Generation

To create a surface model of the aneurysm and perianeurysmal vasculature by using the available 3D imaging data, we used a level set algorithm of the Vascular Modeling Toolkit (http://www.vmtk.org/).15-18 For hemodynamic simulation, model accuracy and mesh quality are important.18-20 Therefore, inaccuracies due to imaging artifacts such as flow dispersion and saturation (in 3D time-of-flight MRA), partial voluming, beam hardening (in CTA), neck size overestimation,21 and inhomogeneous contrast agent distribution (in CTA and 3DRA) were corrected. Artificial narrowing results in overestimations of WSS and erroneous flow velocities22 and was, therefore, corrected by inflation by using Blender (http://www.blender.org).23 Vessel inflation was performed in the proximal arteries in 13 models and in the distal arteries in 12 models. Furthermore, the inflow jet and location of deflection may be sensitive to the segmentation of the neck area. To reduce this dependency, an experienced neuroradiologist (C.B.L.M.M.) carefully inspected the vascular models and corrected them for imaging artifacts. Imaging artifacts were distinguished from pathology by using additional DSA imaging. For the purpose of this study, manual corrections of the segmentation were performed by using ITK-SNAP 2.4.0 (www.itksnap.org).24 In addition, the surface models were smoothed by using a built-in Taubin-smoothing algorithm of the Vascular Modeling Toolkit to remove high-frequency noise while preventing the surface models from shrinking.25

Subsequently, all aneurysm models were inspected for apparent differences in visualized anatomy of perianeurysmal arteries before and after rupture. The vascular models agreed for all except 1 case. In case 8, we removed 2 outflow arteries from the ruptured model because in the before-rupture imaging, only 1 outflow artery was visible, while 3 outflow arteries were visible in the after-rupture imaging.

To decrease computational effort, we removed distant vessel branches located approximately 20 times the average radius distal to the aneurysm. Finally, the in- and outlet vessels were cut perpendicular to the vessel. To ensure fully developed flow entering the aneurysm model, we added cylindrical flow extensions, with a length of 12 times the radius of the afferent vessel, to the inlets of the models.16,26

All surface models were converted into tetrahedral meshes by using the Vascular Modeling Toolkit.18 The element attenuation factor close to the wall was increased by adding a customized boundary layer. The median number of elements was 3,284,000 (range 2,101,000–5,248,000).

Computational Fluid Dynamics

Computational fluid dynamics (CFD) (Fluent 13.0; ANSYS, Canonsburg, Pennsylvania) was used to simulate hemodynamics in the vascular models. Transient Navier-Stokes equations were solved by using a pressure-based, 3D double-precision solver by following the SIMPLE Method.27 Blood was modeled with an attenuation of 1060 kg/m\(^3\) and a dynamic viscosity of 0.004 Pa·s. A no-slip boundary was assumed at the rigid vessel wall.

Because patient-specific velocity data were not available for this patient selection, we calculated parent artery–specific velocity profiles for the basilar artery (cases 1, 6, and 9), internal carotid artery (cases 3, 7, and 8), middle cerebral artery (cases 4 and 5), and anterior cerebral artery (case 2). Median values for the maximum and minimum velocities were obtained from previous patient-specific 4D phase-contrast MR imaging velocity measure-.
The altered hemodynamics are the consequence of a change in morphology in the period between image acquisitions. Because of the large imaging time interval in some cases, we cannot relate the concentration changed from diffuse to concentrated in 1 case and from concentrated to diffuse in another case. The region of flow impingement changed in 3 cases. These hemodynamic changes were associated with growth, aneurysm displacement, or newly formed lobulations. Changes in OSI after rupture ranged from -0.037 to $+0.034$ and from -0.030 to $+0.12$ for the spatially averaged and maximum values, respectively (Table 3).

Qualitative Characterization: Case-by-Case Description

For cases 1 and 6, aneurysmal geometry and hemodynamics did not change after rupture. In case 2, the aneurysm was displaced 8.9 mm after rupture, most likely due to mass effect from a large perianeurysmal hematoma (dimensions, $28 \times 22 \times 35$ mm). In this case, the region of flow impingement changed from the dome to the body. In the On-line Video, changes of WSS distributions before (A) and after (C) rupture with velocity magnitude streamlines before (B) and after (D) rupture of this case can be appreciated.

Case 3 showed a relative growth of 79% with 1 new lobulation after rupture. The flow profile changed from simple and stable to complex and unstable after rupture.

The aneurysm of case 4 was displaced 5.8 mm after rupture, most likely due to mass effect from a large perianeurysmal hematoma (dimensions, $46 \times 33 \times 38$ mm). However, there were no changes in hemodynamic characterizations.

In case 5, a volumetric increase of 176% and a displacement of 1.2 mm after rupture were found. For the hemodynamic characterization, a diffuse inflow pattern before rupture changed to a concentrated one after rupture.

In case 7, there was a relative growth of 832%, with a newly observed lobulation in the imaging after rupture. The simple flow changed to a complex flow pattern after rupture. Also, an additional impingement zone was observed in the body of the aneurysm at the border of the lobulation after rupture.

In case 8, there was a relative growth of 70% and a displacement of 2.5 mm after rupture. The flow pattern changed from stable to unstable. Before rupture, the inflow stream impacted the aneurysm at 2 regions: the aneurysm neck and body. After rupture, the neck of the aneurysm was the only region of impingement.

In case 9, a new lobulation was observed in the imaging after rupture. The flow changed from simple and stable to complex and unstable.
observed hemodynamic alterations to sudden, rupture-related morphologic changes alone. For instance, growth or lobulation formation may also have occurred more gradually during the whole time span. This scenario agrees with the median time between before and after rupture imaging, which was much larger for the cases with hemodynamic changes than for the cases without. Furthermore, all of the 3 cases in which flow patterns changed from simple to complex showed a newly formed lobulation. How-
ever, morphologic changes may also occur suddenly, shortly before, during, or just after rupture. This change can be illustrated by the large growth of case 8 within 14 days and by the aneurysm displacement of 8.9 mm just before rupture and 8.5 mm after rupture. In 4 aneurysms of the posterior communicating artery, Chien and Sayre determined that only 1 hemodynamic parameter (pulsatility index) was not affected by rupture. This is consistent with our observations that most hemodynamic characteristics remain valuable for risk prediction. However, morphologic changes can also occur quickly, shortly before or after rupture. This change can be illustrated by the large growth of case 8 within 14 days and by the aneurysm displacement of 8.9 mm just before rupture and 8.5 mm after rupture. In 4 aneurysms of the posterior communicating artery, Chien and Sayre determined that only 1 hemodynamic parameter (pulsatility index) was not affected by rupture. This is consistent with our observations that most hemodynamic characteristics remain valuable for risk prediction. However, morphologic changes can also occur quickly, shortly before or after rupture.

Therefore, hemodynamics of ruptured models may still be valuable for gradually changing aneurysms, where the value seems more limited for models with rupture-related morphologic changes. In most cases, it is difficult to discriminate between sudden and gradual changes in morphology, except for cases with large perianeurysmal hematomas. We recommend excluding these cases in studies that compare hemodynamic characteristics in ruptured and unruptured aneurysms because hematomas may strongly influence hemodynamics.

Only a few studies assessed hemodynamics both before and after rupture. In 4 aneurysms of the posterior communicating artery, Chien and Sayre determined that only 1 hemodynamic parameter (pulsatility index) was not affected by rupture. This agrees with our observations that most hemodynamic characteristics changed. Duan et al examined hemodynamic and morphologic parameters by using a case-control study of 6 aneurysms on the posterior communicating artery with hemodynamic data within 7 days before rupture. However, they only compared parameters with those of matched controls and did not investigate the influence of the rupture itself. This was also the case in the study of Liu et al, in which low WSS was associated with rupture in a case-control study of large internal carotid artery aneurysms, including 3 unruptured aneurysms just before rupture and 8 unruptured controls. A recent case report of an aneurysm with imaging before and just after rupture demonstrated changes in WSS values between 20% and 30%, caused by a change in the aneurysm shape.

In a recent study by Bor et al, aneurysm growth was studied in a large population of patients with unruptured and untreated intracranial aneurysms. In their study, >10% of the aneurysms grew during a mean follow-up time of <3 years. Growth is considered a marker for increased risk of rupture, and because growth may change hemodynamics, such a population allows improved characterization of hemodynamic rupture-risk factors.

A previous study by Xiang et al showed that high OSI values were associated with ruptured aneurysms. We indeed found high OSI values in all ruptured models. Most important, OSI was also high in all except 1 of the unruptured models. The exception was a case with >3 years between imaging, in which gradual progression from low-to-high shear stress oscillation might have been missed. These data therefore suggest that high OSI values may remain valuable for risk prediction.

Limitations

The current study has a number of limitations. Although this study is the largest comparing hemodynamic parameters within aneurysms before and after rupture, the number of patients was too small to perform statistical analysis. CFD is sensitive to the geometry and therefore image resolution, and neck size overestimation can affect the calculated hemodynamic parameters. Previous literature concluded that WSS calculations are strongly de-
dependent on segmentation and resolution.36 Because of the large variation in resolution, the WSS estimations were not robust. Therefore, we used WSS distributions only for determining the impingement region, and no absolute WSS values were reported. Manual corrections for imaging artifacts were performed by a single neuroradiologist. These imaging artifacts were apparent in all cases; therefore, we do not expect large variations among different observers. Furthermore, common limitations for CFD studies, such as the generic pulsatile waveform, rigid wall assumption, limited accuracy of the algorithm, Newtonian fluid assumption, and CFD solution strategies may affect the accuracy of CFD results.37–39

CONCLUSIONS

We have shown that morphologic changes before, during, or just after rupture may result in differences in hemodynamic characteristics between the ruptured and unruptured status of aneurysms. Hemodynamic differences were associated with aneurysm growth, lobe formation, and displacement due to hematoma. Associations of hemodynamic characteristics with aneurysm rupture obtained from case-control studies comparing ruptured and unruptured aneurysms should, therefore, be interpreted with caution and not automatically used in risk models for aneurysm rupture.

Disclosures: Wouter Potters—RELATED: Other: Dutch Technology Foundation STW [Carisma 111629],* Money paid to the institution.

REFERENCES

Stent-Assisted Coiling of Wide-Neck Intracranial Aneurysms Using Low-Profile LEO Baby Stents: Initial and Midterm Results

K. Aydin, A. Arat, S. Sencer, M. Barburoglu, and S. Men

ABSTRACT

BACKGROUND AND PURPOSE: Low-profile self-expandable stents were recently introduced for the treatment of wide-neck intracranial aneurysms. This study investigated the initial and midterm clinical and angiographic results of LEO Baby stent–assisted coiling in the treatment of wide-neck intracranial aneurysms.

MATERIALS AND METHODS: A retrospective review was performed to identify patients who were treated with LEO Baby stent–assisted coiling. Eighty patients with 80 wide-neck intracranial aneurysms were included in the study. Eleven patients (13.8%) presented with subarachnoid hemorrhage. All patients were treated with LEO Baby stent–assisted coiling. Technical success and immediate postprocedural clinical and angiographic outcomes were evaluated. Seventy-three patients attended angiographic and clinical follow-up for a mean duration of 7.2 ± 3.8 months. Periprocedural and delayed complications were reviewed. Preprocedural and follow-up clinical statuses were assessed by using the modified Rankin Scale.

RESULTS: The technical success rate of the procedure was 97.5%. The immediate postprocedural angiography revealed a complete occlusion of the aneurysm in 75% of the 80 patients. The last follow-up angiograms showed complete occlusion in 85.7% of the 77 patients with an angiographic follow-up. Of the 77 patients with a follow-up angiography, 6.5% showed an increase in the filling status of the aneurysm and 5.2% required retreatment. The overall procedure-related complication rate, including asymptomatic complications, was 11.3%. The permanent morbidity rate was 3.8%. There was no mortality in this study.

CONCLUSIONS: This case series demonstrates the relative safety, efficacy, and midterm durability of the LEO Baby stent–assisted coiling procedure for the treatment of wide-neck intracranial aneurysms.

ABBREVIATIONS: AcomA = anterior communicating artery; SAC = stent-assisted coiling

Coiling has become the most common treatment for intracranial aneurysms since the results of the International Subarachnoid Aneurysm study were published. However, treatment of wide-neck complex aneurysms remains challenging. The relatively high recurrence rates after coiling are another major limitation of the endovascular treatment of wide-neck and/or large aneurysms. The stent-assisted coiling (SAC) technique was developed to treat wide-neck intracranial aneurysms. Several self-expandable stents dedicated to intracranial use were introduced in the past decade, and the availability of these self-expandable intracranial stents enabled the endovascular treatment of wide-neck complex aneurysms that were uncoilable previously. Stents create a mechanical scaffold that prevents coil protrusion into the parent artery. Stents also reduce the risk of recanalization because of their hemodynamic and biologic effects.

Low-profile self-expandable intracranial stents (LEO Baby; Balt, Montmorency, France; and LVIS Jr; MicroVention, Tustin, California) were introduced recently. The designs of these stents enable their delivery into small arteries. These low-profile intracranial stents can be deployed into arteries with diameters as small as 1.5 mm to treat wide-neck aneurysms. Furthermore, these stents can be delivered through microcatheters with an internal diameter of 0.0165 inches, which facilitates navigation in small-sized vessels.

This multicenter retrospective study investigated the safety and efficacy of LEO Baby stent-assisted coiling treatment of wide-neck intracranial aneurysms. We also evaluated the midterm (6–12 months) durability of LEO Baby SAC treatment.
MATERIALS AND METHODS

Patients

After approval of the study by the institutional review board, a retrospective review of interventional data base records of 3 university hospitals was performed to identify patients who were treated by using at least 1 LEO Baby stent between October 2012 and November 2014. Medical records and radiologic images of patients were gathered. Three neuroradiologists (K.A., M.B., and S.M.) assessed the surgery reports, medical charts, and radiologic images of the patients. Patient demographics and presenting symptoms, the location and size of aneurysms, previous treatment history, stent-deployment success, technical and clinical complications, and the degree of aneurysm occlusion were recorded.

Eighty-six patients received attempted treatment by using LEO Baby stents between October 2012 and November 2014. Only patients treated by using the SAC technique were included into the study; 6 patients who were treated by using stent monotherapy without coiling were excluded. LEO Baby stent–assisted coiling was performed in the treatment of aneurysms located in the parent arteries with a diameter of ≤3.5 mm and with a dome/neck ratio of <2 or a neck diameter of >4 mm, a morphology not suitable for primary coiling.

This study consisted of 80 patients with 80 aneurysms. Fifty of these aneurysms were treated in (Hacettepe University Medical School Hospital), 23 in (Istanbul Medical School Hospital), and 7 in (Dokuz Eylul University Hospital). There were 31 male and 49 female (61%) patients, with a mean age of 52.05 ± 10.17 years (range, 26–73 years). Eleven patients (13.8%) presented with subarachnoid hemorrhage in a subacute (2–4 weeks) phase, and the remaining 69 patients (86.2%) had unruptured aneurysms. No patient was stented during the acute phase of subarachnoid hemorrhage (<2 weeks). Seventy-two of 80 aneurysms (90%) were incidental and had not received prior treatment. Eight aneurysms (10%) were recanalized aneurysms that were treated previously by using conventional coiling, balloon-assisted coiling, or open surgery (clipping). The mean dome size of the aneurysms was 7.26 ± 3.41 mm (range, 3–22 mm). The mean neck size was 4.44 ± 1.18 mm (range, 2.5–9 mm). The aneurysms were located in the middle cerebral artery bifurcation in 43 patients (53.8%), the anterior communicating artery (AcomA) in 27 patients (33.8%), the pericallosal artery in 1 patient (1.2%), the internal carotid artery bifurcation in 1 patient (1.2%), the basilar artery bifurcation/vertebrobasilar junction in 7 patients (8.6%), and the posterior inferior cerebellar artery in 1 patient (1.2%). The mean parent artery diameter was 2.35 ± 0.43 mm (range, 1.3–3.5 mm).

Preoperative patient conditions were evaluated by using the modified Rankin Scale. The preoperative mRS score of 3 because of a previous history of subarachnoid hemorrhage.

General Description of the Endovascular Procedure

Patients received 75 mg clopidogrel and 300 mg aspirin daily for at least 5 days before the procedure. Clopidogrel resistance was evaluated before the procedures (VerifyNow P2Y12 assay; Accumetrics, San Diego, California) to ensure a good response (platelet aggregation inhibition >40%) to clopidogrel. Every endovascular procedure was performed by using a femoral approach with the patient under general anesthesia. Systemic anticoagulation was initiated immediately after the insertion of a femoral introducer sheath with a bolus dose of 5000 IU of IV heparin. The bolus dose was followed by a slow heparin infusion to maintain an activated clotting time of approximately twice the baseline value. A 6F guiding catheter or sheath was placed in the target artery. In patients with tortuous vascular anatomy, a distal access catheter (Fargomax; Balt; or Neuron 070; Penumbra, Alameda, California) was navigated through the guiding sheath into the petrous segment of the internal carotid artery or to the V2 segment of the vertebral artery. Aneurysm sacs were catheterized by using an Excelsior SL-10 (Stryker Neurovascular, Kalamazoo, Michigan) or Headway 17 (MicroVention) microcatheter with a soft-tipped 0.014-inch microguidewire. A second microcatheter (Excelsior SL-10, Headway 17, or Vasco10; Balt) was navigated across the aneurysm for stent placement (Fig 1).

The same microcatheter was used for stent placement and coiling if the jailing technique was not performed. Stent sizes were chosen on the basis of the largest diameter of the parent artery and the length of the aneurysm neck. Coiling was performed by using bare platinum detachable coils after the stents were deployed. Aneurysms were coiled until complete occlusion was achieved or no further coils could be safely deployed within the aneurysm sac. Femoral puncture sites were sealed by using an arterial closure device. Postprocedural dual antiplatelet treatment, including 75
mg/day of clopidogrel and 300 mg/day of aspirin, was continued for 3 months. Dual antiplatelet therapy was switched to aspirin thereafter. Aspirin was continued life-long unless a contraindication existed. Dual antiplatelet treatment was prolonged to at least 6 months in patients who received >1 stent.

Technical Success and Immediate Angiographic Results

The endovascular procedure was successful in 78 of 80 patients (97.5%) (Fig 2). Technical complications developed during LEO Baby stent deployment in 2 patients, but the angiographic and clinical outcomes of these patients were successful. Among the patients with successful procedures, the LEO Baby stent was successfully deployed on the first attempt in 77 patients and on the second attempt in 1 patient (Fig 3). Immediate postprocedural angiograms revealed a class 1 occlusion in 60 aneurysms (75%), class 2 occlusion in 17 aneurysms (21.3%), and class 3 occlusion in 3 aneurysms (3.7%) (Fig 4).

Complications

Complications, including asymptomatic technical and periprocedural thromboembolic events, developed in 9 patients (11.3%). Six patients (7.5%) remained asymptomatic. However, complications resulted in a permanent morbidity in 3 patients (3.8%). There was no mortality.

Technical complications without adverse clinical outcomes developed in 2 patients (2.5%). Stent migration without clinical adverse events developed during deployment in 1 patient. In this patient, the LEO Baby stent migrated into the sac of the aneurysm, and 2 other stents were implanted to complete the coil embolization. In another patient, the control procedural angiography immediately after deployment of a LEO Baby stent revealed an incomplete apposition of the stent. Telescopic implantation of an Enterprise stent resulted in complete stent apposition.

Periprocedural or delayed thromboembolic events developed in 6 patients (7.5%). Thromboembolic complications resulted in permanent neurologic deficits in 3 patients (3.8%). Thromboembolic complications were periprocedural in 5 patients and delayed in 1 patient.

In-stent thrombus formation was visualized during the endovascular procedures in 4 patients. Two of these patients were treated by using an intra-arterial infusion of tirofiban (Aggrastat), and 2 other patients were treated by using a continuous intravenous infusion of tirofiban. An MCA infarct developed in 1 patient who was treated by using intra-arterial tirofiban. The MCA infarct in this patient resulted in dysphasia and hemiparesis. This patient’s mRS score both at discharge and at the final follow-up was 3. The other 3 patients who developed in-stent thrombi during the procedures remained asymptomatic.

One patient presented with ipsilateral ischemic stroke 4 hours after treatment of a right MCA bifurcation aneurysm by using a single LEO Baby stent. Emergent control angiography revealed an acute in-stent thrombosis. A proximal malpositioning of the stent was also observed. Telescopic implantation of an Enterprise stent successfully secured arterial flow in this patient. However, the patient developed a basal ganglia infarction and presented with hemiparesis. The mRS score of this patient at discharge was 4. This patient’s symptoms resolved during several weeks, and her mRS score at the 6-month follow-up was 2.

One patient presented with hemiparesis 3 months after a single LEO Baby SAC to treat an AcomA aneurysm. This patient’s control angiography revealed complete in-stent thrombosis; his final follow-up mRS score was 3.

One hemorrhagic complication (1.3%) developed during the treatment of an MCA bifurcation aneurysm. A mild extravasation from the aneurysm developed during coiling. Coiling was completed, and the patient awoke with a mild headache. The postprocedural cranial CT revealed that the contrast extravasation was confined to the Sylvian fissure. This patient did not develop any neurologic deficits.
Follow-Up
Angiographic follow-ups were performed in 77 patients (96.2%). The mean length of follow-up was 7.2 ± 3.8 months (range, 3–22 months). The final angiographic follow-up was performed by using DSA in 64 cases (83.2%) and MR angiography in 13 patients (16.8%). The final follow-up angiograms revealed a class 1 occlusion in 66 patients (85.7%), class 2 in 9 patients (11.7%), and class 3 in 2 patients (2.6%). The follow-up of 16 aneurysms with a partial immediate occlusion (Raymond class 2 or 3) revealed 9 aneurysms (56.2%) with an improvement in the Raymond class (progressive occlusion) (Fig 5). Five aneurysms (6.5%) showed recanalization (deterioration of the Raymond class). Four of the 77 aneurysms with follow-up angiography (5.2%) required retreatment.

Follow-up angiography demonstrated incidental in-stent stenosis in 12 patients (15.6%). In-stent stenosis was anatomically mild (< 50%), not flow-limiting, and asymptomatic in all cases. Consequently, no further interventions were performed, but these patients continued clopidogrel instead of aspirin at follow-up.

The final follow-up mRS score was between 0 and 2 in 71 of 77 patients (96.2%). The mRS score of the patient with a preprocedural mRS score of 3 did not change during follow-up.

DISCUSSION
The first self-expandable stent was developed in 2002 for the treatment of wide-neck intracranial aneurysms. Several other self-expandable stents have been introduced since 2002, and SAC has become a widely applied method for the treatment of wide-neck intracranial aneurysms. Self-expandable stents dedicated to intracranial use have enabled endovascular treatment in otherwise uncoilable aneurysms by providing a scaffold during coiling.

Until recently, the deployment of self-expandable stents necessitated the catheterization of the parent artery with 0.021- to 0.027-inch microcatheters. Low-profile, self-expandable stents (LEO Baby and LVIS Jr), deliverable through microcatheters with an internal diameter of 0.0165 inches, were developed in 2011. These low-profile stents allow easier catheterization and navigation in small-sized, delicate vessels and enable safer stent placement during the treatment of distal wide-neck aneurysms. Few articles have investigated the safety and efficacy of the treatment of intracranial aneurysms by using low-profile stents. The current study reports the retrospective experience of 3 university hospitals by using a low-profile stent system,
the LEO Baby stent, for SAC treatment of wide-neck intracranial aneurysms.

The LEO Baby stent is a self-expandable, low-profile stent composed of braided mesh nitinol wires. The LEO Baby stent is not approved by the FDA at the moment. It has received CE mark approval in Europe. LEO Baby stents, similar to LVIS Jr stents, have several advantages over laser-cut stents. First, LEO Baby stents have a sliding-strut design, and this hybrid design allows better wall apposition and scaffolding compared with open and closed cells. Second, LEO Baby stents are resheathable or repositionable up to approximately 95% of their length. LEO Baby stents have relatively small pore size compared with other self-expandable intracranial stents. This structural feature provides a tighter mesh, preventing coil protrusion during coiling. However, the small pore size may turn to a disadvantage in cases necessitating the catheterization of an aneurysm through the struts of the LEO Baby stent, though we did not experience such a disadvantage in our practice.

In the present study, the technical success rate of the procedures was high (97.5%). The flexibility of LEO Baby stents facilitates navigation even in small, tortuous arteries. We used distal-access catheters in cases with tortuous proximal vascular anatomy, which might contribute to successful stent navigation. At the moment, LEO Baby stents are available with diameters of 2.0 and 2.5 mm and lengths of 12, 18, 25, 30, and 35 mm. LEO Baby stents are labeled for deployment in arteries with diameters between 1.5 and 3.2 mm. LEO Baby stents were successfully deployed in arteries with diameters as small as 1.3 mm in our study. Furthermore, the LEO Baby stent could be deployed in branches having a diameter discrepancy of up to 60%. We observed technical complications in 2 cases, but they did not contribute to the angiographic or clinical outcomes of these patients.

Immediate complete occlusion rates after SAC showed vari-
ability in the literature but are relatively low compared with coiling study results. A retrospective study by Maldonado et al reported that an immediate complete occlusion was achieved in 31.6% of aneurysms treated with Neuroform stents (Stryker Neurovascular). Lopes et al studied the long-term outcomes of 410 patients who were treated with SAC by using Neuroform or Enterprise stents and reported an immediate complete occlusion rate of 43.3%. Piotin et al compared the angiographic and clinical results of patients who were treated by using SAC, balloon remodeling, and conventional coiling. The immediate complete occlusion rate in the stented group was 46.3%, but 63.5% of the aneurysms in the group without stents were completely occluded in immediate postprocedural angiographs. A meta-analysis of the SAC literature by Shapiro et al revealed an immediate complete occlusion rate of 45%. These relatively poor immediate complete occlusion rates may be because larger and more complex aneurysms are more likely to be treated with stents. Dual antiplatelet therapy in patients with stents might impede the immediate thrombosis of the aneurysm sac, and the difficulty in maneuvering coiling microcatheters between the struts of stents might contribute to the relatively low immediate occlusion rates. Möhlenbruch et al recently published a prospective study in a relatively small patient group and reported the safety and efficacy of the LVIS Jr stent, which is one of the available low-profile stents. The immediate complete occlusion rate was 73%. Poncyljusz et al reported an immediate complete occlusion rate of 85% by using either LVIS or LVIS Jr stents. The immediate total occlusion rate of 75% in our study is comparable with the results of previous studies.

Stent placement as a component of SAC treatment promotes the progressive occlusion of partially coiled aneurysms and more effectively impedes recanalization compared with conventional coiling or balloon-remodeling techniques. Stents have some hemodynamic and biologic effects on the parent arteries, which cause a progressive thrombosis of partially coiled aneurysms. Stent deployment across the orifice of an aneurysm redirects blood flow from the aneurysm sac toward the distal parent artery and decreases the hemodynamic stress that contributes to thrombosis of the aneurysm sac. Furthermore, stent-induced neointimal overgrowth leads to healing of the aneurysm neck, promotes progressive thrombosis, and reduces the risk of recanalization. Gory et al reported that 30.9% of aneurysms with partial immediate occlusion evolved into a complete occlusion during a 6-month follow-up, and the recanalization rate was only 14.5%. The progressive occlusion rate in another study was 69.7% after a mean follow-up of 8.2 months. In our study, 56.2% of aneurysms with a partial immediate occlusion (Raymond classes 2 and 3) showed a progressive occlusion, which is comparable with the results of previous studies, and a complete occlusion (Raymond class 1) rate of 85.7% was achieved during a mean follow-up of 7.2 months. The filling status deteriorated in only
6.5% of aneurysms, and 5.2% of aneurysms required retreatment during follow-up.

Previous computational fluid dynamics studies demonstrated that stent placement caused a reduction of flow velocity in the aneurysm, and the flow-diversion effect was associated with the lower porosity of stents. Enhanced flow-diversion capacity promotes the progressive thrombosis of the aneurysm and lowers the risk of recanalization. LEO Baby stents have a relatively high surface coverage ratio of approximately 18% and a small pore size, which create a relatively high flow-diversion capacity. Therefore, the flow-diversion capacity of LEO Baby stents might contribute to the development of progressive thrombosis in partially coiled aneurysms by acting as a flow diverter. In support of this hypothesis, the successful treatment of dissecting wide-neck aneurysms by using telescopic implantation of LEO Baby stents without coiling was reported. The favorable midterm angiographic outcomes of this study suggest that LEO Baby SAC is a durable treatment for wide-neck intracranial aneurysms.

The overall complication rate, including asymptomatic minor events, was 11.3% in our study, which is consistent with that in previous studies. The procedure-related complication rate in a study of the Neuroform SAC of unruptured aneurysms was 12.1%. A meta-analysis of the SAC literature conducted by Shapiro et al revealed procedure-related complications in 19% of patients. Most of these complications in the current study remained asymptomatic, and only 3.8% of the patients had a permanent morbidity. Furthermore, the deficits in all patients with complications were mild to moderate, with mRS scores of <3 at the last follow-up, and there was no mortality. Clajus et al reported a morbidity of 3.9% and mortality of 2.9% for SAC treatment using Solitaire stents (Covidien, Irvine, California). Fiorella et al reported that the rates of major ischemic stroke and neurovascular mortality were 8.8% and 2.8%, respectively, by using Neuroform SAC in 284 patients. A meta-analysis by Naggara et al showed that endovascular treatment of unruptured aneurysms was performed with a mortality rate of 1.2% and a morbidity rate of 4.8%. The morbidity and mortality rates of the current study are comparable with those reported in previous studies. The favorable clinical outcomes of patients in the current study suggest that LEO Baby SAC is a safe endovascular procedure for the treatment of wide-neck intracranial aneurysms.

In-stent stenosis is a previously defined late complication of stent-placement procedures. Fiorella et al reported that 5.8% of patients developed in-stent stenosis following the Neuroform SAC procedure. Another study reported that 3.4% of patients developed in-stent stenosis after Enterprise SAC on long-term follow-up. The in-stent stenosis incidence in the current study was quite high compared with those reported in previous studies. However, in-stent stenosis did not cause any symptoms or neurologic findings in our patients. The relatively high rate of progressive occlusion and the flow-diversion capacity of the LEO Baby stent suggest that in-stent stenosis is a consequence of the endothelial healing process that is induced by the stent.

There are some limitations to the current study: First, it was a nonrandomized retrospective study. Therefore, there was no
control group of potential alternative endovascular treatment methods. Second, follow-up angiography could not be performed in 3.7% of the patients until after the submission of this article.

CONCLUSIONS

We reported the results of the largest series of SAC by using a low-profile stent system, LEO Baby, for the treatment of wide-neck intracranial aneurysms. This study found that a high rate of complete aneurysm occlusion could be achieved by using LEO Baby SAC during the midterm, with an acceptable morbidity rate compared with the results of previous SAC studies. Although in-stent stenosis after LEO Baby SAC is a relatively common phenomenon, it appeared to remain asymptomatic during a midterm follow-up. The coiling of wide-neck intracranial aneurysms with the assistance of low-profile stents is a promising endovascular method.

REFERENCES

15. LEO & LEO + Baby [brochure]. Seoul: Mayabee Design Studio, Bald Extrusion; 2013
Single-Layer WEBs: Intrasaccular Flow Disrupters for Aneurysm Treatment—Feasibility Results from a European Study

ABSTRACT

BACKGROUND AND PURPOSE: The safety and efficiency of the dual-layer Woven EndoBridge (WEB) device has already been published. However, this international multicenter study sought to evaluate the safety of single-layer devices, which are the newest generation of the WEB intrasaccular flow-disrupter family. They have been designed to offer smaller-sized devices with a lower profile to optimize navigability and delivery, which may, in turn, broaden their range of use.

MATERIALS AND METHODS: Data from all consecutive patients treated with a single-layer WEB device, in 10 European centers from June 2013 to May 2014 were included. Clinical presentations, technical details, intra- and perioperative complications, and outcomes at discharge were recorded. Clinical and angiographic data at last follow-up were also analyzed when available.

RESULTS: Ninety patients with 98 WEB-treated aneurysms were included in this study. In 93 cases (95%), WEB placement was possible. Complete occlusion at the end of the procedure was obtained in 26 instances (26%). Additional treatment during the procedure (coiling and/or stent placement) was necessary in 12 cases (12.7%). Procedure-related complications occurred in 13 cases, leading to permanent neurologic deficits in 4 patients (4.4%). Early vascular imaging follow-up data were available for 44 patients (57%), with an average time interval of 3.3 months. Treatment-related morbidity and mortality rates at last follow-up were 2.2% and 1.1%, respectively.

CONCLUSIONS: In this study, the feasibility and safety of the single-layer WEB device was comparable with that of the double-layer. However, further studies are needed to evaluate long-term efficacies.

ABBREVIATIONS: DL = dual-layer; WEB = Woven EndoBridge; SL = single-layer; SLS = single-layer sphere.

The Woven EndoBridge dual-layer device (WEB-DL; Sequent Medical, Aliso Viejo, California) is an intrasaccular flow-disruption device, initially developed to treat wide-neck bifurcation intracranial aneurysms. It has proved to be a highly feasible, safe,1-4 and efficient5 technique, particularly dedicated to the treatment of aneurysms challenging to treat with standard coiling.

The single-layer WEB (WEB-SL) device is the newest generation of the WEB family. Improved microbraiding technology allows a reduction in device size and profile, which optimizes navigability (through smaller catheters) and delivery. The purpose of this study was to evaluate the feasibility and safety of this new device, which has been available in Europe since 2013.

MATERIALS AND METHODS

Population

All patients with planned treatment with the WEB-SL device, in the 10 participating centers from June 2013 to May 2014, were consecutively included in this study. No exclusion criteria were used. The decision to use the WEB-single-layer device was made locally by the interventional teams and was based on aneurysm characteristics (size, wide-neck, bifurcation location, and so forth) in each case. It mostly corresponded to bifurcation aneurysms with aspect ratios of <1.2, in which adjunctive techniques to coiling would have been required.6 Informed consent was obtained from all patients.
WEB Devices
The WEB-SL and WEB-single-layer sphere (SLS) are the latest generation of WEB devices and became available for use in 2013 (Fig 1). The WEB-SL is barrel-shaped (similar to the WEB-DL) and the WEB-SLS is spheric. They are available in various diameters, from 4 to 11 mm and heights from 3 to 9 mm. Unlike the WEB-DL, the WEB-SL and SLS devices can contain from 144 wires in the 4-mm-diameter devices to 216 wires in the 11-mm-diameter devices. They present a lower profile and were designed for use with the VIA-27 and VIA-33 catheters (Sequent Medical), which are 3F and 3.4F (outer diameter), respectively. The VIA-33 is dedicated to the WEB-SL and SLS devices with diameters of 10 mm and above.

Treatment Technique
Endovascular treatment was performed with the patient under general anesthesia and systemic heparinization. By the end of the procedure, the heparin therapy was discontinued but not reversed. Antiplatelet medications were used pre- and postoperatively, depending on local protocols and angiographic results. In 94% of cases, VIA catheters were used for WEB delivery. The use of antiplatelet agents in the pre- and postoperative periods was decided locally and for each case by the operator. Even if the use of an antiplatelet agent is not mandatory with the WEB device, depending on local habits, some patients were premedicated with aspirin and clopidogrel in case of a strategy shift to stent-assisted coiling.

Data Collection
For each aneurysm, we collected the following data retrospectively: age, sex, aneurysm location and biometry (maximum diameter, neck size, aspect ratio), rupture status, the modified Rankin Scale score at the time of admission and discharge, modalities of treatment (WEB type and size, associated medication and treatment), intraoperative complications (aneurysm rupture, thromboembolic events, deployment failure, WEB protrusion or migration), and postoperative complications (delayed bleeding, thromboembolic events). Immediate postoperative DSA, 3D rotational angiography, and VasoCT (Philips Healthcare, Best, the Netherlands) images were collected, along with any available follow-up imaging data (DSA, CTA, MRA).

Data Analysis
Data were self-reported by the different centers, but the principal investigators (J.C. and L.S.) performed a blinded review of the clinical and angiographic data, as an independent core laboratory not involved in patient care. Adverse events were adjudicated independently from operators. Permanent morbidity and mortality rates, subsequent to treatment, were evaluated at discharge and at follow-up when possible. Morbidity was defined as an mRS of >1. When the preoperative mRS was >1, morbidity was defined by any increase in the mRS score.

The principal investigators also independently assessed the degree of aneurysmal occlusion, by using a modified version of the Montreal 5-grade scale as previously published. The Beaujon Occlusion Scale Score is described as follows: 0 = no residual flow inside the aneurysm or the WEB, 0’ = opacification of the proximal recess of the WEB. Grade 1 signifies opacification inside the WEB. Grade 2 denotes a neck remnant: Grade 3 indicates an aneurysm remnant with contrast agent inside the sac between the wall and the WEB device.

RESULTS
Population
Ninety patients (60 women and 30 men; age range, 26–83 years; median age, 55 years) with 98 WEB-treated aneurysms were included in this study. Of these, 65 aneurysms were unruptured (66%) (Fig 3). They were treated in 10 European centers with a median of 7.5 WEB implants per center.

It was determined that 38 aneurysms were located along the middle cerebral artery (38.8%); 21, along the anterior communicating artery (21.4%); 19, along the basilar artery (19.4%); and 15, along the supraclinoid internal carotid artery (15.3%). Aneurysm size varied from 3.7 to 39 mm (mean, 8.9 ± 5.5 mm), neck size

FIG 2. WEB occlusion scale. Grade 0 indicates complete occlusion. Grade 0’ is similar but with opacification of the proximal recess, which may also be considered complete occlusion. Grade 1 signifies opacification inside the WEB. Grade 2 denotes a neck remnant: Grade 3 indicates an aneurysm remnant with contrast agent inside the sac between the wall and the WEB device.
varied from 2.0 to 12.3 mm (mean, 5.2 ± 2.1 mm), and the aspect ratio, defined as depth/neck, varied from 0.6 to 7.6 mm (mean, 1.6 ± 1.0 mm).

Treatment Feasibility
The WEB-SL device was successfully deployed inside the aneurysmal sac in 93 cases (95%). Deployment failures were attributed to device migration during detachment in 1 instance, while there were difficulties in achieving satisfactory positioning of the WEB before detachment in the other 4 cases. Of those 5 aneurysms, 3 were successfully treated with stent-assisted coiling, 1 case required a WEB-DL, and simple coiling was used in 1 case.

Additional Treatment
The necessity of additional coiling had been anticipated preoperatively, to manage large or giant aneurysms in 4 patients and to ensure immediate occlusion of a daughter bleb, in a fifth patient with a ruptured aneurysm. In 7 cases (8.2%), unplanned additional treatment had been required. In 5 of these cases, stent deployment was needed because of WEB protrusion into the parent artery (Fig 4). In the remaining 2 cases, additional coiling was performed to complete aneurysm occlusion after WEB deployment because of the presence of aneurysm remnants.

Protrusion
Postdelivery, major protrusion occurred in 14 cases. It required balloon remodeling in 5 and additional stent placement in 5. In 3 other cases, it led to clot formation, successfully treated with abciximab infusion in 2 cases and with mechanical thrombectomy in 1. In the last case, 1 branch occlusion occurred, resulting in an ischemic infarction. In 29 cases, a protrusion of only the proximal marker was depicted at the level of the bifurcation. In those situations, a postoperative antiplatelet regimen was prescribed at the physician’s discretion.

Platelet Antiaggregation Therapy
One or 2 platelet antiaggregation agents were administered preoperatively to 27 patients (30%), while 60 patients (67%) were still given at least 1 antiplatelet therapy at discharge, mostly because of slight device protrusion in the parent artery.

Complication Rate
Procedure-related complications occurred in 13 cases. We observed 6 intraoperative thromboembolic complications, 4 of which were successfully managed (2 treated by intra-arterial infusion of abciximab; 1, by stent deployment; and another, by performing a thrombectomy by using a Solitaire stent [Covidien, Irvine, California]). The other 2 patients had arterial occlusion and hemiplegia. One recovered partially and was mRS 1 at last follow-up, and the other was rated mRS 3.

We also observed 5 hemorrhagic complications. In 1 case, an aneurysmal rupture occurred due to a wire perforation but was immediately stopped after WEB delivery, and the patient remained asymptomatic. In another case, an occipital lobe parenchymal bleed occurred 4 days after the treatment of an anterior communicating artery aneurysm, and the patient still had hemianopsia at last follow-up. The patient had a history of uncontrolled hypertension and received double-antiplatelet therapy as a premedication.

The other 3 were ruptured cases, and early follow-up showed new parenchymal or subarachnoidal bleeding, which led to severe disability in 1 patient, seizures in the second patient, and death in the last patient. In the first one, an aneurysmal bleb was occluded by 1 coil, then the aneurysm itself was treated with a WEB, stagnation was obtained inside the sac, but 6 hours later a large parenchymal hematoma was depicted. In the second one, with a multilobulated anterior communicating artery aneurysm, only partial occlusion was obtained after WEB delivery. A nonocluded part of the aneurysm, initially misjudged as a nonpotential source of bleeding, was secondarily coiled after rebleeding was revealed by seizures. The last case was one of major and diffuse SAH. Three potential ruptured aneurysms were discovered; 1 was treated with coils, and other 2, with the WEB-SL.
Massive rebleeding predominantly located in the right Sylvian fissure occurred 3 hours after treatment, leading to death. The lesions that were most likely to be the cause of the recurrent fatal hemorrhage were probably 1 of the 2 right MCA aneurysms. One was treated with coils, and 1, with the WEB-SL. After treatment, those 3 patients were kept under at least 1 antiplatelet agent because of device protrusion.

A distal migration of the WEB device during removal, due to an incomplete detachment, was noted in 1 instance. It was impossible to recapture it, it finally migrated into an M2 branch in a nondeployed fashion without flow repercussions. The patient remained asymptomatic under double antiplatelet therapy, and no ischemic lesions were observed on imaging follow-up.

One patient was mRS 1 at discharge due to a postoperative iliac artery occlusion.

Data from early clinical follow-ups were available for 52 patients (58%), with an average time interval of 3.8 months. Treatment-related morbidity and mortality rates at last follow-up were 2.2% and 1.1%, respectively.

Immediate Results
Immediate angiographic evaluation showed 27 cases (28%) of complete occlusion, 2 neck remnants, and a stagnation of iodine contrast agent in the aneurysm in all other cases.

Angiographic Follow-Up
Short-term vascular imaging follow-ups were available in 69 cases (70%), including DSA data in 54 cases, and the average time interval to follow-up was 3.3 months. Satisfactory results (complete occlusion or small neck remnants) were achieved in 45 patients (65%). In 8 cases, contrast opacification agent was still observed inside the device at that time.

DISCUSSION
The work presented here is the largest WEB study undertaken to date, wherein WEB-SL devices were used to treat aneurysms that would normally be considered difficult to treat with traditional endovascular approaches. Most of the treated aneurysms were wide-neck (average, 5.1 mm), with unfavorable anatomy (average aspect ratio, 1.6). Brinjikji et al\(^6\) defined 2 thresholds based on the aspect ratio value, to define the possible strategy of endovascular treatments. They reported that in cases with a value below 1.2 (39% of cases in our study), adjunctive techniques are almost always necessary. Usually, an aspect ratio of >1.6 implied that adjunctive techniques were not required. In our study, 69% of cases presented a lower ratio than this.

Most lesions were bifurcation aneurysms (86%). Approximately 40% were middle cerebral artery aneurysms, 20% were anterior communicating artery aneurysms, and 20% were basilar tip aneurysms.

Within this study, 34% of cases were ruptured aneurysms, which is much higher than the percentage in other WEB series. In

FIG 4. A 59-year-old women was admitted for the treatment of an unruptured anterior communicating artery aneurysm. A, Preoperative DSA. B, After WEB-SL deployment, a protrusion occurred in the right A2 segment, leading to a significant stenosis (black arrow). The proximal marker is also depicted within the parent artery. C, A laser cut Enterprise stent (Codman & Shurtleff, Raynham, Massachusetts) was then delivered to restore the caliber of the artery. The Beaujon Occlusion Scale Score is 0. D, Final VasocT confirmed satisfactory positioning of the stent without any protrusion of the WEB (arrows show the 2 radio-opaque markers of the WEB-SL).
contrast to our previous observations, from investigation of a smaller cohort, 3 patients had rebleeding after WEB treatment. At the end of the procedure, contrast agent stagnation was detected in the proximal part of those aneurysms, but complete occlusion was not yet achieved. After the endovascular treatment, those 3 patients were kept under at least 1 antiplatelet agent, and this could have influenced this relatively high rebleeding rate.

Despite the fact that aneurysm geometry was unfavorable in our study, the procedure-related complication rate was low (13%) and comparable with that obtained from the largest WEB-DL study (10.8%).

The rupture rate during treatment was low (1%) and was, in fact, unrelated to WEB delivery but was caused by guidewire perforation during catheterization of the sac. Bleeding was controlled by rapid WEB delivery, and the patient remained asymptomatic.

Treatment-related morbidity and mortality rates at last follow-up were 2.2% and 1.1%, respectively. Finally, safety results from this WEB-SL study are similar to those in other published WEB-DL studies. Indeed those authors reported morbidity (mRS of ≥ 2) rates between 1.3% and 6.7% and mortality rates between 0% and 2.2%, 1,3,5 These results are also comparable with those obtained from neurosurgical clipping of unruptured aneurysms (6.7% overall morbidity, 1.7% mortality) and non-WEB endovascular treatment of unruptured aneurysms (2.5% morbidity, 1.8% mortality).

An antiplatelet premedication was used in 30% of cases (aspirin and clopidogrel) because if during a procedure, WEB treatment appears to be unsuitable, another alternative therapy can be stent-assisted coiling for these wide-neck aneurysms. In 67% of cases, at least 1 antiplatelet agent was still used at discharge. It was given either in cases of device protrusion in the parent artery or sometimes only because of proximal marker protrusion, though the need for antiplatelets in those situations is not mandatory.

This study was not intended for the evaluation of anatomic results subsequent to WEB-SL treatment. Early follow-up vascular imaging was available in a large number of cases (70%), and it consisted of DSA data in half of these cases. These data demonstrated a low rate of satisfactory results (65%), which could probably improve during follow-up because in some cases, stagnation was depicted inside the WEB and patients were still kept under antiplatelet therapy at that time. In a WEB-DL article 6 with a short-term imaging follow-up (average length, 5.0 months), authors reported complete occlusion in 57% of cases; in our series, it was obtained in only 38% of cases. However, as with flow-diverters stents, delayed thrombosis should be expected. Therefore, results must be reviewed after longer time intervals.

This study has several limitations. First the number of treated cases for each center is low and mostly corresponds to an initial experience for the operators with this new device. The complications were self-reported. Angiographic outcome is now still limited, but it appeared important for us to report these preliminary results before analysis of long-term follow-up imaging to evaluate the efficiency of the WEB-SL device.

CONCLUSIONS

In this study, the feasibility and safety of the single-layer WEB device was comparable with that of the double-layer device. However, further studies are needed to evaluate long-term efficacies.

ACKNOWLEDGMENTS

The authors thank Dr Francesco D’Argento from Policlinico A. Gemelli in Roma for his elegant work on the illustrations.

REFERENCES

Combined Use of Mechanical Thrombectomy with Angioplasty and Stenting for Acute Basilar Occlusions with Underlying Severe Intracranial Vertebrobasilar Stenosis: Preliminary Experience from a Single Chinese Center

F. Gao, W.T. Lo, X. Sun, D.P. Mo, N. Ma, and Z.R. Miao

ABSTRACT

BACKGROUND AND PURPOSE: Acute basilar occlusions have a poor prognosis without recanalization. Many have underlying severe atherosclerotic intracranial stenosis coexisting with acute thrombosis, requiring treatment of both pathologies in the same session, though technical risks may be encountered. The purpose of this study was to evaluate the technical feasibility and safety of combined treatment by using stent retrievers for the thrombosis, together with angioplasty and stent placement for the underlying stenosis.

MATERIALS AND METHODS: This was a retrospective review of 13 patients with basilar occlusions treated with thrombectomy by the Solitaire stent retriever and angioplasty and intracranial stent placement for underlying severe vertebrobasilar stenosis in the same session. Reperfusion was assessed in terms of the TICI score. Perioperative complications were recorded. Clinical outcomes were assessed by the NIHSS at discharge and the mRS on follow-up at 90 days.

RESULTS: Of the 30 patients with acute basilar artery occlusions treated with stent retrievers during the study period, 18 had coexisting severe intracranial stenosis. Thirteen patients meeting the criteria for our study received combined mechanical thrombectomy and angioplasty with stent placement. The successful recanalization rate was 100%. Distal vessel embolizations occurred in 3 patients. There were 2 mortalities. On discharge, 10 patients (77%) had an improvement in NIHSS of ≥10 points. At 90 days, 6 patients (46%) had a good functional outcome with an mRS of ≤2.

CONCLUSIONS: The combined use of mechanical thrombectomy with angioplasty and stent placement for acute basilar occlusions with underlying severe intracranial atherosclerotic stenosis is technically feasible and safe.

ABBREVIATIONS: BAO = basilar artery occlusion; PTA = percutaneous transluminal angioplasty

Acute basilar artery occlusion (BAO) carries a high morbidity and mortality. Among patients treated conventionally with antiplatelets or anticoagulation, the death and dependency rate was 80%. Even with intravenous or intra-arterial thrombolysis, the overall death or dependency rate is not much improved. Without recanalization, the mortality can be up to 85%–95% and the likelihood of good outcome was only 2%. The mechanism of occlusion includes acute local thrombosis over an underlying severe atherosclerotic stenosis and embolization from distant sources. There has not yet been any epidemiologic data on the proportion of acute BAO attributed to atherosclerotic stenosis in Asians, though deducing from the higher prevalence of intracranial atherosclerosis observed in Asians, and especially in the Chinese population, the proportion of patients with BAO and underlying atherosclerotic stenosis may be higher than the 26%–36% reported on imaging studies from the white population. For the treatment of BAO, mechanical thrombectomy with stent retrievers has emerged in recent years as a promising method with a higher recanalization rate and better functional outcome. However, for those with underlying severe stenosis, there have been concerns over the feasibility and safety of these devices: Reperfusion may fail to be achieved by mechanical thrombectomy devices alone in patients with severe stenosis; retrieval of the stent retrievers past the stenosis may damage the endothelium or the atherosclerotic plaque, leading to an increased risk of acute thrombosis and reocclusion; and the resistance posed by the stenosis may cause distortion of the natural course of the vessel during the tug of the retrievers past the stenosis, leading to tearing of
the perforator vessels and intracerebral hemorrhage. We hereby report our experience with 13 patients treated with a combination of mechanical thrombectomy with the Solitaire device (Covidien, Irvine, California) for the thrombosis and angioplasty with stent placement for the underlying stenosis.

MATERIALS AND METHODS

Patients

This was a retrospective analysis of 30 patients with acute basilar artery occlusion who had undergone endovascular treatment with stent retrievers in our center. After advancement of the Solitaire formed to confirm its location in the target artery with its tip distal to the perforator vessels and intracerebral hemorrhage. We hereby report our experience with 13 patients treated with a combination of mechanical thrombectomy with the Solitaire device (Covidien, Irvine, California) for the thrombosis and angioplasty with stent placement for the underlying stenosis.

Interventional Procedure

With the patient under general anesthesia and by using transfemoral access, we advanced a 6F guiding catheter into the V2 segment of the vertebral artery. Intravenous heparin was given, aiming for an activated clotting time of 250–300 seconds. A microcatheter (Rebar microcatheter; Covidien) was carefully navigated through the basilar occlusion over a 0.014-inch microwire (Transend; Stryker, Kalamazoo, Michigan) under fluoroscopic guidance. Angiographic runs via the microcatheter were performed to confirm its location in the target artery with its tip distal to the thrombus. The Solitaire AB device was used for mechanical thrombectomy in our center. After advancement of the Solitaire via the microcatheter to the occluded segment, the stent retriever was unsheathed and allowed full expansion through the thrombus, acting as a transient endovascular bypass to restore flow across the occluded segment, and angiography was performed to assess the distal vessel flow. The fully deployed Solitaire device was then partially resheathed, and together with the delivery microcatheter, gently pulled back as a single unit, and recovered for thrombectomy. If this failed or recanalization was insufficient, further retrievals would be attempted. Angioplasty and stent placement would be considered if there was underlying severe verteobasilar stenosis causing inadequate distal perfusion, or new thrombus formation or reocclusion was noted at the site of residual stenosis on repeat angiography up to 30 minutes after thrombectomy. A loading dose of aspirin, 300 mg, and clopidogrel, 300 mg, was given via nasogastric tube to patients without prior use of antiplatelets once the decision to proceed to stent placement was made. Pantoprazole was given for gastric protection. Stent placement was done with either the balloon-mounted Apollo stent (MicroPort Medical [Shanghai], Shanghai, China) (Fig 1) or the self-expanding Wingspan stent (manufactured by Stryker for Boston Scientific, Natick, Massachusetts) (Fig 2). These stents have an advantage over detachment of the Solitaire AB device used as a stent because they provide a stronger radial force to overcome the underlying stenosis. Device selection depends on the vessel characteristics and lesion morphology, as previously described.8 For patients with tortuous arterial access and anticipated difficulty for stent passage, only percutaneous transluminal angioplasty (PTA) was performed. If patients were noted to have acute thrombosis over the stent or significant residual thrombosis impeding forward blood flow, glycoprotein IIb/IIIa inhibitor infusion (tirofiban) would be given.

Follow-up CT was performed immediately postoperatively to exclude intracerebral hemorrhage. Transcranial Doppler, CTA, MRA, or DSA would be performed within 24 hours postintervention to assess the patency of the basilar artery. Patients were maintained on dual-antiplatelet therapy of aspirin, 100 mg, and clopidogrel, 75 mg, for 3 months, followed by single-antiplatelet therapy life-long. Thromboelastography was arranged to check for platelet function, and CYP219 testing, to check for genetic resistance to clopidogrel. However, initial choice of antiplatelets was not based on these results because the interventions had been performed as an emergency operation and the results were not available before the operation. All patients were put on statins aiming for a low-density lipoprotein of <1.8 and on antihypertensives aiming for a systolic blood pressure of <140 mm Hg. Patients were followed up at 90 days by clinic visit or by phone if they could not attend follow-up. Follow-up imaging by CT angiography was arranged.

Outcome Measures

The primary outcome measure was the successful reperfusion rate, defined as a TICI grade 2b or 3 after endovascular treatment. The other outcome measures recorded were the intraoperative complications, including vessel perforation, arterial dissection, symptomatic intracerebral hemorrhage, and any other in-hospital neurologic complications. Clinical outcomes were the NIHSS score on discharge, functional outcome, and vascular-related mortality at 90 days. A good functional outcome was defined as an mRS of ≤2.
FIG 1. A 54-year-old male patient who presented with vertigo and decreased consciousness for 10 hours. A, MR imaging shows multiple infarcts over the bilateral cerebellar hemispheres on DWI. B, MRA shows basilar artery occlusion (arrow). C, A right vertebral angiogram shows occlusion of the basilar artery (arrow). D, An angiogram after crossing of the basilar artery occlusion with a microcatheter shows patent distal flow at the basilar artery tip, with opacification of both posterior cerebral arteries and superior cerebellar arteries. E, Angiogram after deployment of the Solitaire AB device shows restoration of flow in the basilar artery, with suspected thrombus and focal stenosis (arrow) in the mid-distal segment of the basilar artery. F, Angiogram post-mechanical thrombectomy shows underlying severe focal stenosis of the basilar artery (arrow). G, Deployment of an Apollo stent (arrow) at the site of the basilar artery stenosis. H, Final angiography shows a TICI flow of grade 3 in the basilar artery with good distal perfusion.

FIG 2. A 55-year-old male patient who presented with tetraparesis and decreased consciousness for 6 hours. A, Plain CT on admission does not reveal any large territory infarct. B, The right vertebral angiography shows occlusion at the tip of the basilar artery (arrow) and right posterior cerebral artery and severe stenosis of the right vertebrobasilar junction (arrows). C, Angiography postdeployment of the Solitaire AB device at the proximal right posterior cerebral artery shows no opacification of the distal basilar artery (arrow). D, Angiography post-mechanical thrombectomy shows opacification of the distal basilar artery and both posterior cerebral arteries and severe stenosis in the vertebrobasilar junction. E, Deployment of a Wingspan stent (arrow) at the vertebrobasilar junction. F, Right vertebral angiography after stent placement shows resolution of the proximal basilar artery stenosis and good contrast flow in the basilar artery (TICI grade 3). G–H, Follow-up CT and CTA at 24 hours show a patent basilar artery and a small right pontine infarct.
RESULTS

Eighteen of the 30 patients (60%) with acute BAO in our study who were treated with stent retrievers had underlying severe intracranial verteobasilar stenosis. Thirteen patients satisfied our study criteria. The mean age was 56 years. The mean baseline NIHSS score was 26 (range, 19–34). All patients presented outside the time window for intravenous thrombolysis, apart from 1 inpatient with known basilar stenosis deteriorating acutely during admission; hence, endovascular therapy was arranged immediately. The mean symptom onset–to-door, needle-to-recanalization, and door-to-recanalization times were 587, 93, and 301 minutes, respectively (Table and On-line Table).

After initial mechanical thrombectomy (average, 1.4 passes), all 13 patients had a TICI score of ≤2a. Because satisfactory reperfusion was not achieved and underlying severe stenosis was noted, 10 patients had stent placement performed and 3 received PTA alone due to tortuous artery access. The site of the underlying severe stenosis was the basilar artery for 10 patients and the vertebral artery V4 segment for 3 patients. Six patients were given supplementary glycoprotein IIb/IIIa inhibitor for acute new thrombosis or significant residual thrombosis noted. The overall rate of successful reperfusion (final TICI 2b to 3) was 100%. The mean residual stenosis was 24.6%. Three patients had distal embolization to the posterior cerebral arteries or the cerebellar arteries on angiography during the procedure. No patient had vessel rupture or dissection. There were 2 mortalities. One patient developed a large-territory infarct and cerebral hemorrhage. Another patient died due to severe gastrointestinal bleeding possibly related to reactive gastritis aggravated by the use of dual antiplatelets. On discharge, an improvement of the NIHSS score of ≥10 points was noted for 10 patients (76.9%). No patients were lost to follow-up. At 90 days, 6 patients had a good functional outcome with an mRS ≤2, which represented 46% (6/13) of all patients and 54.5% (6/11) of the survivors. None of the patients developed recurrent ischemic attacks. Five patients had follow-up imaging by CT angiography at 90 days, with no restenosis or reocclusion demonstrated. All patients had CYP2C19 checked for clopidogrel resistance, and all had normal findings. Four patients had thromboelastography testing, and none showed aspirin resistance.

For the 5 patients who did not meet the inclusion criteria for our study, all had successful recanalization after thrombectomy and stent placement. One patient with a large brain stem infarct on admission imaging further deteriorated and died on day 2. Follow-up imaging of this patient showed cerebral edema with no hemorrhagic transformation. For the 4 patients who survived, 1 patient had an mRS of 2 and 3 patients had an mRS of >3 on follow-up at 90 days.

DISCUSSION

This case series selectively studied 13 patients with acute basilar occlusions, requiring combined mechanical thrombectomy for the thrombosis and stent placement for the underlying stenosis, performed in the same session. The prognosis of acute BAO in general is poor. Current studies have reported an improved outcome achieving a recanalization rate from 74% to 100% in recent years with the use of stent retrievers, but these studies were on acute BAO in general and the outcome of the patients had not been stratified according to whether there was underlying severe stenosis, probably due to the small absolute number of patients in the studies. The exact incidence of acute BAO with underlying severe stenosis is unknown. Extrapolation from case reports on patients with acute BAO treated by endovascular means requiring additional angioplasty or stent placement for underlying severe intracranial stenosis showed an approximate incidence of 14–29% in studies of the white population. In our registry, having underlying stenosis was not uncommon; 60% (18/30) had severe intracranial stenosis requiring additional angioplasty or stent placement. We believe that other centers will also encounter similar patients, especially when treating patients from Asian countries where intracranial stenosis is more prevalent.

Patients with combined thrombosis and underlying stenosis represent a distinct group in management, because they have a different technical risk profile and a good outcome is dependent on the treatment of both the thrombosis and the severe stenosis. All 13 patients in our analysis had the stent placement performed in the same session as the thrombectomy, rather than as a staged operation, because they could not achieve timely satisfactory reperfusion after thrombectomy alone without treatment of the stenosis. Possible reasons for failure to attain good reperfusion included flow limitation by the proximal stenosis or new thrombus.

<table>
<thead>
<tr>
<th>Summary of patient characteristics, treatment, and outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Patients</td>
</tr>
<tr>
<td>(N = 13)</td>
</tr>
<tr>
<td>Male sex</td>
</tr>
<tr>
<td>11 (84.6%)</td>
</tr>
<tr>
<td>Age (mean ± SD) (yr)</td>
</tr>
<tr>
<td>56 ± 6.2</td>
</tr>
<tr>
<td>Pretreatment NIHSS (mean ± SD)</td>
</tr>
<tr>
<td>26 ± 4</td>
</tr>
<tr>
<td>Symptom-to-door time (mean ± SD) (min)</td>
</tr>
<tr>
<td>587 ± 341</td>
</tr>
<tr>
<td>Needle-to-recanalization (mean ± SD) (min)</td>
</tr>
<tr>
<td>93 ± 28</td>
</tr>
<tr>
<td>Door-to-reperfusion (mean ± SD) (min)</td>
</tr>
<tr>
<td>301 ± 117</td>
</tr>
<tr>
<td>Underlying site of stenosis</td>
</tr>
<tr>
<td>BA</td>
</tr>
<tr>
<td>10 (76.9%)</td>
</tr>
<tr>
<td>V4</td>
</tr>
<tr>
<td>3 (23%)</td>
</tr>
<tr>
<td>Endovascular treatment for the stenosis</td>
</tr>
<tr>
<td>PTA alone</td>
</tr>
<tr>
<td>3 (23.1%)</td>
</tr>
<tr>
<td>Apollo stent</td>
</tr>
<tr>
<td>3 (23.1%)</td>
</tr>
<tr>
<td>Wingspan stent</td>
</tr>
<tr>
<td>7 (53.8%)</td>
</tr>
<tr>
<td>Glycoprotein IIb/IIIa inhibitor</td>
</tr>
<tr>
<td>6 (46.2%)</td>
</tr>
<tr>
<td>Pre-PTA/stenting stenosis (mean ± SD)</td>
</tr>
<tr>
<td>91.5 ± 2.4%</td>
</tr>
<tr>
<td>Post-PTA/stenting stenosis (mean ± SD)</td>
</tr>
<tr>
<td>24.6 ± 12.6%</td>
</tr>
<tr>
<td>Pre-PTA/stenting TICI (post-mechanical thrombectomy)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2 (5.4%)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>7 (53.8%)</td>
</tr>
<tr>
<td>2a</td>
</tr>
<tr>
<td>4 (30.8%)</td>
</tr>
<tr>
<td>Post-PTA/stenting TICI</td>
</tr>
<tr>
<td>2b</td>
</tr>
<tr>
<td>3 (23.1%)</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>10 (76.9%)</td>
</tr>
<tr>
<td>Distal embolization to PCA/cerebellar arteries</td>
</tr>
<tr>
<td>Outcome</td>
</tr>
<tr>
<td>NIHSS score on discharge for surviving patients (mean ± SD)</td>
</tr>
<tr>
<td>12 ± 6</td>
</tr>
<tr>
<td>% of patients with NIHSS ≥10-point improvement</td>
</tr>
<tr>
<td>10 (79.9%)</td>
</tr>
<tr>
<td>Mortality on discharge</td>
</tr>
<tr>
<td>2 (15.3%)</td>
</tr>
<tr>
<td>mRS at 90 days</td>
</tr>
<tr>
<td>mRS 0–2</td>
</tr>
<tr>
<td>6 (46.2%)</td>
</tr>
<tr>
<td>mRS 0–3</td>
</tr>
<tr>
<td>9 (69.2%)</td>
</tr>
<tr>
<td>Ischemic events at 90-day follow-up</td>
</tr>
<tr>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Note:—BA indicates basilar artery; PCA, posterior cerebral artery; V4, vertebral artery V4 segment.
Thrombectomy was performed; after stent placement was performed, the rate of successful reperfusion was 75% when only recoil or dissection in all patients. In the case series of Möhlenbruch et al., there was satisfactory resolution of the stenosis without complications if stent placement was attempted, angioplasty and stent placement could be regarded as a brain- or life-saving attempt for this group with poor prognosis. Moreover, the potential immediate endothelial damage after the passage of the mechanical thrombectomy device past the stenosis might lead to an increased risk of early reocclusion if stent placement was not attempted or stalled.

For our patients, thrombectomy was first performed with stent retrievers, followed by angioplasty or stent placement for the residual severe stenosis. In contrast to those patients with purely thromboembolic occlusions, there were theoretic concerns that the retrieval of the thrombectomy devices may be impeded by the stenosis and forceful maneuvers to retrieve these devices would increase the risk of vessel rupture or tearing of perforator vessels. We did not encounter such difficulties in our study patients. Similarly, no retrieval difficulties or device complications were reported in the 4 patients with underlying severe stenosis in the study of Mordasini et al., of whom 3 had stent placement and 1 patient had only PTA performed, and in the 5 patients with stent placement in the study of Espinosa de Rueda et al.; but it is likely that publication bias existed.

In choosing stents for the underlying severe intracranial stenosis, 11 patients received the Wingspan stent after prior angioplasty or the Apollo stent according to lesion and vessel characteristics, which provided a relatively stronger radial force than a detached Solitaire AB stent. Deployment of these stents served the purpose of stenting could improve distal reperfusion, decreasing the risk of thrombosis induced by stagnant flow and facilitating the spontaneous thrombolysis of distal emboli. Second, the shear from the passage of the retrievers past the stenosis could potentially damage the endothelium or the unstable atherosclerotic plaque, increasing the risk of reocclusion related to the increased platelet activation and aggregation and vessel dissection. Stent placement over these vulnerable structures in the same session aimed to decrease the risk of thrombosis, recoil, restenosis, and dissection. Stent placement has advantages over angioplasty alone in reducing such risks because it can provide better coverage of the lesion and exposed endothelium. However, for some patients with tortuous access leading to a higher risk of complications if stent placement was attempted, angioplasty alone was performed.

In our study, the technical success rate for reperfusion was 100%. There was satisfactory resolution of the stenosis without recoil or dissection in all patients. In the case series of Möhlenbruch et al., in 24 patients treated with mechanical thrombectomy, the rate of successful reperfusion was 75% when only thrombectomy was performed; after stent placement was performed for the 7 patients with underlying intracranial stenosis, the overall reperfusion rate improved to 87.5%. Other studies have reported technical success rates in the range of 74%–94%. No patients had procedure-related intracerebral hemorrhage on postoperative imaging; these results compared favorably with the 14% intracerebral hemorrhage rate in the endovascular treatment group from a recent meta-analysis. There were 2 mortalities, neither of which were procedure-related. On discharge, an improvement of NIHSS score of ≥10 points was noted for 10 patients (76.9%). This compared favorably with the 35.7% of patients having an NIHSS improvement at 24 hours in the study of Mordasini et al., and the 54% with improvement on discharge in the study of Möhlenbruch et al on patients with BAO in general. At 90-day follow-up, a good functional outcome of mRS ≤2 was achieved in 6 of 13 patients (46.1%). Möhlenbruch et al reported an overall favorable clinical outcome of 33%, while Andersson et al reported an overall 57% favorable outcome for their 28 patients.

Other smaller case series reported a rate of 29%–50% on BAO treatment by using stent retrievers. However, it is difficult to do a reliable comparison of our results with those in other acute BAO series with mechanical thrombectomy performed due to the heterogeneity in patient characteristics, inclusion criteria, and types of adjuvant therapy used. The patients in our study were relatively young, with a mean age of 56 years. Younger age is a favorable prognostic factor because these patients have less challenging anatomy and are more likely to have better outcomes than older patients. However, our patients had a high NIHSS score on admission and a long symptom-to-recanalization time; this might account for the limited functional outcome in some patients. Compared with patients with good functional outcome, patients with poorer outcome of mRS of ≥2 had a higher NIHSS score and longer symptom-to-door, needle-to-recanalization, and door-to-recanalization times. Reasons for the relatively long door-to-recanalization time included the acute interventional stroke service workflow in our institution being in the process of optimization during the initial stages and delay in receiving general anesthesia and intubation required by our patients for airway protection and aspiration prevention. Compared with patients with no underlying severe stenosis for whom sole mechanical thrombectomy was already successful in obtaining adequate distal perfusion, our patients with severe stenosis required additional time for the steps of angioplasty and stent placement to achieve reperfusion.

There were limitations to this study. This was a retrospective study with a small sample size of 13 patients providing preliminary experience of combined treatment, but further large-scale prospective studies with a longer follow-up are warranted. Because our patients could not achieve satisfactory reperfusion of the distal territories after the first stage of mechanical thrombectomy, revascularization by angioplasty or stent placement of the underlying stenosis in the same session was performed.

There was no control group of patients with just conservative treatment given for the stenosis, and there are currently sparse reports in the literature specifically on the outcome of patients with underlying severe stenosis for comparison. Only with randomized trials would we be able to directly compare the outcome of patients with acute BAO with or without stent placement per-
formed in the same session for the underlying stenosis. We recognized that intracranial stent placement with the use of the Wingspan stent would be regarded as off-label in some countries after the publication of the Stenting vs Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis results. However, there have been controversies over the study; with improved patient and device selection and increased technical experience, intracranial stent placement still holds a promising role for selected patients. The use of the Wingspan stent was not off-label in our center. Our choice of endovascular devices was based on lesion or vessel characteristics; hence, we advise caution against overinterpretation of our data because our study was not meant to compare the efficacy among different vascularization methods by using the Apollo, the Wingspan stent, or sole angioplasty.

Conclusions drawn about which method conveyed a higher success rate would be difficult because the baseline vessel and lesion characteristics were different among patients, and our study was not adequately powered to perform a meaningful statistical interpretation. A previous study reported on the revascularization results of these 2 stents and angioplasty, though larger trials would be warranted. The use of glycoprotein IIb/IIIa inhibitor was not yet standardized in our hospital or according to international guidelines; more study results are awaited to guide its use. The Solitaire FR stent (Covidien) was not available in our center during the time of the study; instead the Solitaire AB device was used. Balloon occlusion catheters were not available in our center, but until now, there has been no conclusive evidence to prove that the balloon occlusion catheter can be of use in the posterior circulation to decrease the distal embolization rate significantly. The door-to-recanalization time for the patients in our study was relatively long. With more experience in acute stroke intervention gained from the previous years, our institution has streamlined our triage system and workflow to decrease our door-to-recanalization time.

CONCLUSIONS

Combined mechanical thrombectomy with stent retrievers and angioplasty and stent placement for the treatment of acute basilar occlusion with underlying severe intracranial vertebrobasilar stenosis was safe and feasible. No increased rate of arterial rupture or reocclusion was noted from this study. Further larger prospective clinical trials are needed to confirm our study results.

REFERENCES

Clopidogrel Resistance in Neurovascular Stenting: Correlations between Light Transmission Aggregometry, VerifyNow, and the Multiplate

ABSTRACT

BACKGROUND AND PURPOSE: Clopidogrel resistance is blamed for thromboembolic complications in neurovascular stent placement. Platelet-function assays are weakly standardized. The aim of this study was to correlate the results of 3 different platelet-inhibition measurements (from light transmission aggregometry, the VerifyNow P2Y12 test, and the Multiplate analyzer) and their relation to periprocedural thromboembolic complications in elective neurovascular stent placement.

MATERIALS AND METHODS: Clopidogrel resistance was determined on the day of the intervention according to predefined platelet reactivity cutoff values. All 3 tests were performed in 103 consecutive neurovascular stent-placement procedures in 97 patients (extracranial, n = 77; intracranial, n = 26).

RESULTS: The clopidogrel resistance rates were 47.6% (light transmission aggregometry), 50.5% (VerifyNow), and 35.9% (Multiplate). In 67% of the patients, clopidogrel resistance was present according to at least one method. The correlations of qualitative results that classified a patient as responsive or resistant to clopidogrel were 67.9% for light transmission aggregometry with VerifyNow, 77.7% for light transmission aggregometry with the Multiplate, and 66% for VerifyNow with the Multiplate. Periprocedural thromboembolic complications (n = 9) occurred more frequently in patients who were determined by all 3 methods to be clopidogrel resistant. The difference was most pronounced with light transmission aggregometry (complication rates, 14.4% [clopidogrel-resistant patients] vs 3.7% [clopidogrel-responsive patients]). Sensitivity and specificity rates of clopidogrel resistance in relation to embolic complications were, respectively, 78% and 55% for light transmission aggregometry, 67% and 51% for VerifyNow, and 44% and 67% for the Multiplate.

CONCLUSIONS: Clopidogrel resistance is a frequent finding in patients who undergo neurovascular stent placement. The correlations among the different testing methods are only modest and differ considerably. Light transmission aggregometry results seem to correlate with thromboembolic complications more accurately than with VerifyNow and Multiplate point-of-care methods.

ABBREVIATION: LTA = light transmission aggregometry

In neurovascular procedures, especially the placement of a stent into an extracranial or intracranial artery, clopidogrel resistance is associated with an increased risk of thromboembolic complications.1–5 In elective neurovascular stent placement, preprocedural testing of platelet inhibition is increasingly performed to identify patients with clopidogrel resistance. However, test result standards for clopidogrel resistance have not been established, and strong clinical evidence that supports the idea that the results of such tests definitively alter clinical outcomes is still lacking. Light transmission aggregometry (LTA) is considered the criterion-standard test method, but standard values have not yet been established. LTA requires a preparation time of 2 hours, whereas point-of-care methods such as the VerifyNow P2Y12 assay (Accumetrics, San Diego, California) and impedance aggregometry using a Multiplate analyzer (Dynabyte, Munich, Germany) offer periprocedural test results within minutes in the operating suite.6

A study comparing LTA with point-of-care measurements in percutaneous coronary intervention has shown only modest agreement among the different tests.7 In neurovascular procedures, clopidogrel resistance has been investigated with various methods. However, a comparison of different test methods to determine the correlation of their results with the occurrence of embolic complications has not yet been performed in the clinical context of neurovascular stent placement.

Received December 22, 2014; accepted after revision March 3, 2015.

From the Departments of Neuroradiology (N.F., F.K., B.E.) and Neurology (P.M., J.R.), Asklepios Klinik Altona, Hamburg, Germany; and Department of Laboratory Medicine (R.D., U.B.), Medilys Laboratory Company, Hamburg, Germany.

Please address correspondence to B. Eckert, Prof Dr Med, Department of Neuroradiology Asklepios Klinik Altona, Abteilung für Neuroradiologie, Paul-Ehrlich-Str 1, 22763 Hamburg, Germany; e-mail: b.eckert@asklepios.com.

http://dx.doi.org/10.3174/ajnr.A4388
The purpose of this study was to determine the correlation of platelet inhibition with clopidogrel according to 3 different testing methods and the association of clopidogrel resistance with thromboembolic complications in elective neurovascular stent placement.

MATERIALS AND METHODS

Between September 2011 and August 2012, all consecutive patients who were undergoing elective intracranial or extracranial stent placement for atherosclerotic stenosis or stent-assisted coiling of intracranial aneurysms were included in this prospective study. Patients who underwent extracranial stent placement received local anesthesia, and those who underwent intracranial stent placement were intubated and received general anesthesia. Each patient received 100 mg of aspirin and 75 mg of clopidogrel daily for 5 days before the procedure (n = 80) or a loading dose of 600 mg of clopidogrel the day before the procedure (n = 23). Medication lists of the patients were reviewed before initiating clopidogrel to ensure that they were not taking any drugs that would potentially interact (eg, cytochrome P450 2C19 inhibitors, including proton-pump inhibitors), because that would have affected the results. The study was approved by the Arztekammer Hamburg ethical review board, and written informed consent was obtained from each patient. Clopidogrel resistance was analyzed in each patient on the day of the procedure by using LTA (induced by 2 μmol/L adenosine diphosphate), the VerifyNow P2Y12 assay, and impedance aggregometry using a Multiplate analyzer. LTA is a method that measures adenosine diphosphate–induced platelet aggregation in platelet-rich plasma by changes in light transmittance. Platelet-rich plasma is acquired by centrifuging citrate-anticoagulated whole blood, which requires a preparation time of 2 hours. The interpretation of the test results requires standardization and a trained laboratory staff. The VerifyNow system is a turbidimetric-based optical detection system that measures platelet-induced aggregation as an increase in light transmittance with citrate-anticoagulated whole blood. The VerifyNow P2Y12 assay is a fast, standardized, point-of-care test that does not require any special training for its performance. The Multiplate analyzer detects platelet aggregation by measuring impedance changes. Hirudin-anticoagulated whole blood is pipetted into a test cell. Aggregation starts by adding the agonist adenosine diphosphate. Pipetting is performed by an attached electronic pipette. No trained staff is needed to perform the test. Clopidogrel resistance was defined as follows: for the VerifyNow P2Y12 assay, >236 P2Y12 reaction units; for LTA, >40% of maximal aggregation and disaggregation curve; and for the Multiplate, >40-U area under the curve value. If 2 of the 3 methods indicated resistance, the clopidogrel dose was increased to 150 mg daily after the procedure. Follow-up platelet-activity testing was not performed. Clopidogrel was maintained for 2 months after the extracranial procedures and 3 months after the intracranial stent-placement procedures; aspirin was continued long term. The stent-placement procedures were performed by 1 of 2 neurointerventionists (A.L. or R.E.) with >15 years’ experience in neurointerventional procedures, both of whom were certified in the stent arm of the German Stent-Protected Angioplasty versus Carotid Endarterectomy (SPACE) study. Neurologic examination was performed on each patient promptly after the intervention and before discharge by an independent neurologist. Each patient was monitored on a stroke unit certified by the German Stroke Society for at least 24 hours. In case of a new neurologic deficit, MR imaging was performed. A thromboembolic complication was defined as transient or persistent neurologic deficits associated with new DWI lesions found on MR imaging. NIHSS and the mRS were used to grade and follow up on neurologic deficits. After 3 months, clinical follow-up was accomplished by a structured telephone interview.

All statistical tests were performed with the use of SAS software version 9.3 (SAS Institute, Cary, North Carolina). For correlations between the continuous values of the 3 test methods, Spearman rank-order correlation (ρ) was used. A perfect monotonic relationship is represented by a ρ value of 1 or −1. The clopidogrel resistance status in each method was entered in a multiple logistic regression model.

The sensitivity, specificity, positive predictive value, and negative predictive value of the 3 methods relating to the occurrence of thromboembolic events were calculated by building contingency tables.

Differences between category variables were evaluated with the χ² test or with the Fisher exact test in case of small expected cell frequencies. All P values were 2-sided. For all the statistical tests, a P value of <.05 was considered significant.

RESULTS

During the study period, 107 patients underwent neurovascular stent placement. Ten patients were excluded because of insufficient laboratory data or different antiplatelet therapy. The data analysis included 103 procedures in 97 patients. The procedures were stent placements for extracranial stenosis (n = 77) or intracranial stenosis (n = 16) and stent-assisted intracranial aneurysm coilings (n = 10). The mean patient age was 67.2 years; there were 64 male and 33 female patients.

Clopidogrel resistance was detected with LTA in 49 (47.6%) measurements, with VerifyNow in 52 (50.5%) measurements, and with the Multiplate in 35 (34%) measurements. The incidences of clopidogrel resistance in the 3 tests are listed in Table 1. In 33% of the measurements, all 3 tests indicated sufficient platelet inhibition; in the remaining two-thirds of the cohort, clopidogrel resistance was found in at least 1 of the 3 methods, and in 42%, clopidogrel resistance was found in 2 of 3 assays. Concordant clopidogrel resistance in all 3 methods was seen in 23% of the measurements. According to the study protocol, 39 patients (43 procedures) received 150 mg of clopidogrel after the procedure.

The individual test results for each method are shown in Fig 1. Correlation scatter plots of the test results are shown in Fig 2. The statistical analysis revealed significant correlations among the quantitative values for LTA with the Multiplate (ρ = 0.52; P =

<table>
<thead>
<tr>
<th>Clopidogrel Status</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant according to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥1 method</td>
<td>69</td>
<td>67</td>
</tr>
<tr>
<td>≥2 methods</td>
<td>43</td>
<td>41.9</td>
</tr>
<tr>
<td>All 3 methods</td>
<td>24</td>
<td>23.3</td>
</tr>
<tr>
<td>Clopidogrel responsive according to all 3 methods</td>
<td>34</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 1: Incidence of clopidogrel resistance
.0001), LTA with VerifyNow (ρ = 0.33; P = .0008), and VerifyNow with the Multiplate (ρ = 0.28; P = .0041). The correlations of the qualitative classification of a patient as clopidogrel responsive or resistant were 67.9% for LTA with VerifyNow, 77.7% for LTA with the Multiplate, and 66% for VerifyNow with the Multiplate.

Nine thromboembolic events that led to major stroke (1 patient), minor stroke (4 patients), or TIA (4 cases) occurred during the interventions. Thromboembolic complications occurred in 2 cases of stent-assisted aneurysm coiling, in 2 cases of extracranial vertebral stent placement, and in 5 cases of extracranial carotid stent placement. During the stent placements for intracranial stenosis, no thromboembolic complications occurred. In all 4 patients with transient symptoms, postprocedural MR imaging detected new DWI lesions. Additional TIAs without DWI lesions did not occur. No delayed thromboembolic complications (before discharge) occurred in any patient.

One patient who experienced thromboembolic procedural TIAs in 2 separate treatments of a symptomatic extracranial ICA stenosis and a vertebral artery–origin stenosis was classified as clopidogrel responsive by all 3 test methods in both stent-placement procedures (Nr.53 and Nr.54 in Figures). In this patient, no hematologic or anatomic abnormalities were found. In the remaining 7 complications, clopidogrel resistance was identified in all cases by LTA, in 6 cases by VerifyNow, and in 4 cases by the Multiplate. The correlations of the qualitative test results of each method with the occurrence of thromboembolic complications are listed in Table 2. Results of the statistical analysis of the qualitative test results in relation to thromboembolic complications (yes/no) are shown in Table 2.

Follow-up data were available after 3 months for 75 patients (81 stent-placement procedures), including all 39 patients whose dosage of clopidogrel was doubled. Follow-up telephone interviews did not reveal any medication noncompliance issues. During the follow-up period, 1 ipsilateral stroke and 3 ipsilateral TIAs were detected. One postdischarge stroke occurred after ICA stent placement in a patient (Nr.100) who was identified as clopidogrel resistant by LTA alone and treated with 75 mg of clopidogrel after the procedure. Three postdischarge TIAs occurred after extracranial ICA stent placement. All 3 patients were identified as clopidogrel resistant according to all 3 tests and were treated with 150 mg of clopidogrel after the procedure. A symptomatic bleeding complication occurred in 1 patient suffering epistaxis and required embolization treatment; the patient recovered completely. Neither stent thrombosis nor intracerebral bleeding was detected in any patient.

DISCUSSION

To our knowledge, this is the first study to correlate 3 different clopidogrel-reactivity assays in the clinical context of elective neurovascular stent placement. In 67% of the patients, at least one test method revealed clopidogrel resistance. The clopidogrel-responsive status differed among the different methods for a considerable number of patients. Embolic complications occurred more frequently in patients with clopidogrel resistance determined by all 3 types of tests. The LTA results revealed a more accurate correlation of clopidogrel resistance and thromboembolic complications than the VerifyNow and Multiplate point-of-care methods.

The rates of clopidogrel resistance differed among the Multiplate (36%), LTA (48%), and VerifyNow (50%) methods. These
data are in accordance with those of previous studies, which have indicated clopidogrel-resistance rates from 37% up to 52% in patients who were undergoing cerebrovascular stent placement. The clopidogrel dosing schedule in our study was 75 mg daily for 5–7 days before the intervention or a 600-mg loading dose on the day before the intervention. A loading dose of clopidogrel is usually given just 1 day before the procedure. Some centers, especially cardiology, recommend a loading dose of 300–600 mg of clopidogrel even 5 days before intervention. The relatively low doses may explain the high percentage of clopidogrel-resistant patients in comparison with that found in cardiology studies. Analysis of the correlation of different test methods was performed in one percutaneous coronary intervention study that compared LTA, VerifyNow, and a vasodilator-stimulated phosphoprotein phosphorylation assay. The incidence of clopidogrel resistance varied from 16% up to 39% in the patients. The level of agreement between the assays was in the moderate-to-poor range, with Spearman correlation coefficients between 0.60 and 0.86.7 Statistical analysis of the quantitative results in our study revealed significant but poor correlations between the different types of tests, with Spearman correlation coefficients between 0.28 and 0.52. In addition, the correlation of the qualitative classifications of a patient as clopidogrel responsive or resistant was poor in our study and ranged between 66% and 78% with the different measurements. In accordance with the percutaneous coronary intervention study by Gaglia et al,7 the results of our study underline the fact that results of the different tests do not agree in a notable number of patients.

Several studies have found a strong correlation of insufficient clopidogrel-related platelet inhibition and an increased risk of thromboembolic events in supra-aortic stent placement and in cerebral aneurysm coiling. In line with the results of previous studies, we found increased complication rates in patients with clopidogrel resistance as determined by all 3 methods, but because of the small number of patients, the difference was not statistically significant. In patients who were deemed clopidogrel resistant by LTA, the complication rate was 14.3% (vs 3.7% of clopidogrel-responsive patients). The discrepancies in complication rates between clopidogrel-resistant and -responsive patients were less convincing with the VerifyNow (11.5% vs 5.9%, respectively) and Multiplate (11.4% vs 7.5%, respectively) methods. Hence, the statistical correlation of clopidogrel reactivity and the occurrence of embolic complications indicates a higher sensitivity for LTA (78%) than for VerifyNow (67%) and Multiplate (44%) testing.

In the present study, 1 patient who suffered a procedural thromboembolic TIA in 2 separate treatments of a symptomatic extracranial ICA stenosis and a vertebral artery-origin stenosis was classified as clopidogrel responsive by all 3 test methods in both stent-placement procedures, indicating that clopidogrel resistance is a major, but not the exclusive, factor of thromboembolic complications. In the remaining 7 thromboembolic complications, LTA identified clopidogrel resistance in all cases, VerifyNow in 6 cases, and the Multiplate in 4 cases.

The pharmacologic response of the P2Y12 receptor antagonists such as clopidogrel strongly depends on cytochrome P450 genetic polymorphism. Carriers of reduced-function CYP2C19 alleles have significantly lower levels of active metabolite, resulting in diminished platelet inhibition. The pharmacodynamic process of converting the predrug into the active metabolite dif-

FIG 2. Correlation scatterplots of individual results obtained with VerifyNow versus the Multiplate (A), the Multiplate versus LTA (B), and VerifyNow versus LTA (C). Lines parallel to the axes mark the particular cutoff values. The upper-right and lower-left quadrants contain values with agreement in regard to the definition of clopidogrel resistance. Procedures in which an embolic complication occurred are indicated by plus signs.
Table 2: Correlation of clopidogrel test results and thromboembolic events

<table>
<thead>
<tr>
<th>Method</th>
<th>Total (n)</th>
<th>No Complications (n [%])</th>
<th>Thromboembolic Complication (n [%])</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerifyNow</td>
<td>52</td>
<td>46</td>
<td>88.4</td>
<td>11.5</td>
</tr>
<tr>
<td>Responsive</td>
<td>51</td>
<td>48</td>
<td>94.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Multiplate</td>
<td>35</td>
<td>31</td>
<td>88.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Responsive</td>
<td>68</td>
<td>63</td>
<td>92.7</td>
<td>7.5</td>
</tr>
<tr>
<td>LTA</td>
<td>49</td>
<td>42</td>
<td>85.7</td>
<td>14.3</td>
</tr>
<tr>
<td>Responsive</td>
<td>54</td>
<td>52</td>
<td>96.3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Table 3: Relationship of clopidogrel resistance and thromboembolic complications

<table>
<thead>
<tr>
<th>Method</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive Predictive Value (%)</th>
<th>Negative Predictive Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VerifyNow</td>
<td>66.7</td>
<td>51.3</td>
<td>11.5</td>
<td>94.1</td>
</tr>
<tr>
<td>Multiplate</td>
<td>44.4</td>
<td>67.0</td>
<td>11.4</td>
<td>92.7</td>
</tr>
<tr>
<td>LTA</td>
<td>77.8</td>
<td>55.3</td>
<td>14.3</td>
<td>96.3</td>
</tr>
</tbody>
</table>

Aspirin resistance was frequently found in patients with stroke or TIA. This may be due to aspirin resistance, which is associated with a higher risk of thromboembolic events. Treatment with aspirin-resistant patients may be necessary, but further studies are needed to determine the best approach.

In conclusion, the use of newer antiplatelet agents such as prasugrel and ticagrelor, along with clopidogrel, may be beneficial in reducing the risk of thromboembolic events. However, further studies are needed to determine the optimal use of these agents and their effectiveness in reducing the risk of complications.

CONCLUSIONS

Clopidogrel resistance is a frequent finding in the clinical context of neurovascular stent placement and seems to be associated with an increased risk of thromboembolic complications. Different testing methods correlate poorly with regard to quantitative and qualitative measures, and the use of newer antiplatelet agents such as prasugrel and ticagrelor may be beneficial in reducing the risk of thromboembolic events. Further studies are needed to determine the optimal use of these agents and their effectiveness in reducing the risk of complications.
qualitative test results. LTA showed a better correlation between clopidogrel resistance and thromboembolic complications than the VerifyNow and Multiplate point-of-care methods.

Additional study with alternative periprocedural antiplatelet drug management involving prasugrel or ticagrelor and close clinical and continuous laboratory monitoring in neurointerventional procedures is warranted.

ACKNOWLEDGMENTS

We thank Peter Wohlmuth, Asklepios Proresearch, for statistical assistance.

Disclosures: Joachim Röther—UNRELATED: Consultancy: Boehringer Ingelheim, Pfizer, Bristol-Myers Squibb, Bayer, and Lundbeck; Payment for Lectures (including service on speakers bureaus): Boehringer Ingelheim, Pfizer, Bristol-Myers Squibb, Bayer, and Lundbeck. Bernd Eckert—UNRELATED: Payment for Lectures (including service on speakers bureaus): Codman and Covidien, Comments: travel expenses and honoraria for presentations to Congress or during workshops concerning neurointerventional therapies.

REFERENCES

A Comparison of 4D DSA with 2D and 3D DSA in the Analysis of Normal Vascular Structures in a Canine Model

C. Sandoval-Garcia, K. Royalty, B. Aagaard-Kienitz, S. Schafer, P. Yang, and C. Strother

ABSTRACT

BACKGROUND AND PURPOSE: 4D DSA allows viewing of 3D DSA as a series of time-resolved volumes of a contrast bolus. There is no comparison of the accuracy of the anatomic information provided by 4D DSA with that available from conventional 2D and 3D DSA. Our purpose was to make this comparison by using a canine model.

MATERIALS AND METHODS: 2D, 3D, and 4D DSA acquisitions were performed in 5 canines from 3 catheter positions in the common carotid artery yielding 15 2D, 15 3D, and 15 4D datasets. For each territory, 3 vascular segments were chosen for comparison. Images were reviewed by 2 experienced neuroradiologists and were graded by the ability to visualize a segment, its filling direction, and preferred technique. Two visualization modes for 4D DSA were compared (volume-rendering technique and MIP).

RESULTS: 4D DSA was preferred in 73.9% of the image sets; 2D, in 22.7%; and 3D, in 3.4%. 4D DSA MIP rendering yielded superior visualization of very small vessel details; the 4D DSA volume-rendering technique offered superior depth and overlap information and better visualization of the surface details of the vasculature.

CONCLUSIONS: In this study, 4D DSA was preferred over 2D and 3D DSA for analysis of normal vasculature. The ability to provide any view of a vascular territory at any time during passage of a contrast bolus seems likely to reduce the need for many 2D acquisitions during diagnostic and therapeutic procedures. This then potentially translates into a reduction in radiation and contrast dose.

ABBREVIATION: VRT = volume-rendering technique

4D DSA provides the ability to create a series of time-resolved volumes of vasculature so that the passage of a contrast bolus may be viewed in 3D at any time and from any angle. Traditional 3D DSA acquisitions provide volumetric anatomic information but are not time-resolved. The overlap of vasculature in these 3D images often makes it difficult to analyze details (eg, angioarchitecture of an AVM nidus). To overcome this problem, multiple 2D DSA acquisitions at different angles are often necessary. The 4D algorithm applied to data from a rotational acquisition, obtained by using an injection protocol that starts the injection shortly after rotation of the C-arm rather than simultaneous with its rotation, results in a series of 4D DSA volumes that provides a user with the ability to view both anatomic information and contrast dynamics.1 The anatomic information provided by this technique has not, to our knowledge, been compared with that provided by conventional 2D and 3D DSA images. In this study, we aimed to assess the ability of 4D DSA to depict vascular anatomy. Our methods also aimed to acquire data that would allow us to make judgments as to whether the content was superior to and/or complementary to that of conventional DSA studies. We believed that this comparison was important because the ability to view relevant vasculature at any time and at any angle with a 4D reconstruction should result in less need to acquire multiple 2D series in both diagnostic and interventional procedures, thereby leading to reductions in both x-ray and contrast medium doses.

MATERIALS AND METHODS

2D, 3D, and 4D DSA images of 3 matching vascular territories from 5 canines were obtained by using a commercially available biplane angiography system (Artis zee; Siemens, Erlangen, Germany). All studies were performed under a protocol approved by the University of Wisconsin Animal Care Committee.
Imaging Acquisition

After induction of endotracheal anesthesia, a 4F catheter was introduced into 1 common femoral artery. Under fluoroscopic guidance, the catheter was positioned first in one of the common carotid arteries, then more distally at a location just past the origin of the ICA, and finally still more distally at a location just beyond the superficial temporal artery. This sequence of locations for injections was chosen so that there would be a decrease in the complexity of the vasculature as the injection location was moved more distally. Figure 1 shows an example of these vascular territories on 2D DSA images.

The injection protocol rate, volume, contrast concentration, and timing were aimed at minimizing the reflux of contrast and optimizing enhancement of the vessels for a given acquisition. A dual-syringe power injector (Accutron; Medtron, Saarbrücken, Germany) was used for all power injections. To mimic the bolus characteristics of a clinical study, we performed the 2D DSAs by using a hand injection of the contrast medium. Table 1 summarizes the injection protocols.

The 2D DSA images were acquired in standard anteroposterior and lateral projections. A conventional 3D DSA acquisition protocol was used to acquire a subtracted 3D dataset (5 seconds, 200°). For a typical 3D DSA clinical acquisition protocol, rotation of the C-arm is started 1–2 seconds after injection of the contrast to allow the contrast to reach a more steady-state of vascular opacification before the start of data acquisition. Because the aim of the 4D technique is to capture both anatomic and temporal information of the contrast dynamics to capture the inflow of contrast, the C-arm rotation is started shortly (0.5–1 second) before injection of the contrast. To capture the steady-state and because of the rapid circulation time in the canine, we acquired the 4D datasets by using a 6-second 260° acquisition program.

Image Reconstruction

All 2D, 3D, and 4D DSA projection data were transferred to a research workstation running both commercial software (syngo X-Workplace VB21; Siemens) and 4D DSA prototype software. The 3D DSA reconstructions were performed by using the product software and standard reconstruction kernels (HU auto) with a projection-based motion-correction algorithm applied to minimize artifacts from any subject motion during the acquisition.

Once the 3D DSA reconstruction was complete, the 4D DSA reconstruction was performed. The 4D DSA reconstruction is a 2-step process; first, a conventional 3D DSA constraint volume is reconstructed by using the product software and the same reconstruction parameters used for the 3D reconstruction described above. Following this step, the temporal information contained in the rotational projection sequence is encoded into the constraint volume for every projection image. This process effectively creates a temporal volumetric representation of the contrast flow

Table 1: Injection parameters used for the various acquisitions

<table>
<thead>
<tr>
<th>Injection Parameters</th>
<th>Proximal</th>
<th>Middle</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2D DSA</td>
<td>3D DSA</td>
<td>4D DSA</td>
</tr>
<tr>
<td>Contrast volume (mL)</td>
<td>8–9</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Concentration (%)</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Flow rate (mL/s)</td>
<td>HI</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Injection duration (s)</td>
<td>HI</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Injection delay (s)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X-ray delay (s)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: HI indicates hand injection.
through the subject’s vasculature at the frame rate of the rotational projection image acquisition (typically 30 frames/s). Figure 2 shows an example of the contrast dynamics in the rotational projections along with a display of these dynamics as seen in the 4D reconstructions.

Image Evaluation
Three vascular segments were selected on each of the 2D image datasets. The same segments were used on the 2D studies from each of the 5 canines. Annotations were placed indicating the location of each segment. Scoring forms and labeled images were provided to the reviewers with a pictorial reference to clearly identify which vascular segments were to be evaluated. Figure 3A–B shows an example of the contrast dynamics in the rotational projections along with a display of these dynamics as seen in the 4D reconstructions.

RESULTS
Overall, the 2 observers preferred the 4D DSA in 73.9% of the 88 image sets. The 2D DSA images were preferred in 22.7% of the image sets; the 3D DSA images were preferred in only 3.4%. Table 2 shows the raw data scores of each reviewer.

As can be seen from the raw data scores, one of the observers preferred the 4D images much more often than did the other (4D preferred in 40 of the 44 [91%] datasets by observer 2 compared with 25 of 44 [57%] by observer 1). These data also show that in 12 of the 28 (43%) image sets in which observer 1 preferred the 2D images, both the 2D and 4D images were, nonetheless, scored equally (ie, 4, excellent image quality).

Both 4D VRT and 4D MIP rendering yielded the same average rating of 1.9, in which 1 represented excellent image quality. In general, observers thought that the MIP rendering yielded superior visualization of very small vessel details, and the VRT offered superior depth and overlap information and better visualization of the surface details of the vasculature.

DISCUSSION
4D DSA provides a means to acquire a fully time-resolved 3D reconstruction of a vascular territory having superior spatial and temporal resolution to any other commercially available 4D imaging technique. In this small study, we have shown that for the evaluation of the extracranial canine vasculature, 4D

FIG 2. Illustration of 4D DSA reconstruction. No x-ray delay between contrast injection and rotational image acquisition results in contrast flow or inflow being visible in the rotational projections (A–C). Through a 2-step reconstruction process, this flow information is encoded into the 3D DSA for every projection, effectively creating a 4D DSA. This allows viewing of the contrast bolus passage at any desired angle at any time during the bolus passage. D–F, View of the bolus passage at 3 projection angles at 3 different time points. G–I, View of the bolus passage at 3 angles not present in the projections, again at 3 different time points. The figures correspond to sample angle projections selected to match the 2D acquisitions, even though once 4D images are reconstructed, views are available from any angle.
DSA frequently provided information that 2 experienced observers preferred over that provided by 2D or 3D studies. Although we did not explicitly ask whether the 4D dataset contained information equivalent to that in the combination of 2D and 3D series, we believe that this may be the case. All experience to date indicates that the 4D reconstruction contains the same information as a conventional 3D reconstruction and the time-resolved information contained in a full “library” of unlimited 2D acquisitions. The ability to view the vasculature at any desired angle and at any time during passage of a contrast bolus should allow elimination of most of the 2D acquisitions that now are often required in diagnostic and interventional procedures.

During an endovascular procedure, both the primary operator and the patient receive most of their x-ray exposure from DSA acquisitions. The use of 3D DSA results in a significant decrease in the need to perform 2D DSA acquisitions. This reduction translated into a significant decrease in patient x-ray exposure. While dose studies were not performed, it is estimated that the slight extension of acquisition time required for a 4D image acquisition (ie, 1 second) would result in an increase in radiation dose of approximately 20% compared with a conventional 3D acquisition. Because 3D image acquisitions represent, in general, only a minor fraction of the dose exposure during a conventional diagnostic or interventional procedure, this increase, when balanced against the potential reduc-
tion in exposure from 2D acquisitions is, in our opinion, acceptable.

This report represents a small series of animal studies and normal anatomy; we anticipate that the major advantages of 4D would be derived from the ability to delineate small-vessel abnormalities, particularly in areas where there is significant vascular overlap. In addition, more complex vascular anomalies with a significant flow-related component, such as arteriovenous malformations and arteriovenous fistulas, could be better evaluated because 4D allows for dissection of the angioarchitecture of early feeders and late venous abnormalities, particularly in areas where there is significant vascular overlap. The observation that 4D DSA was preferred as the technique to accomplish the given task of evaluating a series of vascular segments gives us confidence that the technique will be valuable if made available in a clinical environment. Future studies will include a larger patient population of human subjects with normal and abnormal vasculature to further demonstrate the potential applications of the technique.

CONCLUSIONS

In this study, 4D DSA was preferred over 2D and 3D DSA for analysis of normal vasculature. The ability to provide any view of a vascular territory at any time during passage of a contrast bolus seems likely to reduce the need for many 2D acquisitions during diagnostic and therapeutic procedures. This then potentially translates into a reduction in radiation and contrast dose.

Disclosures: Carolina Sandoval-Garcia—RELATED: Grant: National Institutes of Health.* Comments: study performed under institutional approval by National Institutes of Health R01 grant. Beverly Aagaard-Kienitz—RELATED: Grant: National Institutes of Health.* Sebastian Schäfer—RELATED: Other: I am an employee of Siemens USA. Kevin Royalty—UNRELATED: Employment: I am a full-time employee of Siemens. Charles Strother—RELATED: Grant: Siemens.* Comments: Imaging equipment and research support was provided under a Master Research Agreement between the University of Wisconsin Madison and Siemens; Support for Travel to Meetings for the Study or Other Purposes: support for travel to advisor meetings from Siemens under a Master Research Agreement between Siemens and University of Wisconsin School of Medicine and Public Health; Provision of Writing Assistance, Medicines, Equipment, or Administrative Support: Imaging equipment was provided under a Master Research Agreement between the University of Wisconsin Madison and Siemens; Siemens has purchased a nonexclusive license for this intellectual property. *Money paid to the institution.

REFERENCES

Table 2: Raw data from each of the 2 observers for all 44 vessel segments*

<table>
<thead>
<tr>
<th></th>
<th>Reviewer 1</th>
<th></th>
<th>Reviewer 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2D</td>
<td>3D</td>
<td>4D</td>
<td>Preferred</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4D</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4D</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4D</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4D</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4D</td>
</tr>
</tbody>
</table>

*The first 3 columns show the rating for each of the 3 modalities as described in the “Materials and Methods” and the scoring form (Fig 3B). The last column shows the preferred modality.
Dynamic Angiography and Perfusion Imaging Using Flat Detector CT in the Angiography Suite: A Pilot Study in Patients with Acute Middle Cerebral Artery Occlusions

T. Struffert, Y. Deuerling-Zheng, S. Kloska, T. Engelhorn, S. Lang, A. Mennecke, M. Manhart, C.M. Strother, S. Schwab, and A. Doerfler

ABSTRACT

BACKGROUND AND PURPOSE: Perfusion and angiographic imaging using intravenous contrast application to evaluate stroke patients is now technically feasible by flat detector CT performed by the angiographic system. The aim of this pilot study was to show the feasibility and qualitative comparability of a novel flat detector CT dynamic perfusion and angiographic imaging protocol in comparison with a multimodal stroke MR imaging protocol.

MATERIALS AND METHODS: In 12 patients with acute stroke, MR imaging and the novel flat detector CT protocol were performed before endovascular treatment. Perfusion parameter maps (MTT, TTP, CBV, CBF) and MIP/volume-rendering technique images obtained by using both modalities (MR imaging and flat detector CT) were compared.

RESULTS: Comparison of MIP/volume-rendering technique images demonstrated equivalent visibility of the occlusion site. Qualitative comparison of perfusion parameter maps by using ASPECTS revealed high Pearson correlation coefficients for parameters CBF, MTT, and TTP (0.95–0.98), while for CBV, the coefficient was lower (0.49).

CONCLUSIONS: We have shown the feasibility of a novel dynamic flat detector CT perfusion and angiographic protocol for the diagnosis and triage of patients with acute ischemic stroke. In a qualitative comparison, the parameter maps and MIP/volume-rendering technique images compared well with MR imaging. In our opinion, this flat detector CT application may substitute for multisecton CT imaging in selected patients with acute stroke so that in the future, patients with acute stroke may be directly referred to the angiography suite, thereby avoiding transportation and saving time.

ABBREVIATIONS: FD-CT = flat detector CT; FD-CTA = flat detector CT dynamic perfusion and angiographic imaging; FD-CTP = flat detector CT dynamic perfusion; MRP = MR perfusion imaging; MS-CT = multisecton CT

Flat detector CT (FD-CT) equipped angiographic systems are now widely used in neurointerventional institutions. Recently, an application to perform imaging of the brain parenchyma (FD-CT), cerebral vasculature (flat detector CT dynamic perfusion and angiographic imaging [FD-CTA]), and cerebral blood volume has been described and was evaluated in patients with acute middle cerebral artery occlusions.1-3 However, this application was limited due to the inferior FD-CT soft-tissue resolution of the brain parenchyma in comparison with multisecton CT (MS-CT) or MR imaging. Additionally, there was a lack of temporal resolution so that calculation of dynamic (time-dependent) perfusion parameters was not possible.

Assessment of the impact of an ischemic stroke is best performed with physiologic criteria because especially in the acute phase, morphologic changes are only minimal and may be difficult to recognize by using MS-CT imaging.4 The use of perfusion and angiographic imaging increases the sensitivity of MS-CT and MR imaging in the acute phase of ischemic stroke. Thus, MS-CT angiography and MS-CT perfusion imaging are used to assess patients within a 0- to 4.5-hour time window of ischemic stroke. On the basis of the mismatch concept beyond 4.5 hours, multimodal MR imaging by using FLAIR, MR angiography, diffusion-weighted, and MR perfusion imaging (MRP) is used in many centers to identify patients eligible for recanalization therapies.5 MS-CT and MR imaging applications allow visualization of brain parenchyma and vessel occlusion (MS-CT angiogra-
phy, MRA); and calculation of the dynamic perfusion parameter maps (time-to-peak, mean transit time, cerebral blood flow, and cerebral blood volume) to assess the viability of the brain.6-9 The ability to obtain dynamic perfusion maps (FD-CTP) and angiographic images by using an intravenous contrast application within the angiography suite would seem to create a single ideal venue for both diagnosis and treatment of patients with an acute ischemic stroke. A FD-CT application replacing MS-CT or MR imaging would optimize the workflow, avoid transportation of the patient from one imaging location to the other, save time, and may allow periodic monitoring of brain viability during the endovascular treatment.

To date, dynamic perfusion imaging with the C-arm angiographic system has been limited by the slow gantry rotation time. However, recent studies in canines and swine models have now demonstrated the feasibility of dynamic perfusion imaging with the use of a flat detector angiographic system.10-12 The aim of this pilot study was to test the feasibility of this novel application by comparing FD-CTP and FD-CTA with a multimodal MR imaging protocol in patients with acute ischemic stroke. Additionally, the effective patient dose was evaluated.

MATERIALS AND METHODS
Under an institutionally approved protocol (ethics committee approval was obtained), 12 patients were included in this study. According to institutional guidelines, patients seen beyond 4.5 hours after symptom onset are examined primarily by a multimodal stroke MR imaging protocol. If large-vessel occlusion and diffusion/perfusion mismatch are identified, intravenous thrombolytic therapy is initiated and patients are transferred to the angiography suite for subsequent endovascular treatment. In our practice, FD-CT is frequently used prior to and after endovascular treatment. This enables ruling out hemorrhage due to intravenous thrombolytic therapy prior to and iatrogenic hemorrhage after endovascular treatment. In this study, initial MRP and MRA images were compared with a novel FD-CT application that was applied before endovascular treatment.

Imaging Protocol
MR Imaging. In all patients, initial imaging was performed by using MR imaging (Magnetom Aera 1.5T; Siemens, Erlangen, Germany). We used standard applications including FLAIR, DWI, MRA (turbo time-of-flight), and MR perfusion imaging. MRP was performed by scanning the entire brain (gradient echo-planar imaging; 25 sections; 5-mm section thickness; TR, 2230 ms; TE, 50 ms; flip angle, 90°; FOV, 230 mm; 50 acquisitions) after injection of paramagnetic contrast material (gadobutrol, Gadavist; Bayer Schering Pharma, Berlin, Germany) by using a dual- syringe power injector (Accutron HP-D; Medtron, Saarbrücken, Germany). MRA was performed by using a time-of-flight technique (5 slabs; 0.5-mm section thickness; TR, 24 ms; TE, 7 ms; FOV, 200 mm). Postprocessing was performed by using a dedicated workstation and standard perfusion software (syngo MMWP; Siemens). We reconstructed TTP, MTT, CBF, and CBV parameter maps (5-mm section thickness and spacing). Additionally volume-rendering technique and maximum intensity projection images (5-mm section thickness, 2.5-mm spacing) of the MRA were reconstructed.

FD-CT. A biplane flat detector angiographic system (Axiom Artis dBA; Siemens) was used both for FD-CT imaging and endovascular treatment. In FD-CT imaging, contrast was injected into a peripheral vein with the use of a dual-syringe angiographic power injector (Accutron HP-D). We used a contrast application protocol identical to that for MS-CT perfusion imaging (60 mL of contrast material, iomeprol, Iomeron 350; Bracco, Milan, Italy; injected at a rate of 5 mL/s followed by a 60-mL saline flush).11 Technical details of this novel FD-CT perfusion application have been described and discussed in detail elsewhere.11 Briefly, before the start of the contrast injection, 1 forward and 1 reverse high-speed baseline scan (rotation) were performed to obtain a baseline set of nonenhanced (mask) images. Five seconds after the start of the peripheral contrast injection, a bidirectional series of 7 high-speed FD-CT rotational acquisitions was initiated. Each rotation was 5 seconds in duration and covered a rotation angle of 200°. There was a 1-second pause between the rotations (4 forward rotations and 3 reverse rotations). During each rotation, the angiographic system acquires 160 projections (angulation step, 0.8°/frame). Each projection was acquired at 77 kV (peak) and 0.36-μGy/frame dose level. This acquisition protocol resulted in a sampling rate of approximately 6 seconds, with a total acquisition duration of 41 seconds (Fig 1).

Prototype perfusion software was used to calculate the FD-CTP parameter maps. The basic reconstruction represents a modified version of the algorithm reported previously, which uses the widely accepted deconvolution approach to calculate the dynamic perfusion parameters.11,12 The arterial input function was manually selected at the anterior cerebral artery. We reconstructed all parameters maps (eg, TTP, MTT, CBV, and CBF) by using a 5-mm section thickness and spacing. With standard FD-CT software (InSpace DynaCT, Siemens), it is possible to perform further reconstructions by using this FD-CTP dataset. A first reconstruction by using data obtained before contrast injection (mask images) was performed to visualize the brain parenchyma and was substituted for the FD-CT performed as a regular procedure in all our patients. Second, the 7 runs after contrast injection were reconstructed with standard parameters as described before to visualize the arterial vessels (ie, FD-CTA) (Fig 1A–E). Briefly, reconstruction of the fill runs was performed by using the reconstruction-mode “native fill,” kernel-type “HU,” image-impression “normal,” and an FOV of 14 cm. Reconstruction of raw data resulted in 7 volume datasets with a batch of approximately 400 sections with a single section thickness of 0.2 mm. From the 7 datasets obtained after contrast injection, the one in the arterial phase was chosen for comparison with MRA. We used a matched volume-rendering technique and MIP reconstructions (section thickness, 5 mm; 2.5-mm spacing; axial orientation) to compare MRA with FD-CTA.

Dose Evaluation
We used a phantom-based method as described elsewhere to measure the effective dose to patients in this novel application.13

Two experienced neuroradiologists blinded to clinical information randomly reviewed the perfusion studies separately. The Alberta Stroke Program Early CT Score was used for qualitative comparison of FD-CTP and MRP. For ASPECTS, the territory of the middle cerebral artery is allotted 10 points. One point is subtracted for any area of perfusion abnormality for each of the defined regions (Fig 1F). The standard ASPECTS section position at and immediately superior to the ganglionic level was identified for all datasets. These 2 images were displayed in anonymous random order by using Matlab software (MathWorks, Natick, Massachusetts) (Fig 1F). The type of the map (eg, TTP, MTT, CBV, or CBF) and the scaling (color bar) were displayed. There was no information on the technique used to obtain each single displayed map. The reviewers had to identify whether any perfusion abnormality was obvious on the 2 images. By a simple click on the region assumed to be affected by ischemic stroke, the side and ASPECTS region of the brain were recorded.

All vascular images (volume-rendering technique/MIP reconstructions of MRA and FD-CTA) were stored in anonymous random order on a dedicated workstation. Image evaluation was performed by the 2 neuroradiologists in consensus. Review was performed with the reviewers recording the presence of any vascular occlusion (eg, internal carotid or middle cerebral artery occlusion).

Statistical analysis was performed by using the Statistical Package for the Social Sciences, Version 14.0 (IBM, Armonk, New York). The Pearson correlation coefficient was calculated for each reviewer in the comparison of the 2 different perfusion modalities. Additionally, interobserver correlation of the FD-CTP and MRP was calculated.

RESULTS

Between July 2012 and December 2013, 12 patients (5 men, 7 women; mean age, 72 ± 8 years) admitted for acute ischemic stroke were included. In all patients, the novel FD-CT application could be applied. In all patients, the time between MR imaging and FD-CT imaging was within 30 minutes, so we assume that relevant differences in the parameter maps were not present.

All 4 different parameter maps could be processed for both FD-CTP and MRP. Eight pairs of images per patient (initial MRP and FD-CTP before treatment), altogether 96 pairs, had to be evaluated. The ASPECTS correlation, FD-CTP versus MRP, of the 2 reviewers (reviewer A and B) revealed a high Pearson correlation coefficient in both reviewers for CBF, MTT, and TTP (0.95 to
0.98). For CBV, the correlation coefficient was lower (0.49) (Fig 2A, -B). The interobserver correlation of the FD-CTP maps also revealed a high Pearson correlation coefficient for CBF, MTT, and TTP (0.87–0.99), while for CBV, it was 0.59 (Fig 2C). The interobserver correlation of the MRP maps showed a high correlation (0.91–0.99) (Fig 2D). In summary, the perfusion abnormalities could be recognized identically in FD-CTP and MRP parameter maps (Fig 3).

Review of the volume-rendering technique/MIP reconstructions of the vascular images from both FD-CTA and MRA revealed that all occlusions seen on MRA images could also be recognized in FD-CTA reconstructions. The reviewers identified MCA occlusions (5 right, 7 left MCA occlusions, all TICI 3) in all cases (Figs 3F and 4F).

Considering patient safety, knowledge of the effective patient dose is necessary. According to the measurement method as described elsewhere, the effective dose of this novel application was 4.6 mSv.13

DISCUSSION

The aim of this study was to evaluate the feasibility of dynamic perfusion imaging by using a novel FD-CT application within the angiography suite. First, we described a scanning scheme analogous to MS-CT perfusion imaging (Fig 1). Contrary to MS-CT perfusion imaging, the number of acquired datasets and the duration of the entire scanning time are limited. However, the previously described prototype software allowed us to calculate and display all dynamic parameter maps. Using a qualitative evaluation method, we demonstrated the comparability of the parameter maps obtained by MRP and FD-CTP. Because MRP does not provide the ability to calculate absolute values of the different parameters, absolute perfusion values were not considered. This does not represent a major drawback because in most institutions, qualitative evaluation of the maps is performed rather than measurement of absolute values in different regions of the affected tissue. It was our aim to show that the maps obtained by either MRP or FD-CTP may provide similar qualitative information. The analysis revealed high Pearson correlation coefficients except for CBV maps. We believe this limited Pearson correlation of CBV maps to be a bias caused by the fact that the CBV lesions in the patients examined were mostly small or absent (Fig 4). Visible in the diagrams, the average absolute ASPECTS numbers in the CBV evaluation were high (Fig 2). According to current literature, we only consider revascularization treatment beyond 4.5 hours if significant mismatch (small DWI and CBV lesion) is present.18 This “selection bias” is, in our opinion, why, in our series, the CBV lesion size was small. The patient example demonstrating the largest CBV lesion in our series is presented in Fig 3.

We performed additional postprocessing of the dataset by using standard software to reconstruct images to display the intracranial vessels.1 We found that these reconstructions allowed us to visualize the intracranial arteries and occlusions with high image quality (Fig 3F and 4F). All occlusions were recognized as identical to those on MRA and FD-CTA images. This novel application performs a series of 7 bidirectional acquisitions, meaning that a
time-resolved "dynamic" FD-CTA may be reconstructed (Fig 1A–E). Recently, some articles described identical reconstructions conducted from MS-CT perfusion datasets (4D MS-CT angiography) to assess collaterals or thrombus length. As demonstrated in Fig 1A–E, this novel FD-CT application may also provide useful information concerning collateral flow and clot burden like that described for 4D MS-CT angiography.6–8,19 However, this evaluation may be subject to further assessment and was not the scope of this work.

Information on the effective dose of a novel application is crucial. In addition, we performed a dose measurement by using an Alderson Rando phantom, resulting in an effective dose of 4.6 mSv. The effective dose of this new FD-CT application is in line with MS-CT perfusion applications. In the literature, dose values of 3.6–5 mSv for MS-CT perfusion imaging are published. Additionally, as a second acquisition, a 3- to 5.5-mSv dose for angiographic MS-CT imaging is necessary, resulting in a total dose of approximately 8–9 mSv for the entire MS-CT evaluation.20–22 We believe that the new FD-CT application providing perfusion and angiographic evaluation with a single simultaneous acquisition and contrast is advantageous because contrast material volume and dose are less than those in MS-CT imaging.

There are some limitations. First, the number of patients included was small but sufficient to show the feasibility of this novel application. Only a qualitative comparison of the parameter maps was performed. A subject of further studies should be to quantify absolute values in comparison with CT perfusion imaging. In all patients, general anesthesia was used. Movement may impair image quality. As a feasibility study, we did not evaluate the clinical outcome of our patients. This novel application is also limited by the total scanning time of 41 seconds and the temporal resolution of 5 seconds. A longer acquisition may further improve measurement of perfusion parameters (most CT and MR imaging applications use acquisition times of approximately 60 seconds). Additionally, a higher temporal resolution (faster rotation time than 5 seconds and less pause time between rotations) is desirable. This may improve the parameter maps and the evaluation of the dynamic FD-CTA to recognize the location of the occlusion and appearance of collateral flow. As described before, the image quality of the FD-CT needs further improvement to approach the quality level of regular MS-CT; therefore, detailed analysis of the FD-CT reconstructions was not performed. Ideally the time between the 2 imaging procedures should be equal to zero. We assume that there was no relevant change within 30 minutes.

The aim of this study was to show the feasibility and qualitative comparability of a new dynamic FD-CT perfusion and angiographic application with a standard method. Despite the necessity of further evaluation and improvement of this novel application, we have the impression that this FD-CT application is approaching MS-CT quality in terms of perfusion and
angiographic imaging. Our idea is that in the future, this new application may modify the work flow of those caring for patients with stroke. To avoid time-consuming transportation of a patient from one imaging location to the angiography suite, in which the treatment is performed, direct referral will save time. In the identical environment, diagnostic imaging and treatment becomes feasible. Additional monitoring during the treatment may be possible. Further evaluation of this work flow with all its operational consequences is necessary but is beyond the scope of this work. We believe that physiologic data may be best to recognize the viability of brain tissue. Therefore, we believe that this new application is of high value. On the other hand, FD-CT quality in the visualization of brain tissue does, in our experience, not yet reach the level of MS-CT. Here further effort is necessary and ongoing so that FD-CT scanning may replace MS-CT.

CONCLUSIONS
We have shown the feasibility of a novel dynamic FD-CT perfusion and angiographic application in patients with acute stroke by using intravenous contrast application. The parameter maps and MIP/volume-rendering technique images compared well qualitatively with those of MR imaging. This FD-CT application may be substituted for MS-CT imaging in selected patients with acute stroke so that in the future, patients may be directly referred to the angiography suite to save time and avoid transportation.

REFERENCES

MR Elastography Can Be Used to Measure Brain Stiffness Changes as a Result of Altered Cranial Venous Drainage During Jugular Compression

A. Hatt, S. Cheng, K. Tan, R. Sinkus, and L.E. Bilston

ABSTRACT

BACKGROUND AND PURPOSE: Compressing the internal jugular veins can reverse ventriculomegaly in the syndrome of inappropriately low pressure acute hydrocephalus, and it has been suggested that this works by “stiffening” the brain tissue. Jugular compression may also alter blood and CSF flow in other conditions. We aimed to understand the effect of jugular compression on brain tissue stiffness and CSF flow.

MATERIALS AND METHODS: The head and neck of 9 healthy volunteers were studied with and without jugular compression. Brain stiffness (shear modulus) was measured by using MR elastography. Phase-contrast MR imaging was used to measure CSF flow in the cerebral aqueduct and blood flow in the neck.

RESULTS: The shear moduli of the brain tissue increased with the percentage of blood draining through the internal jugular veins during venous compression. Peak velocity of caudally directed CSF in the aqueduct increased significantly with jugular compression (P < .001). The mean jugular venous flow rate, amplitude, and vessel area were significantly reduced with jugular compression, while cranial arterial flow parameters were unaffected.

CONCLUSIONS: Jugular compression influences cerebral CSF hydrodynamics in healthy subjects and can increase brain tissue stiffness, but the magnitude of the stiffening depends on the percentage of cranial blood draining through the internal jugular veins during compression—that is, subjects who maintain venous drainage through the internal jugular veins during jugular compression have stiffer brains than those who divert venous blood through alternative pathways. These methods may be useful for studying this phenomenon in patients with the syndrome of inappropriately low-pressure acute hydrocephalus and other conditions.

ABBREVIATIONS: G′ = shear storage modulus; G″ = shear loss modulus; MRE = MR elastography; PJVF = percentage jugular venous flow; SILPAH = syndrome of inappropriately low-pressure acute hydrocephalus

Changes in venous drainage from the cranium, such as reduction in internal jugular vein flow when moving from a supine to upright posture, can alter cerebral hemodynamics and CSF dynamics. However, postural changes are difficult to study by using brain MR imaging. There is recent clinical interest in understanding how cranial venous outflow affects the brain, in part due to the controversial chronic cerebrospinal venous insufficiency hypothesis.

Reduction in venous outflow through the internal jugular veins, through the use of an elastic bandage (neck wrap), has also been used as a treatment for the syndrome of inappropriately low-pressure acute hydrocephalus (SILPAH), also known as negative or low-pressure hydrocephalus, rapidly reversing ventriculomegaly and restoring neurologic function. SILPAH is a rare and enigmatic condition in which patients exhibit ventricu-
lomegaly and very low intracranial pressure\(^9\) associated with obstruction to the CSF pathways between the ventricles and the subarachnoid space. Despite low intracranial pressure, symptoms mirror those of high intracranial pressure.\(^4,7,9,12\) The pathophysiology for SILPAH remains unclear. However, changes in brain stiffness as a result of the loss of extracellular fluid\(^4,8,9,11-13\) combined with CSF leaks\(^6\) have been suggested. Jugular compression has also been observed to increase the amplitude of CSF waveforms in the cervical subarachnoid space in subjects whose venous drainage took place primarily through the internal jugular veins and to decrease the amplitudes in subjects with primarily extr jugular drainage.\(^4,14\) These changes may be related to alterations in intracranial pressure arising from increased dural venous pressure\(^4\) and stiffening of brain tissue.\(^4,6,9\) However, the relationships between cranial venous drainage routes, cerebral CSF flow, and brain tissue properties in the context of jugular compression have not been investigated, to our knowledge.

Viscoelastic tissue response to loading consists of a recoverable elastic component and a nonrecoverable viscous component. The response to shear loading comprises the shear storage (\(G_s\)) and loss (\(G_l\)) moduli, representing elastic and viscous components, respectively. Increases in the shear moduli reflect higher stiffness.

MR elastography (MRE)\(^15\) is a noninvasive imaging technique that measures tissue stiffness by imaging the propagation of mechanical vibration with motion-sensitive gradients. Viscoelastic properties are quantified by analyzing the wave-propagation characteristics. MRE has been used to quantify the viscoelastic properties of healthy in vivo brain tissue\(^16-18\) and brain disorders such as normal pressure hydrocephalus.\(^19,20\) The shear moduli obtained depend on the vibration frequency, with lower values obtained at low frequencies.

In this study, we aimed to use MRE to determine the effect of restricting cranial venous outflow by using bilateral jugular compression on brain stiffness and CSF flow in healthy volunteers. We hypothesized that brain viscoelasticity and CSF velocity would increase with jugular compression.

MATERIALS AND METHODS

Nine healthy volunteers (3 women; mean age, 32.6 ± 10.9 years) were imaged supine with and without jugular compression. The research was approved by the local Human Research Ethics Committee. Participants gave written informed consent.

Bilateral compression of the internal jugular veins\(^4-8\) was achieved by fastening an 8-cm wide elastic bandage around the neck (Fig 1) to apply a mild compression, but not impair breathing or comfort. After 1 scan acquisition, the wrap was released while maintaining the head position. After a short pause allowing normal flow to be restored, scans were repeated.

MR Imaging

Data were acquired by using a 3T MR imaging scanner (Achieva 3T TX; Philips Healthcare, Best, the Netherlands) and a 1-channel transmit-receive neurovascular coil.

Vascular and CSF Flow Studies. Phase-contrast MR imaging was used to measure blood flow through the internal jugular veins and carotid and vertebral arteries at the level of the neck wrap and CSF flow through the cerebral aqueduct. The imaging planes are shown in Fig 1. A single 5-mm-thick section was assessed over 30 cardiac phases and gated retrospectively by using a finger plethysmography sensor. For the vascular flow study, a phase-encoding velocity of 60 cm/s was used with FOV = 180 × 180 mm, matrix = 288 × 288, TR/TE = 21/5.73 ms, flip angle = 10°. For CSF flow, a phase-encoding velocity of 4 cm/s was used, with FOV = 180 × 180 mm, matrix = 352 × 352, TR/TE = 21/10.1 ms, flip angle = 10°.

MRE. MRE was performed on an axial imaging region within and just above the ventricles (Fig 1). Shear waves were produced in the brain via a purpose-built mechanical transducer consisting of a coaxial coil system and an individually molded polymer mouthguard,\(^16,18\) triggered by the MR spectrometer in synchrony with motion-sensitized gradients. A 30-Hz sinusoidal vibration frequency was used to maximize wave propagation into the deep regions of the brain. Tissue displacements were imaged in 3 directions at 8 time points during the sinusoidal vibration with a fast-field echo MRE sequence.\(^21\) Imaging parameters were the following: FOV = 192 × 192 mm, matrix = 96 × 96, 9 sections, section thickness = 2-mm, TR/TE = 104.1/9.2 ms, flip angle = 20°, sensitivity encoding = 1.5 with no k-space reduction. Acquisition

FIG 1. A. Sagittal view of imaging planes for the MRE study within and just above the ventricles, phase-contrast MR imaging CSF flow study of the cerebral aqueduct, and phase-contrast MR imaging flow study of the blood flow in the neck vessels at the level of the compression. The arrows denote the position of neck wrap. B. Images of neck vessels with and without the neck wrap, showing the reduction in internal jugular vein area. Internal jugular veins are indicated by white arrows.
time was 4 minutes. A high-resolution (matrix = 256 × 256) T2-weighted image set with matching geometry was acquired.

Analysis

Vascular and CSF Flow Studies. Vascular and CSF flows were analyzed by using Segment (Academic Research Version 1.9R2455; Medviso, Lund, Sweden) following eddy current effect compensation as follows:

- **Mean vessel area:** The mean cross-sectional area (square centimeters) of the left and right vertebral and carotid arteries, and left and right internal jugular veins.
- **Mean flow rate and flow-rate amplitude:** The mean blood flow rates (milliliter/minute) and the flow-rate amplitude (milliliter/minute) calculated as the difference between the maximum and minimum flow rates.
- **Percentage jugular venous flow (PJVF):** Flow in the internal jugular veins as a percentage of carotid and vertebral arterial inflow.
- **CSF velocity maxima:** The maximum velocity (centimeter/second) of CSF flowing in the caudal and cranial directions.
- **Duration of caudal flow:** The duration of caudally directed flow as a percentage of the cardiac cycle.

MRE. The shear storage and loss moduli, G' and G'', were estimated from the tissue displacements by numerically solving the governing equation for shear wave propagation through an isotropic viscoelastic material after applying the curl operator to remove the pressure term associated with compressional waves. Details of the theory and reconstruction have been described in depth previously.

ROIs covering the whole-brain parenchyma (gray and white matter) in each MRE section were manually defined on the anatomic images by using ImageJ software (National Institutes of Health, Bethesda, Maryland) and exported to Matlab (MathWorks, Natick, Massachusetts). Sulci, gyri, and regions of CSF, such as the ventricles and adjacent pixels that could have partial volumes of CSF, were excluded from the ROIs.

Table 1: Blood flow parameters

<table>
<thead>
<tr>
<th></th>
<th>Internal Jugular Vein Flow</th>
<th>Arterial Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean vessel area (cm²)</td>
<td>1.17 ± 0.54</td>
<td>1.0 ± 0.77</td>
</tr>
<tr>
<td>Mean flow rate (mL/min)</td>
<td>572.2 ± 210.7</td>
<td>814.7 ± 221.9</td>
</tr>
<tr>
<td>Flow-rate amplitude (mL/min)</td>
<td>198.5–1838.8</td>
<td>1803.8 ± 490.1</td>
</tr>
<tr>
<td>Jugular Compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean vessel area (cm²)</td>
<td>0.70 ± 0.35</td>
<td>0.97 ± 0.68</td>
</tr>
<tr>
<td>Mean flow rate (mL/min)</td>
<td>460.8 ± 202.4</td>
<td>815.3 ± 290.6</td>
</tr>
<tr>
<td>Flow-rate amplitude (mL/min)</td>
<td>382.6 ± 312.7</td>
<td>1720.6 ± 688.4</td>
</tr>
</tbody>
</table>

* $P < .05$, paired t test.
the shear storage and loss moduli and between the intra-subject change in \(G' \) and \(G'' \) and the maximal velocity of caudally directed CSF.

RESULTS

Blood Flow

Figure 2 shows the group mean flow waveforms for internal jugular venous flow (Fig 2A) and carotid and vertebral arterial flow (Fig 2B) with and without jugular compression. Jugular compression significantly reduced the mean internal jugular vein area (\(t = 3.56, P = .005 \)), with suppression of the venous flow peak following systole and a significant reduction in the mean and peak venous flow rate (\(t = 2.85, P = .008; t = 3.75, P = .002 \)). The mean arterial area, flow waveforms, and flow parameters were unaffected by jugular compression (\(P > .05 \)). Blood flow parameters and statistical results are listed in Table 1.

Table 2 contains the values of PJVF for subjects with and without jugular compression. Without compression, the internal jugular veins carried most of the outflow of cranial blood (PJVF values of \(\geq 50\% \)) in 8 of 9 subjects. During jugular compression, PJVF was decreased (flow was diverted to nonjugular pathways) in 7 subjects, and 3 of these had predominantly nonjugular venous drainage (PJVF of \(\leq 50\% \)). PJVF was reduced with neck wrapping (\(t = 2.33, P = .019 \)), indicating the redirection of venous blood to nonjugular vessels.

CSF Flow

Figure 2C depicts the group mean cerebral aqueduct CSF flow with and without jugular compression. Corresponding flow parameters and statistical analyses are listed in Table 3.

The maximal velocity of caudally directed CSF through the aqueduct increased significantly with jugular compression (\(t = -4.96, P < .001 \)). Neither the maximal cranially directed velocity nor the duration of caudally directed flow was significantly changed (\(P > .05 \)).

Heart rates calculated from vascular data were not significantly affected by the neck wrap (\(t = -0.66, P = .528 \)).

Viscoelasticity

Figure 3 shows sample viscoelastic maps for shear storage and loss moduli. Table 4 contains the range, mean, SD, and statistics. Figure 4A depicts the change in \(G' \) and \(G'' \) between the unrestricted and jugular compression conditions for all subjects.

Table 2: PJVF values for subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unrestricted Flow</th>
<th>Jugular Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 1</td>
<td>97.2%</td>
<td>53.0%</td>
</tr>
<tr>
<td>Subject 2</td>
<td>84.1%</td>
<td>70.6%</td>
</tr>
<tr>
<td>Subject 3</td>
<td>82.1%</td>
<td>81.5%</td>
</tr>
<tr>
<td>Subject 4</td>
<td>76.8%</td>
<td>69.5%</td>
</tr>
<tr>
<td>Subject 5</td>
<td>74.2%</td>
<td>44.3%</td>
</tr>
<tr>
<td>Subject 6</td>
<td>61.2%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Subject 7</td>
<td>59.8%</td>
<td>63.8%</td>
</tr>
<tr>
<td>Subject 8</td>
<td>59.3%</td>
<td>60.0%</td>
</tr>
<tr>
<td>Subject 9</td>
<td>17.9%</td>
<td>13.7%</td>
</tr>
</tbody>
</table>

Table 3: CSF velocity parameters

<table>
<thead>
<tr>
<th>Aqueductal Flow</th>
<th>Unrestricted Flow</th>
<th>Jugular Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum caudal velocity (cm/s)</td>
<td>1.18 ± 0.33</td>
<td>1.53 ± 0.42</td>
</tr>
<tr>
<td>Mean</td>
<td>0.81–1.85</td>
<td>1.04–2.36</td>
</tr>
<tr>
<td>Range</td>
<td>(t = -4.96, P = .0004^a)</td>
<td></td>
</tr>
<tr>
<td>Maximum cranial velocity (cm/s)</td>
<td>1.38 ± 0.57</td>
<td>1.62 ± 0.62</td>
</tr>
<tr>
<td>Mean</td>
<td>0.73–2.47</td>
<td>0.66–2.48</td>
</tr>
<tr>
<td>Range</td>
<td>(t = 1.58, P = .066)</td>
<td></td>
</tr>
<tr>
<td>Duration of caudally directed flow (% cardiac cycle)</td>
<td>49.9 ± 5.2%</td>
<td>51.4 ± 5.3%</td>
</tr>
<tr>
<td>Mean</td>
<td>40.7%–57.7%</td>
<td>42.1%–61.7%</td>
</tr>
<tr>
<td>Range</td>
<td>(t = -1.0, P = .160)</td>
<td></td>
</tr>
</tbody>
</table>

Fig 3. ROI and sample viscoelastic maps. A, Sample high-resolution anatomic image shows the ROI (yellow line). Viscoelastic property maps for \(G' \) (B) and \(G'' \) (C) in kilopascals. In the viscoelastic maps, the ventricles and large sulci have very low (near zero) shear moduli, indicating that they are filled with CSF, which has waterlike properties. Stiffer tissue is indicated by warmer colors, as indicated by the color bar (right).
Contrary to our hypothesis, jugular compression did not cause an overall significant increase in either the storage or loss moduli of the brain ($t = 0.167, P = .436; t = 0.227; P = .413$, respectively).

Linear regression results are in Table 5. There was no relationship between G' and G'' and the percentage of arterial blood draining through the internal jugular veins for unrestricted flow. However with jugular compression, both G' and G'' increased linearly with PJVF ($R^2 = 0.475, P = .04$; and $R^2 = 0.449, P = .048$, respectively) (Fig 5). There was no relationship between the change in the viscoelastic properties and the change in the peak caudal CSF velocity ($P > .05$).

Subject with the Lowest Initial Brain G'

Figure 4 (right) shows the CSF waveforms for 1 subject whose baseline brain stiffness (G') was lower than that of the other subjects (identified by the black line). Jugular compression in this subject resulted in a 17% increase in the brain shear storage modulus. This was accompanied by a 61% increase in the maximal peak caudal CSF velocity and an 11% increase in the duration of caudal CSF flow. These were the largest increases of these parameters seen in any subject. This pattern was, however, not uniform across all subjects.

DISCUSSION

This study shows that brain tissue stiffness during jugular compression varies depending on whether cranial venous blood flow is maintained or diverted from the internal jugular veins during jugular compression. Specifically, during jugular compression, brain tissue viscoelastic properties (shear storage and loss moduli) increase with the percentage of cranial blood draining through the internal jugular veins—that is, brain tissue stiffness was greater in subjects who maintained jugular drainage paths despite jugular compression than in those who diverted venous blood through extrajugular pathways. CSF pulsations in the cerebral aqueduct are also affected by jugular compression, with an increase in the maximal velocity of caudally directed CSF during jugular compression. To our knowledge, this is the first study investigating the effect of jugular compression on the viscoelastic properties of the brain and intraventricular CSF dynamics.

Jugular compression is known to increase cerebral venous pressure and raise intracranial pressure due to increased resistance to outflow through the internal jugular veins. In this study, higher brain tissue shear storage and loss moduli were associated with the maintenance of predominantly jugular flow paths during jugular compression rather than diversion of blood flow to extrajugular pathways such as the vertebral, intraspinal, and deep cervical veins. Maintaining jugular venous flow during jugular compression suggests that the resistance to flow in the extrajugular pathways of these individuals was greater than that in their compressed internal jugular veins. Higher overall cerebral venous pressures likely result in these subjects having increased forces applied to the brain tissue. Conversely, internal jugular vein flow not decreasing as a proportion of total cranial outflow (in $2/9$ subjects) suggests that even after compression, the internal jugular vein remained a low-resistance pathway. Because brain tissue stiffness increases with compression due to its nonlinear viscoelastic behavior, it is probable that the increasing shear

![Intra-subject change in G'](image)

Table 4: Elastic (G') and viscous (G'') mechanical properties of brain tissue

<table>
<thead>
<tr>
<th></th>
<th>Unrestricted Flow</th>
<th>Jugular Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>G' (kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.691 ± 0.067</td>
<td>0.688 ± 0.065</td>
</tr>
<tr>
<td>Range</td>
<td>0.567–0.805</td>
<td>0.606–0.798</td>
</tr>
<tr>
<td>t test</td>
<td>$t = 0.17, P = .436$</td>
<td></td>
</tr>
<tr>
<td>G'' (kPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.587 ± 0.052</td>
<td>0.585 ± 0.046</td>
</tr>
<tr>
<td>Range</td>
<td>0.482–0.662</td>
<td>0.531–0.645</td>
</tr>
<tr>
<td>t test</td>
<td>$t = 0.23, P = .413$</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Linear regression coefficients for the relationships between PJVF and G' and G'' with unrestricted flow and with jugular compression, and change in mean G', G'', and maximal caudal CSF velocity

<table>
<thead>
<tr>
<th></th>
<th>R^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>G' and PJVF, unrestricted flow</td>
<td>0.136</td>
<td>.330</td>
</tr>
<tr>
<td>G' and PJVF, jugular compression</td>
<td>0.475</td>
<td>.040*</td>
</tr>
<tr>
<td>G'' and PJVF, unrestricted flow</td>
<td>0.151</td>
<td>.301</td>
</tr>
<tr>
<td>G'' and PJVF, jugular compression</td>
<td>0.449</td>
<td>.048*</td>
</tr>
<tr>
<td>% Change G' and % change in max. caudal CSF velocity</td>
<td>0.412</td>
<td>.063</td>
</tr>
<tr>
<td>% Change G'' and % change in max. caudal CSF velocity</td>
<td>0.171</td>
<td>.268</td>
</tr>
</tbody>
</table>

Note:—max. indicates maximum.

* $P < .05$, paired t test.

![CSF velocity in subject with lowest initial G'](image)
storage and loss moduli measured with increasing jugular flow percentage are the result of higher pressure on the brain tissue from the cerebral veins. Note that the absolute changes in brain stiffness observed here in healthy volunteers are small and may not have clinical significance.

In this study, CSF was expelled more rapidly from the cerebral aqueduct with jugular compression. Similar findings have been reported in the cervical subarachnoid space in subjects with primarily jugular venous flow paths before compression. The CSF pulsations in the brain are the result of the movement of cerebral blood within the rigid intracranial system. The influx of arterial blood following systole causes venous blood to be expelled from the cranium and CSF to flow into the spinal subarachnoid space. Jugular compression restricts venous outflow, limiting cranial space for arterial expansion and promoting more rapid expulsion of CSF from the ventricles.

Pang and Altschuler and Rekate describe SILPAH as resulting from changes to the viscoelastic properties of the brain. Rekate refers to the condition as “floppy brain syndrome,” describing jugular compression as a means of increasing brain “turgor,” defined as the ability of the brain tissue to resist distortion. While the hypothesis of lower brain tissue stiffness in patients with SILPAH has not been tested, 1 subject in our cohort who initially had lower brain stiffness than the rest of the group may lend support to the idea that jugular compression may “normalize” brain viscoelasticity. Jugular compression in this subject resulted in the largest increases in brain viscoelasticity and CSF velocity of any subject. If patients with SILPAH have lower brain stiffness than healthy subjects, it is possible that the stiffening of the brain tissue through the use of the neck wrap is enough to encourage expulsion of excess CSF from the ventricles, restoring normal ventricular size. This remains to be determined in patients with SILPAH, but this study suggests such research is feasible.

MRE has not been previously used to examine changes in brain stiffness in SILPAH or as a result of jugular vein compression. The lower absolute shear modulus values obtained in this study compared with previous studies are due to the lower vibration frequency, because brain tissue shear moduli increase with frequency. The lower frequency was chosen to maximize wave penetration into the deep brain because higher frequencies are more rapidly attenuated in brain tissue.

FIG 5. The relationship between shear moduli and the percentage of jugular vein flow with the cervical wrap in place. Storage modulus (G', left) and loss modulus (G'', right). Error bars are standard error of the mean in both panels. Both storage and loss moduli are significantly correlated with the percentage of jugular vein flow with the cervical wrap in place ($P < .05$).

CONCLUSIONS

In healthy subjects, those who do not divert venous blood through extrajugular pathways during jugular compression have higher brain stiffness than those who do, likely as a result of increased neurovascular pressure. While this study did not confirm our hypothesis that jugular compression increases brain viscoelasticity in all subjects, it has shown that the MRE technique can measure changes in brain tissue viscoelasticity in this context and suggests that MRE could be a useful tool to measure brain mechanical properties of patients with SILPAH, including during jugular compression. These findings may help elucidate the mechanisms of SILPAH and the means by which jugular compression improves symptoms, and they may also be useful for other conditions in which jugular flow is restricted.

ACKNOWLEDGMENTS

We thank the staff of the NeuRA Clinical Research Imaging Centre for their help in this study and also Dr Harold Rekate for stimulating discussions regarding this study.

Limitations of this study include performing our measurements on healthy volunteers, who may not exhibit the same physiologic responses (such as cerebral vascular autoregulation) as patients with SILPAH. In addition, we did not measure intracranial or venous pressures, so we can only speculate about changes in these parameters with jugular compression. However, this study demonstrates the feasibility of using MRE in clinical studies to investigate the biomechanical mechanisms of brain disorders and its potential as an adjunct to phase-contrast MR imaging in assessing patients with CSF flow disorders.

REFERENCES

4. Rekate HL, Nadkarni TD, Wallace D. The importance of the cortical
8. Rekate HL. Recent advances in the understanding and treatment of hydrocephalus. Semin Pediatr Neurol 1997;4:167–78
Diagnostic Accuracy of 4 Commercially Available Semiautomatic Packages for Carotid Artery Stenosis Measurement on CTA

ABSTRACT

BACKGROUND AND PURPOSE: Semiautomatic measurement of ICA stenosis potentially increases observer reproducibility. In this study, we assessed the diagnostic accuracy and interobserver reproducibility of a commercially available semiautomatic ICA stenosis measurement on CTA and estimated the agreement among different software packages.

MATERIALS AND METHODS: We analyzed 141 arteries from 90 patients with TIA or ischemic stroke. Manual stenosis measurements were performed by 2 neuroradiologists. Semiautomatic measurements by using 4 methods (3mensio and comparable software from Philips, TeraRecon, and Siemens) were performed by 2 observers. Diagnostic accuracy was estimated by comparing semiautomatic with manual measurements. Interobserver reproducibility and agreement between different packages was assessed by calculation of the intraclass correlation coefficient and Bland-Altman 95% limits of agreement. False-negative classifications were retrospectively inspected by a neuroradiologist.

RESULTS: There was no significant difference in the diagnostic performance of the 4 semiautomatic methods. The sensitivity for detecting ≥50% and ≥70% degree of stenosis was between 76% and 82% and 46% and 62%, respectively. Specificity and overall diagnostic accuracy were between 92% and 97% and 85% and 90%, respectively. The interobserver intraclass correlation coefficient was between 0.83 and 0.96 for semiautomatic measurements and 0.81 for manual measurement. The limits of agreement between each pair of semiautomatic packages ranged from −18%–24% to −33%–31%. False-negative classifications were caused by ulcerative plaques and observer variation in stenosis and reference measurements.

CONCLUSIONS: Semiautomatic methods have a low-to-good sensitivity and a good specificity and overall diagnostic accuracy. The high interobserver reproducibility makes semiautomatic stenosis measurement valuable for clinical practice, but semiautomatic measurements should be checked by an experienced radiologist.

ABBREVIATION: ICC = intraclass correlation coefficient

Carotid endarterectomy in neurologically symptomatic patients with a 70%–99% stenosis results in a 16% decrease in the absolute risk for an ipsilateral stroke in 5 years. However, endarterectomy is only marginally beneficial for patients with a 50%–69% stenosis and has no positive effect in patients with a <50% stenosis. Therefore, the degree of carotid stenosis is crucial in clinical decision-making, and precise and accurate measurement of the degree of stenosis is mandatory. The stenosis measurements on which these thresholds are based were determined by using conventional angiography, which is considered as the original criterion standard. Due to neurologic complications related to DSA and a good diagnostic accuracy of noninvasive tests, carotid stenosis measurement on CTA or MRA has become the standard in clinical practice. However, manual measurement of the degree of stenosis on CTA according to the NASCET method is prone to low interobserver reproducibility and requires experience. Semiautomatic methods increase the interobserver reproducibility and accelerate the measurement. Furthermore, semiautomatic methods require less observer experience compared with manual measurement. Multiple semiautomatic packages are currently available and used in clinical practice. Be-
cause different vendors may use different algorithms, the reliability of measurements with different software packages is unclear. To become a valuable clinical tool, the diagnostic accuracy must be further investigated. The goal of this study was to assess the agreement and diagnostic accuracy of 4 commercially available software packages for semiautomatic stenosis measurement compared with manual measurement on CTA and to estimate the interobserver reproducibility and the agreement among different semiautomatic packages.

MATERIALS AND METHODS

Patient Selection
Patients with a recent TIA or stroke suspected of having ICA stenosis were evaluated by duplex sonography. According to local guidelines, when the stenosis on duplex sonography was ≥30% for a man and ≥50% for a woman, CTA was performed to estimate the degree of stenosis more precisely. All consecutive patients (n = 110) who underwent a 64-section CTA with a 0.9-mm section thickness for carotid stenosis evaluation between April 2006 and December 2008 were retrospectively included in this analysis. This complete population was previously investigated to assess the performance of semiautomatic measurement of ICA stenosis on CTA by using 4 other commercially available software packages and estimate the agreement among different software packages. Furthermore, this complete population was previously used to investigate the relation of calcium volume with carotid artery disease, and it was also used to investigate the prevalence of intracranial carotid artery disease and quantify the intracranial stenosis, and to investigate the relation between intracranial carotid artery stenosis and poor outcome.

Patients with a previous carotid intervention (n = 16) and those with CTA of insufficient quality (n = 4) were excluded; 90 patients remained for further analysis. The mean age was 66.8 years (range, 35–89 years), and 54 were men. Forty patients (44%) had ischemic stroke as a final diagnosis; 32 patients (36%), a transient ischemic attack; and 14 patients (16%), amaurosis fugax. Three patients (3%) were asymptomatic, and 1 patient (1%) had an ocular ischemic syndrome.

Because CTA was performed in the clinical setting, informed consent was waived by the local medical ethics committee.

CTA Protocol
CTA was performed as previously described with a 64-section scanner (Brilliance 64; Philips Healthcare, Best, the Netherlands). Eighty milliliters of contrast (iodixanol, Visipaque 320; GE Healthcare, Piscataway, New Jersey) was infused at 4 mL/s. Acquisition and reconstruction parameters were as follows: 120-kV tube voltage, 265 mAs, pitch of 0.765, and reconstructed section thickness of 0.9 mm with an increment of 0.45 mm. The scan ranged from the aortic arch up to 3 cm above the sella turcica. The in-plane grid was 512 × 512 pixels, with an FOV ranging from 128 × 128 mm² to 217 × 217 mm², with an average of 155 × 155 mm².

Stenosis Measurement
For both the manual and semiautomatic measurements, the observers were blinded to patient information and each other’s findings. The degree of stenosis was defined according to the NASCET criteria by using the minimal diameter at the stenosis and the maximum reference diameter at a healthy part of the artery well beyond (>30 mm) the stenosis. Because the cross-section of an artery is not round, there is no true diameter. Therefore, we defined the “minimal diameter” as the minimal cross-sectional distance of the artery from wall to wall and the “maximum diameter” as the maximum cross-sectional distance of the artery from wall to wall. The minimal diameter of the stenosis was determined by the observers within 3 cm proximal and distal to the bifurcation. Arteries with near-occlusion (collapsed or small distal artery) were identified according to the criteria described by Bartlett et al. For both the manual and semiautomatic measurements, occlusion of the arteries was reported. For all measurements, the processing time was recorded.

Manual Stenosis Measurements
Manual measurements were performed on CTA by 2 neuroradiologists both with >10 years of experience according to the method described by Bartlett et al by using a workstation with MPR functionality (Impax, Version 5.2; Agfa-Gevaert, Mortsel, Belgium). Measurements were performed on a plane perpendicular to the centerline of the artery. The first observer measured all arteries, which were used as the reference, and a subset of 50 arteries a second time with a delay of 2 months. The second observer measured a subset of 48 arteries.

Semiautomatic Stenosis Measurements
Semiautomatic stenosis grading was performed with software packages from Pie Medical Imaging (3mensio Vascular 6.1; Pie Medical Imaging Maastricht, the Netherlands), Philips (Extended Brilliance Workspace, Version 4.1 Advanced Vessel Analysis), TeraRecon (Vessel Analysis 4.4.6.85; TeraRecon, San Mateo, California), and Siemens (syngo INspace4D Advanced Vessel Analysis 2009–2013; Siemens, Erlangen, Germany). One trained observer (2 years of experience) performed stenosis measurement by using all software packages with >2 months between measurements with different packages. A second trained observer (6 months of experience) performed the measurements by using Philips and 3mensio software, and a third trained observer (6 months of experience) performed the measurements by using Siemens and TeraRecon software, both with >2 months between measurements with different software packages. To prevent recall of measurements performed in previous studies on this population, we selected observers who were not involved in the previous studies.

Using the software from Philips, TeraRecon, and Siemens, we placed ≥2 seed points on the axial images: The first seed point was placed in the ICA close to the base of the skull, and the last seed point, in the common carotid artery below the bifurcation (>5 cm). Subsequently, software packages automatically segmented the ICA and determined the centerline of the ICA. Minimal and maximal lumen diameters of the arteries were automatically calculated and displayed together with

curved planar reformations of the artery. By dragging a slider along the curved planar reformation of the artery, observers were able to select the minimal stenosis diameter. For the 3mensio software, the ICA of interest was automatically segmented after placement of a single seed point. Subsequently, seed points were placed in the ICA, bifurcation, external carotid artery, and common carotid artery on a 3D representation, and the centerline was automatically determined. The 3mensio software fitted an ellipse on the segmented cross-sectional lumen area and presented the minimal and maximum diameters of the ellipse as the lumen diameters and displayed them together with curved planar reformations of the artery. The observer selected the region of the ICA containing the stenosis, and the software automatically determined the smallest diameter of the stenosis. For all software packages, the reference location was selected by dragging a slider on the curved planar reformation along the distal ICA well beyond the site of stenosis. The reference location was selected at a vertically running part with the largest diameter and the least variation in diameter. At the selected reference location, the minimal and maximal diameters were recorded. For all software packages, erroneous or incomplete segmentations and erroneous centerlines were manually corrected.

To evaluate potential improvements of the interobserver reproducibility, we performed an additional measurement with a second standardized reference location exactly 30 mm above the minimal stenosis diameter for a single software package (Siemens) and calculated the degree of stenosis.

Statistical Analysis

Diagnostic Accuracy. To determine the diagnostic accuracy of semiautomatic stenosis measurement, we used the manual stenosis measurements by the first observer as a reference. The agreement of the semiautomatic stenosis measurements with the manual reference was assessed by scatterplots, Bland-Altman analysis with 95% limits of agreement, and the calculation of the intraclass correlation coefficient (ICC) (agreement, 2-way-mixed, single measure). Diagnostic accuracy was determined for diagnoses of ≥50% and ≥70% stenoses. Sensitivity, specificity, positive predictive value, negative predictive value, and overall diagnostic accuracy were calculated. The extended McNemar test was used to compare the sensitivity, specificity, and overall diagnostic accuracy among the software packages. P values < .05 were considered statistically significant. Statistical analyses were performed by using SPSS, Version 21 (IBM, Armonk, New York).

Inter- and Intraobserver Reproducibility. Inter- and intraobserver reproducibility of the manual measurements and interobserver reproducibility of the semiautomatic measurements were assessed by scatterplots, Bland-Altman analysis, and the calculation of the ICC. A paired t-test was used to determine whether the interobserver bias for semiautomatic measurements was statistically different from manual measurements. The Fisher Z-test was used to determine whether the interobserver ICC for semiautomatic measurements was statistically significantly different from manual measurements. The agreement of observers classifying a stenosis equal to or higher than a cutoff of 50% and 70% was assessed by using κ statistics.

Agreement between Different Semiautomatic Software Packages. The agreement between measurements with different semiautomatic software packages was assessed by Bland-Altman analysis and calculating the ICC. Instead of choosing a fixed observer per software package, we randomly selected 1 of the 2 observers for each measurement to avoid observer dependence. Thus, we aimed to simulate a clinical setting in which multiple users may use the software package.

Retrospective Error Analysis

Semiautomatic measurements classified as false-negative were retrospectively investigated by a neuroradiologist (10 years of experience) and a trained observer (2 years of experience) to inspect whether the measurement was correctly performed by the observers and no erroneous centerlines or erroneous lumen segmentations were present. A measurement was classified as false-negative if the degree of stenosis was above the cutoff point (50% or 70%) according to manual measurement but below the cutoff for the semiautomatic measurement.

RESULTS

Ninety patients (180 arteries) were included in this study. Thirty-nine arteries were excluded because of near-occlusion (n = 20), occlusion (n = 13), dental artifacts at the bifurcation (n = 3), dissection (n = 1), and fibromuscular dysplasia (n = 1), or the bifurcation was not captured on the scan (n = 1). After exclusion, we ended up with 141 (180 – 39) arteries suitable for further analysis. A subset of 38 arteries that were manually measured a second time by the first observer and 37 arteries that were manually measured by the second observer were suitable for further analysis. According to the manual stenosis measurements, 47 arteries had a minimal stenosis (0%–29%); 29, a mild stenosis (30%–49%); 39, a moderate stenosis (50%–69%); and 26, severe stenosis (70%–99%).

As Table 1 shows, the average processing time of all semiautomatic measurements was faster than that for manual measurements. See On-line Fig 1 for examples of semiautomatic ICA stenosis measurement.

Diagnostic Accuracy

The agreement of semiautomatic measurements with manual measurements is illustrated in Fig 1 by scatterplots. The ICC and limits of agreement are shown in Table 2. All software packages showed a high correlation, with ICCs between 0.86 and 0.88. The mean paired difference between manual and semiautomatic measurements was small, ranging from 2.1% ± 13% to 3.8% ± 14% (Fig 2). However,
the Bland-Altman limits of agreement were wide, ranging from -23% to -24% to -27% to -23% to -31% (Fig 2). The diagnostic performance is presented in Table 3. The semiautomatic measurements have a low sensitivity for detecting a $\geq 70\%$ stenosis, with sensitivity values between 46% and 62%. The specificity and overall diagnostic accuracy of detecting $\geq 70\%$ degree stenosis were good for semiautomatic measurements, ranging between 96%–97% and 87%–90%, respectively. The semiautomatic measurements showed a moderate-to-good sensitivity for detecting $\geq 50\%$ stenosis with values between 68% and 82%. The specificity and overall diagnostic accuracy for detecting $\geq 50\%$ stenosis were good, ranging between 93%–95% and 85%–88%, respectively. No statistically significant differences in the diagnostic performance among software packages were found. All occluded arteries were detected by the observers regardless of the semiautomatic method used.

Inter- and Intraobserver Reproducibility

Observer reproducibility is illustrated in Figs 3–5, and the results can be found in Tables 4 and 5. The Bland-Altman plots showed a small inter- and intraobserver reproducibility bias with wide limits of agreement for manual stenosis measurements (Fig 3). The manual measurements have a reasonable-to-good inter- and intraobserver reliability, with an ICC of 0.81 and 0.88, respectively. The Bland-Altman plots show that interobserver reproducibility bias was smallest for 3mensio and Philips (Fig 5). The semiautomatic measurements have a reasonable-to-excellent interobserver reproducibility with ICCs between 0.83 and 0.96. For 3mensio and Philips, the interobserver reproducibility was significantly better than the interobserver reproducibility of the manual measurements. With the Siemens software with a fixed reference location 3 cm above the minimal stenosis diameter, the average difference in degree of steno-

Table 2: Agreement manual vs semiautomatic stenosis measurement

<table>
<thead>
<tr>
<th>Software (Observer)</th>
<th>Average Difference Degree of Stenosis ± SD (%) (Manual, Semiautomatic)</th>
<th>Bland-Altman 95% Limits of Agreement (%)</th>
<th>ICC for Degree of Stenosis (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3mensio (Observer 1)</td>
<td>3.8 ± 14 ($P = .002$)</td>
<td>-24–31</td>
<td>0.86 (0.80–0.90)</td>
</tr>
<tr>
<td>Philips (Observer 1)</td>
<td>2.1 ± 13 ($P = .049$)</td>
<td>-23–27</td>
<td>0.88 (0.83–0.91)</td>
</tr>
<tr>
<td>TeraRecon (Observer 1)</td>
<td>3.1 ± 13 ($P = .007$)</td>
<td>-23–29</td>
<td>0.87 (0.82–0.90)</td>
</tr>
<tr>
<td>Siemens (Observer 1)</td>
<td>3.5 ± 13 ($P = .002$)</td>
<td>-22–29</td>
<td>0.88 (0.83–0.91)</td>
</tr>
</tbody>
</table>

FIG 1. Scatterplots of the manual-versus-semiautomatic assessment of the degree of stenosis (percentage).
sis was 3.5% ± 15% compared with 6.5% ± 12% for the standard reference location (P < .001) and the interobserver reproducibility was slightly lower, with an ICC of 0.84 compared with 0.86 with a non-statistically significant difference (P = .55).

For detecting a stenosis of ≥50%, the κ statistics for interobserver agreement were fair for the manual measurement and, depending on the software package, poor to excellent for the semiautomatic measurement packages.

Agreement among Semiautomatic Measurements

The agreement among measurements with different semiautomatic software packages can be found in the On-line Table. The correlation of measurements with different semiautomatic pack-

!!! Table 3: Diagnostic performance of semiautomatic measurement in detecting a stenosis degree of ≥70% and ≥50%

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>PPV (95% CI)</th>
<th>NPV (95% CI)</th>
<th>Accuracy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% Cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Mensio (observer 1)</td>
<td>62 (43–78)</td>
<td>96 (91–98)</td>
<td>76 (53–92)</td>
<td>92 (85–96)</td>
<td>89 (82–93)</td>
</tr>
<tr>
<td>Philips (observer 1)</td>
<td>46 (29–65)</td>
<td>96 (91–99)</td>
<td>75 (48–93)</td>
<td>88 (82–94)</td>
<td>87 (80–92)</td>
</tr>
<tr>
<td>TeraRecon (observer 1)</td>
<td>58 (37–77)</td>
<td>97 (93–99)</td>
<td>83 (59–96)</td>
<td>91 (85–95)</td>
<td>90 (84–94)</td>
</tr>
<tr>
<td>Siemens (observer 1)</td>
<td>62 (40–81)</td>
<td>97 (91–99)</td>
<td>80 (56–94)</td>
<td>92 (85–96)</td>
<td>90 (84–94)</td>
</tr>
<tr>
<td>50% Cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Mensio (observer 1)</td>
<td>77 (65–86)</td>
<td>91 (86–97)</td>
<td>91 (80–97)</td>
<td>83 (73–90)</td>
<td>86 (79–91)</td>
</tr>
<tr>
<td>Philips (observer 1)</td>
<td>82 (70–89)</td>
<td>91 (86–97)</td>
<td>91 (81–97)</td>
<td>86 (76–92)</td>
<td>88 (81–93)</td>
</tr>
<tr>
<td>TeraRecon (observer 1)</td>
<td>76 (65–86)</td>
<td>92 (84–97)</td>
<td>89 (78–96)</td>
<td>82 (73–90)</td>
<td>85 (78–90)</td>
</tr>
<tr>
<td>Siemens (observer 1)</td>
<td>77 (65–86)</td>
<td>95 (87–99)</td>
<td>93 (82–98)</td>
<td>83 (73–90)</td>
<td>87 (80–91)</td>
</tr>
</tbody>
</table>

Note:—PPV indicates positive predictive value; NPV, negative predictive value.
ages is high, with ICCs ranging from 0.92 to 0.98. The mean paired differences between semiautomatic packages range from 0.49% to 5.7%, and the Bland-Altman limits of agreement are wide, ranging from −17%–18% to −33%–31%.

Retrospective Error Analysis

Most measurements classified as false-negative were because the semiautomatic method measured a larger stenosis diameter and/or a smaller reference diameter compared with manual measurements by the neuroradiologist (78% [36/46] for a stenosis of ≥70% and 89% [51/57] for a stenosis of ≥50%). There were no apparent errors in the centerline, and only 4.3% (2/46) of the false-negatives for a stenosis of ≥70% and 5.3% (3/57) for a stenosis of ≥50% were caused by erroneous lumen segmentation due to calcium. An ulcerative plaque hampered semiautomatic measurements in 17.4% (8/46) for a stenosis of ≥70% and 5.3% (3/57) for a stenosis of ≥50% and resulted in severe overestimation of the stenosis diameter compared with manual measurement (Fig 6). 3mensio fits an ellipse on the segmented lumen and uses the smallest diameter of the ellipse as a minimal stenosis diameter; this can result in a minimal stenosis diameter that is larger than the minimal stenosis diameter measured by a radiologist (Fig 6). This method caused 40% (4/10) of the 3mensio false-negatives for a stenosis of ≥70% and 20.0% (3/15) for a stenosis of ≥50. For 8.7% (4/46) of the false-negatives for a stenosis of ≥70% and 12.3% (7/57) for a stenosis of ≥50%, the difference in the degree of stenosis with manual measurement was only 5% and the manual measurements were just above the cutoff point and the semiautomatic measurements were just below the cutoff.

DISCUSSION

In this study, we investigated the diagnostic performance of 4 commercially available semiautomatic software packages with manual measurement as a reference. All semiautomatic methods had a moderate-to-good sensitivity for detecting a stenosis of ≥50% and low sensitivity for detecting a stenosis of ≥70%. All semiautomatic methods had a good specificity and overall diag-
nostic accuracy for detecting stenoses of ≥70% and ≥50%. All semiautomatic stenosis measurement methods are 40% faster than manual measurements. For 3mensio, we found a much higher interobserver reproducibility compared with manual measurement. All semiautomatic methods had a good correlation with manual measurement.

Our results are in line with the previously reported sensitivity and specificity of 75% and 98% for detecting a stenosis of ≥70% and 78% and 93% for detecting a stenosis of ≥50%. Our results are similar to the previously reported sensitivity and specificity of 44.2% and 97.7% for detecting a stenosis of ≥70% and 86.2% and 93.1% for detecting a stenosis of ≥50% in 46 patients with known cerebrovascular disease. The interobserver agreement for semiautomatic measurements is in line with previously reported statistics of 0.55 for detecting a stenosis of ≥50%, and 0.59 for detecting a stenosis of ≥70% and Pearson correlation coefficients of 0.89 and 0.90. As in previously reported studies, we found that semiautomatic stenosis measurement can increase observer reproducibility.

This study has a number of limitations. For pragmatic reasons, we used different observers for different software packages; this difference makes it more difficult to compare the semiautomatic software packages. We used manual measurements on CTA as a reference, while the original NASCET classification is based on conventional catheter angiography. Due to the risks associated with conventional catheter angiography, it would be unethical to perform DSA. Bucak et al showed that the median difference between semiautomatic CTA and manual DSA stenosis measurement was smaller than the median difference between manual measurement on CTA and DSA, −2% versus 11%, respectively. This finding may imply that manual stenosis measurement tends to overestimate the degree of stenosis compared with measurement on DSA; this overestimation may have caused the low sensitivity found in this study. Due to the low observer reproducibility of manual stenosis measurement, one could question its value as a reference standard to determine the diagnostic accuracy of semiautomatic measurements. However, because manual stenosis measurement is standard in clinical practice, we believed that this measurement was the best choice to evaluate the accuracy of the automated methods.

Retrospective error analysis of the false-negatives showed that most false-negatives were due to the semiautomatic method measuring a larger stenosis diameter and/or a smaller reference diam-
eter compared with manual measurements by a radiologist. One-tenth of the false-negatives were caused by an ulcerative plaque that hampered correct semiautomatic measurement and was difficult for a nonradiologist to detect. To determine the agreement among different pairs of software packages, we randomly selected 1 of the 2 observers for each measurement instead of using the mean of the 2 observers. Averaging the measurements diminishes outliers and therefore might result in a too optimistic agreement between the different semiautomatic software packages. Furthermore in this manner, we aimed to simulate a clinical setting in which multiple users may use the software package.

Table 4: Observer reproducibility

<table>
<thead>
<tr>
<th></th>
<th>Average Difference Degree of Stenosis ± SD (%)</th>
<th>Bland-Altman Limits of Agreement (%)</th>
<th>ICC (95% CI) for Degree of Stenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual intraobserver</td>
<td>0.081 ± 13</td>
<td>−26–26</td>
<td>0.88 (0.79–0.94)</td>
</tr>
<tr>
<td>Manual interobserver</td>
<td>2.6 ± 15</td>
<td>−28–32</td>
<td>0.81 (0.70–0.90)</td>
</tr>
<tr>
<td>3mensio interobserver</td>
<td>0.94 ± 7.5* (P = .007)</td>
<td>−14–16</td>
<td>0.96 (0.95–0.97) (P < .001)</td>
</tr>
<tr>
<td>Philips interobserver</td>
<td>−2.8 ± 11</td>
<td>−23–18</td>
<td>0.90 (0.86–0.93) (P = .0041)</td>
</tr>
<tr>
<td>TeraRecon interobserver</td>
<td>7.0 ± 14</td>
<td>−20–34</td>
<td>0.83 (0.70–0.90)</td>
</tr>
<tr>
<td>Siemens interobserver</td>
<td>6.5 ± 12</td>
<td>−17–30</td>
<td>0.86 (0.73–0.92)</td>
</tr>
</tbody>
</table>

*Significant difference with manual interobserver measurements.

Table 5: Observer reproducibility by statistical κ values

<table>
<thead>
<tr>
<th></th>
<th>50% κ (95% CI)</th>
<th>70% κ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual intraobserver</td>
<td>0.73 (0.50–0.95)</td>
<td>0.53 (0.02–1)</td>
</tr>
<tr>
<td>Manual interobserver</td>
<td>0.73 (0.52–0.95)</td>
<td>0.47 (0.03–0.90)</td>
</tr>
<tr>
<td>3mensio interobserver</td>
<td>0.88 (0.80–0.96)</td>
<td>0.86 (0.73–0.98)</td>
</tr>
<tr>
<td>Philips interobserver</td>
<td>0.71 (0.60–0.83)</td>
<td>0.53 (0.30–0.77)</td>
</tr>
<tr>
<td>TeraRecon interobserver</td>
<td>0.56 (0.41–0.71)</td>
<td>0.37 (0.08–0.66)</td>
</tr>
<tr>
<td>Siemens interobserver</td>
<td>0.67 (0.54–0.80)</td>
<td>0.63 (0.42–0.84)</td>
</tr>
</tbody>
</table>

*κ values on 50% cutoff.
biκ values on 70% cutoff.

FIG 5. Bland-Altman plots of the repeated semiautomatic assessment of the degree of stenosis measured by observers 1 and 2. The black lines represent the mean paired difference and 95% limits of agreement.
pendency in treatment selection. Because of the necessity of more consistent stenosis measurement and less observer de-

Most semiautomatic software packages have a higher observer reproducibility compared with manual measurement, because manual creation of MPRs and manual lumen segmentation are not needed. All 4 semiautomatic software packages are comparable in the ease of use and required observer skills. 3mensio was the only package that determined the minimal diameter of the stenosis automatically. This higher level of automation may have resulted in the superior observer agreement. Although the interobserver reproducibility can be higher for semiautomatic measurements, manual selection of the minimal stenosis diameter and reference diameter is still needed and is therefore a source of observer variability. Furthermore, manual correction of the center line and lumen segmentation are often needed to ensure accurate measurement, especially when the artery is very tortuous or the plaque is calcified. The manual selection of the minimal stenosis diameter and reference diameter may have caused the wide Bland-Altman limits of agreement for the semiautomatic methods and the low observer reproducibility for some of the packages.

Endarterectomy is beneficial for patients with a stenosis degree of ≥50% for men and ≥70% for women. Therefore accurate and reproducible measurement of the degree of stenosis is crucial for selecting patients for endarterectomy.

CONCLUSIONS

Most semiautomatic software packages have a higher observer reproducibility than manual measurements, which results in more consistent stenosis measurement and less observer dependency in treatment selection. Because of the necessity of manual corrections of semiautomatic measurements, training of the observers and awareness of erroneous centerlines and lumen segmentations remain crucial. All 4 semiautomatic methods have a high positive predictive value and a good overall diagnostic accuracy for the detection of an ICA stenosis of ≥50% and ≥70%. The potentially excellent observer reproducibility of semiautomatic measurements makes them suitable for clinical practice, but the poor sensitivity for a stenosis of ≥70% should be taken into account and measurements should be checked by a radiologist.

REFERENCES

FIG 6. Example of ulcerative plaque. On the left side how 3mensio segments the artery is shown, and in the right upper corner how 3mensio segments the lumen and the ulcerative plaque is shown. The turquoise line is the minimal stenosis diameter as determined by 3mensio (3.5 mm); the white-with-red line is a measurement of the true lumen (1.2 mm). The right lower corner shows a sagittal view of the ulceration. This image also shows 3mensio fitting an ellipse (yellow) on the segmented lumen of the artery (turquoise).
ABSTRACT

BACKGROUND AND PURPOSE: Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx.

MATERIALS AND METHODS: Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value.

RESULTS: A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality.

CONCLUSIONS: Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area.

ABBREVIATIONS: FBP = filtered back-projection; HU = Hounsfield unit; MAR = metal artifact reduction; IMAR = iterative MAR; LIMAR = linear interpolation MAR; NMAR = normalized MAR

Imaging plays a crucial role in the staging of oral cancers and is essential for determining tumor resectability, choosing suitable anatomic reconstruction, and planning radiation therapy. The imaging method of choice for evaluating the oral cavity and oropharynx is MR imaging because it provides higher soft-tissue contrast and is less susceptible to artifacts caused by dental hardware. Yet, the limited availability and higher costs of MR imaging, as well as individual patient conditions (breathing or swallowing disorders, claustrophobia, electronic implants such as pacemakers or ferromagnetic foreign bodies), make CT an important alternative option for many patients. Thus, CT is used frequently to stage or follow-up patients because of its wide availability, relatively low cost, and very short scan time. In patients with dental fillings or implants, however, image quality can be degraded by photon starvation and beam hardening. Due to these artifacts, tumors may be only partially visible or completely obscured, making it challenging to define tumor extent. Moreover, streak artifacts may obscure ipsilateral or contralateral lymph node metastases, which can potentially change the therapeutic approach.

The use of high-resolution kernels and extended CT-value ranges improves image quality; evaluating the surrounding soft tissue, however, remains challenging or even impossible in many cases and can lead to missed findings. For metal artifact reduction (MAR), sinogram in-painting methods have been proposed. Areas affected by metal artifacts are regarded as missing data and are filled in by different interpolation techniques, such as linear interpolation metal artifact reduction (LIMAR). Because LIMAR is associated with algorithm-induced artifacts, normalized MAR (NMAR) was developed, and it has demonstrated the potential to
improve image quality in patients with artifacts from dental hardware and to improve the diagnostic accuracy of head and neck and of pelvic CT, while minimizing algorithm-induced artifacts.

An extension of the MAR methods (i.e., LIMAR and NMAR) is a frequency-split technique that also recovers noise texture and anatomic details in close proximity to metal. In a previous study of pelvic CT, this technique delineated adjacent bone and tissue next to metal implants more accurately than NMAR.

The aim of this study was to evaluate a novel 3D iterative approach using normalized and frequency split metal artifact reduction in clinical routine head and neck imaging. The resulting image quality was compared with that of filtered back-projection (FBP) reconstructions and LIMAR.

MATERIALS AND METHODS

Study Population

From January to December 2013, consecutive patients scheduled for neck CT were screened for study participation. Each patient signed informed consent; the study protocol was approved by the local institutional review board. Raw datasets from 50 patients who met the inclusion criteria (no contraindication to contrast-enhanced CT and no motion artifacts) and whose testing resulted in impaired image quality caused by metallic dental hardware were enrolled. The study population consisted of 23 female and 27 male patients with a mean (± standard deviation) age of 61 ± 15.1 years (range, 24–86 years). Each examination was performed on a single-source CT system (Definition AS+; Siemens, Erlangen, Germany) with the following parameters: 0.5-second gantry rotation time, 128-×0.6-mm section collimation using a 2-fly Z-flying focal spot, and 160 reference milliamper-second-second tube current with automatic exposure control at a tube voltage of 120 kV. The contrast agent (350 mg of iodine/mL [Iomeron; Bracco, Milan, Italy]) was injected at a flow rate of 3 mL/s (volume, 90 mL) followed by a saline bolus (3 mL/s [volume, 30 mL]). A scan delay of 80 seconds was used for each patient. The raw data were transferred to an external workstation equipped with prototype LIMAR software, and 3 datasets (from FBP, LIMAR, and IMAR) were reconstructed with identical (anatomically adapted) fields of view, 2.5-mm section thicknesses, and standard soft-tissue (B35f) and bone (B70f) reconstruction kernels.

IMAR

IMAR combines 2 previously introduced MAR algorithms, NMAR and frequency-split MAR, in an iterative update scheme. NMAR replaces those parts of the sinogram that are affected by metal through normalized interpolation. The aim of NMAR is to avoid the introduction of new artifacts tangentially to high-contrast objects, which is often observed with other sinogram inpainting methods. This is achieved by removing high-contrast structures from the sinogram before interpolation and reinserting them afterward. A prior image is calculated from the initial image by assigning soft-tissue pixels (identified by thresholding) to 0 Hounsfield units (HU). The prior image is forward-projected, and the initial sinogram is divided pixel-wise with the prior sinogram. Linear interpolation is performed on the relatively flat normalized sinogram followed by denormalization with the prior sinogram. NMAR images are finally obtained by reconstruction of the corrected sinogram and reinsertion of the metal pixels from the uncorrected images. Frequency-split MAR combines the low spatial frequencies of a metal artifact–corrected image with the high spatial frequencies of the corresponding initial image. Low- and high-frequency images are obtained by Gaussian filtering. The aim of frequency-split MAR is to preserve both the natural image impression and the edge information of the uncorrected image, which is often affected by pure sinogram inpainting methods, especially in the vicinity of the metal implants. The drawback of the frequency-split operation is the reinsertion of high-frequency streak artifacts into the corrected images. IMAR repeatedly performs the normalized sinogram interpolation and frequency-split operations by using the result of each iteration as input for the next iteration, which effectively reduces the remaining artifacts of the prior image and consequently improves the quality of NMAR in each iteration. The performance of IMAR depends on the choice of several user-selectable model parameters, such as the number of iterations, HU thresholds for metal segmentation and for prior image calculation, and the filter parameter of the frequency-split operation. Those parameters are vendor specific. However, the user can select from a list of parameter configurations that are optimized for several metal implant types, such as dental fillings, hip prostheses, spine implants, and cardiac pacemakers. All reconstructions in this study were performed with the dental-fillings parameter configuration.

Image Analysis

Images obtained by using FBP, LIMAR, and IMAR were displayed side by side on a dual-monitor 3D postprocessing platform (syngo.via; Siemens) in random order for each acquisition after all identifying information had been removed. The images were reviewed in the soft-tissue window (window level, 50 HU; window width, 400 HU) and in the bone window (window level, 300 HU; window width, 2.500 HU).

To assess image quality, both subjective and objective parameters were evaluated. Subjective image quality of the FBP, LIMAR, and IMAR reconstructions was assessed by using a 5-point Likert scale (1, indicates severe artifacts, largely not diagnostic; 2, poor image quality, partly nondiagnostic; 3, moderate image quality, limited diagnostic confidence; 4, good image quality, sufficient for diagnosis; 5, excellent image quality, no artifacts). The structure with the least favorable diagnostic quality defined the rank for each category.

To obtain objective parameters of image quality, regions of interest were placed in the soft tissue of the tongue, cheeks, and muscles of the neck bilaterally. The standard deviation was measured for all the ROIs and regarded as an indicator of the presence of artifacts.

Statistical Analysis

Values are given as means ± their standard deviation. One-way analysis of variance and nonparametric Friedman-ANOVA were performed for subjective and objective, respectively, image quality scores and values after the Kolmogorov-Smirnov test for normal distribution. Subsequent Bonferroni and Tamhane T2 post hoc tests, depending on variances in the Levene statistic, were performed for 1-way ANOVA. Pairwise post hoc tests, as pro-
posed by Conover,9 were performed for the Friedman tests. A significance level of .05 was assumed. Statistical analysis was performed by using the software package SPSS Statistics version 19 (IBM, Armonk, New York).

RESULTS
Filtered back-projection, LIMAR, and IMAR reconstructions were performed successfully for each patient. A total of 455 sections (9.1 ± 4.1 sections per patient) contained metal artifacts and were evaluated with each reconstruction method. Sections without metal artifacts were not affected by the algorithms and had identical image quality.

IMAR significantly increased the subjective overall image quality compared with LIMAR and FBP (P < .001), and there was no significant difference between image quality after FBP and that after LIMAR (P = .822). The ratings were 2.1 ± 1.1 (FBP), 2 ± 0.9 (LIMAR), and 3.7 ± 1.2 (IMAR).

Of the sections, 38% were considered nondiagnostic with FBP, 31% with LIMAR, and only 7% with IMAR. Thirty-three percent of the sections had poor image quality with FBP, 46% with LIMAR, and 10% with IMAR. Moderate image quality was rated for 13% of the sections with FBP, 17% with LIMAR, and 22% with IMAR, good image quality was rated for 16% of the sections with FBP, 5% with LIMAR, and 30% with IMAR, and excellent image quality was rated for 1% of the sections with LIMAR and 31% with IMAR (Figs 1–3). These results are summarized in the Table.

The mean number of sections with severe artifacts was 3.5 ± 2.6 with FBP, 2.8 ± 2.2 with LIMAR, and 0.6 ± 1.1 with IMAR. With LIMAR, the mean number of sections with excellent image quality was 0.1 ± 0.3, and with IMAR it was 2.8 ± 1.7.

The mean standard deviation in the soft tissue of the tongue, the right cheek, and the left cheek were significantly higher with FBP than with LIMAR or IMAR (P < .001), and there was a significant difference between LIMAR and IMAR (P < .001):
In our study, IMAR yielded objective and subjective image quality that was higher than that with FBP or LIMAR, and more than four-fifths of the sections that were not of diagnostic quality with FBP were evaluable with IMAR. Significantly more images were of diagnostic image quality with IMAR than with both FBP and LIMAR, which results in improvements in tumor detection and/or exclusion.

Tumor staging for squamous cell carcinoma of the oral cavity is based on size and extension into adjacent structures. The assessment of tumor infiltration depth is especially clinically challenging, and cross-sectional imaging is performed to gain that information. Yet, assessments of soft tissue in the oral cavity are often limited with CT and, to a lesser degree, MR imaging by metal artifacts. The first step for improving image quality and metal-streak artifacts is to remove all metal hardware from the scan range; however, that is not possible in many cases. In clinical routine, additional scans angulated to the mandible are often performed to increase diagnostic confidence for lymph node assessment and evaluation of the posterior neck. Parts of the oral cavity may still remain incompletely evaluated, however, and this approach increases radiation exposure and prolongs examination time. Application of an extended CT scale, thin-section collimation, a small FOV, dedicated reconstruction kernels,2 and an increase of the tube voltage and current are options for reducing these artifacts; however, increasing the tube voltage and current increase patient radiation exposure, and none of these options have been dramatically successful. More elaborate strategies include monoenergetic processing of dual-energy CT data, which works nicely for surgical plates and implants,11,12 but its effect is limited with dental hardware. Sinogram in-painting methods8,13,14 and iterative,15,16 statistical,17,18 and filtering methods13,19 have been suggested, but for various reasons, they have not made their way into clinical practice. NMAR is an in-painting–based MAR method that is designed to reduce metal artifacts and to prevent the introduction of new artifacts by replacing raw data from the metal trace more reliably.7 Previously, the potential of NMAR to reduce artifacts from dental hardware was evaluated.

DISCUSSION

Artifacts based on metallic implants and dental restorations are a frequently encountered obstacle in head and neck imaging, and advanced MAR algorithms might be a solution for this problem.5,7 Dental hardware affects not only CT imaging but also the attenuation correction in positron-emission tomography, dose calculation, and target definition for intensity-modulated radiation therapy.10

<table>
<thead>
<tr>
<th>Rating</th>
<th>FBP</th>
<th>LIMAR</th>
<th>IMAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>177</td>
<td>139</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>200</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>62</td>
<td>74</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>71</td>
<td>20</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>142</td>
</tr>
</tbody>
</table>

*Values shown are the number of sections with artifacts.

A rating of 1 indicates severe artifacts, largely not diagnostic; 2, poor image quality, partly nondiagnostic; 3, moderate image quality, limited diagnostic confidence; 4, good image quality, sufficient for diagnosis; and 5, excellent image quality, no artifacts.

162 ± 202 HU for FBP, 42 ± 19 HU for LIMAR, and 21 ± 6 HU for IMAR for the tongue; 73 ± 67 HU for FBP, 22 ± 10 HU for LIMAR, and 15 ± 5 HU for IMAR for the right cheek; and 63 ± 50 HU for FBP, 25 ± 14 HU for LIMAR, and 16 ± 5 HU for IMAR for the left cheek.

No significant difference was found between FBP and LIMAR in the muscles on either side of the neck (P = .1), but the IMAR mean standard deviation values were significantly lower than those of LIMAR and FBP (P < .01): 13 ± 4 for FBP, 12 ± 4 for LIMAR, and 11 ± 3 for IMAR on the left side and 14 ± 4 for FBP, 13 ± 4 for LIMAR, and 11 ± 3 for IMAR on the right side.

Cortical delineation of the alveolar process of the maxilla and mandible at the level of metal hardware improved with IMAR; however, IMAR induced some new artifacts next to metal hardware, which affected cortical delineation in 29 (58%) of 50 patients (Fig 4). Also, IMAR induced new artifacts in more remote areas, such as the spinal cord, in 9 (18%) of 50 patients (Fig 5).

FIG 3. Imaging of oropharyngeal cancer on the right side with FBP (A), LIMAR (B), and IMAR (C). The effects of metal artifacts from dental hardware are highest with FBP (A), lower with LIMAR (B), and lowest with IMAR (C); full tumor extension is discernable only with IMAR (C, arrow).
in the head and neck region. The number of nondiagnostic sections with FBP was reduced by 50% with NMAR, which improved image quality and diagnostic accuracy. However, a drawback of LIMAR image reconstruction is that the tissues next to metal (e.g., the bone trabeculae or adjacent soft tissue) may be blurred and therefore not fully assessable. The frequency-split technique was introduced to address this problem of local blurring. With IMAR, anatomic information from the original images is recovered by high-pass filtering during the frequency-split iteration combined with multiple iterations in NMAR. This algorithm was evaluated in patients with hip prostheses. Image quality and the accuracy of pelvic abnormality assessments were compared in FBP, LIMAR, and IMAR. IMAR reduced metal artifacts significantly and improved number measurements with CT and the confidence in depicting pelvic abnormalities. In our study, we found a significant improvement in soft-tissue delineation in the oral cavity and oropharynx, but we also found a degradation of bone delineation; artificial defects in the IMAR datasets of the bone abutting the metallic implants appeared in a number of cases (58%). Because of the reduction of streak artifacts, however, a better delineation of cortical bone at more remote areas in the sections containing metal hardware was achieved. Because the surgical approach is substantially influenced by tumor infiltration of the mandible or maxilla, which

FIG 4. The effects of metal artifacts from dental hardware are highest with FBP (A), lower with LIMAR (B), and lowest with IMAR (C). Partial loss of cortical structures can be seen in B but is more pronounced in C (arrows).

FIG 5. The effects of metal artifacts from dental hardware are highest with FBP (A), lower with LIMAR (B), and lowest with IMAR (C); however, LIMAR and IMAR induced new artifacts in the spinal cord (arrows).
leads to more extensive reconstruction methods to preserve function, the correct evaluation of bony structures is of high importance. Because of the imperfect bone delineation with IMAR, both FBP and IMAR images need to be reconstructed and evaluated to improve the overall diagnostic value in certain cases, which could be a significant limitation at the present time. Thus, detecting osseous involvement in tooth-bearing areas remains difficult with cross-sectional imaging (both CT and MR imaging). Additional limitations are that we did not investigate the clinical impact of our findings on treatment planning and prognosis, and only the metal artifact algorithm of one vendor could be evaluated, so no direct comparisons with other algorithms are possible.

CONCLUSIONS

In our patient population and with our specific CT scanner, IMAR yielded the highest image quality in comparison with FBP and LIMAR in patients with metal hardware in the head and neck area. We found significant improvement in the evaluation of soft tissue that was nondiagnostic with FBP and LIMAR.

REFERENCES

Standardized Brain Tumor Imaging Protocol for Clinical Trials

We would like to alert the neuroradiology community to a recent publication in Neuro-Oncology1 that describes a standardized brain tumor MR imaging protocol, which is expected to gain widespread use in multicenter clinical trials of glioblastoma therapy.

Imaging is critical in the assessment of treatment response in glioblastoma, but its use faces a variety of challenges, including the morphologic complexity of these tumors, the confounding effects of therapies such as radiation and antiangiogenic agents, and the modest (at best) incremental benefits that new therapies generate. An important goal of imaging in clinical trials is to minimize assessment variability so that data can be pooled across sites to optimize the detection of treatment effects and provide accurate comparisons with prior trials.

The Imaging End Points in Brain Tumor Clinical Trials workshop, held in January 2014, involved patient advocates, device and pharmaceutical industry leaders, the FDA, the National Cancer Institute (NCI), and academic experts in neuro-oncology, neuroradiology, and imaging physics, with the goal of improving the use of imaging end points in glioblastoma clinical trials. The workshop was predicated on the acknowledgment that large trials using survival end points are costly. Improving the use of imaging would allow smaller, less expensive clinical trials and help accelerate the development of new treatments.

A key recommendation that emerged from this meeting and that received the support of all participants, including the FDA, was the need to standardize the MR imaging acquisition and analysis for response assessment in glioblastoma trials. In response to this recommendation, the Jumpstarting Brain Tumor Development Coalition (consisting of several professional societies and patient advocacy groups) assembled a group of leading scientists, clinicians, and radiologists, who developed a standardized anatomic MR imaging protocol. This protocol permits response assessment according to established criteria (Response Assessment in Neuro-Oncology [RANO]) as well as emerging approaches (such as tumor volumetry and T1 subtraction). By minimizing variability, it allows trial results to be aggregated meaningfully across sites and across trials. It also facilitates the development of robust automated segmentation methods on anatomic imaging and advanced applications such as diffusion and perfusion. The protocol balances these goals with practicality and widespread availability, by using sequences that are found on most MR imaging scanners as a result of the Alzheimer’s Disease Neuroimaging Initiative.

The Standardized Brain Tumor Imaging Protocol (SBTIP) is based on the European Organisation for Research and Treatment of Cancer (EORTC) brain tumor imaging protocol that is being used successfully in clinical trials in Europe.2 While the SBTIP parallels the methods already used in clinical practice in many centers, it is targeted for clinical trial use rather than for routine diagnostic imaging, because the latter may require other sequences for lesion detection and differential diagnoses. The protocol is similar to that recommended by the RANO group for assessment of metastatic disease and is already beginning to be implemented in several clinical trials funded by industry, the NCI, and cooperative groups.

The most significant difference from protocols in common clinical use is the acquisition of pre- and postcontrast 3D T1-weighted sequences. While some may not favor these volumetric acquisitions, compliance with the standardized protocol does not preclude the addition of other imaging sequences to local protocols. As the SBTIP is accepted by the FDA and becomes more widely adopted in clinical trials, it will be important for neuroradiologists to be aware of it and to make it available. This availability will ensure that their institutions will be eligible to participate in trials that require it and will be able to contribute data that can be meaningfully analyzed with those from other participating centers to help speed the development of novel therapies for this devastating disease.

REFERENCES
2. European Organisation for Research and Treatment of Cancer. Bev-

http://dx.doi.org/10.3745/ajnr.A4544

G.V. Goldmacher
Department of Medical and Scientific Affairs
ICON Clinical Research
Warrington, Pennsylvania

B.M. Ellingson
David Geffen School of Medicine
University of California, Los Angeles
Los Angeles, California

J. Boxerman
Brown Alpert Medical School
Brown University
Providence, Rhode Island

D. Barboriak
Department of Radiology
Duke University School of Medicine
Durham, North Carolina

W.B. Pope
Department of Radiology
UCLA Medical Center
Los Angeles, California

M. Gilbert
Center for Cancer Research
National Institutes of Health
Bethesda, Maryland
Please note that there is an error in Table 3 of the December 2013 article “Higher Rates of Decline for Women and Apolipoprotein E e4 Carriers” by Holland et al (AJNR Am J Neuroradiol 2013;34:2287–93, originally published on-line on July 4, 2013, doi:10.3174/ajnr.A3601). The P value for the whole brain “bSex” coefficient should be “.022” instead of “.22.” The Table is reproduced below with the corrected segment shown in bold. The Journal apologizes for the error.

http://dx.doi.org/10.3174/ajnr.A4545

Table 3: Effects of age, APOE e4, and sex on rates of change in MCI

<table>
<thead>
<tr>
<th>MCI Measure</th>
<th>(b_0)</th>
<th>(b_{Cog})</th>
<th>(b_{Edu})</th>
<th>(b_{Age}) (SE; (P))</th>
<th>(b_{APOE}) (SE; (P))</th>
<th>(b_{Sex}) (SE; (P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hippocampus</td>
<td>-1.83*</td>
<td>-0.13*</td>
<td>0.03</td>
<td>0.00 (0.02; .8)</td>
<td>-0.40* (0.20; .045)</td>
<td>-0.29 (0.20; .1)</td>
</tr>
<tr>
<td>Amygdala</td>
<td>-1.57**</td>
<td>-0.15*</td>
<td>0.01</td>
<td>0.03 (0.02; .1)</td>
<td>-0.94* (0.21; 7 \times 10^{-6})</td>
<td>-0.98* (2.17; 2 \times 10^{-6})</td>
</tr>
<tr>
<td>Entorhinal</td>
<td>-1.78*</td>
<td>-0.12*</td>
<td>0.00</td>
<td>0.04* (0.02; 0.006)</td>
<td>-0.44* (17; .01)</td>
<td>-0.54* (17; .002)</td>
</tr>
<tr>
<td>Inferior parietal</td>
<td>-0.91*</td>
<td>-0.08*</td>
<td>0.02</td>
<td>0.06* (0.01; 2.1 \times 10^{-6})</td>
<td>-0.28* (14; .040)</td>
<td>-0.40* (14; .004)</td>
</tr>
<tr>
<td>Middle temporal</td>
<td>-1.40*</td>
<td>-0.11*</td>
<td>0.00</td>
<td>0.07* (0.02; 9 \times 10^{-6})</td>
<td>-0.28 (18; .1)</td>
<td>-0.52* (17; .003)</td>
</tr>
<tr>
<td>Med-orbito-frontal</td>
<td>-0.78*</td>
<td>-0.04*</td>
<td>0.04*</td>
<td>0.02* (0.01; 0.023)</td>
<td>0.03 (11; .8)</td>
<td>-0.24* (11; .026)</td>
</tr>
<tr>
<td>Whole brain</td>
<td>-0.74*</td>
<td>-0.04*</td>
<td>0.01</td>
<td>0.02* (0.01; 4 \times 10^{-6})</td>
<td>-0.09 (08; .2)</td>
<td>-0.17* (08; .022)</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>0.46*</td>
<td>-</td>
<td>0.01</td>
<td>0.01 (01; 4)</td>
<td>0.38* (11; 6 \times 10^{-6})</td>
<td>0.26* (11; .023)</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td>0.49*</td>
<td>-</td>
<td>0.00</td>
<td>0.03 (03; 3)</td>
<td>0.72* (31; 022)</td>
<td>1.40* (32; 2 \times 10^{-7})</td>
</tr>
<tr>
<td>MMSE</td>
<td>-0.35*</td>
<td>-</td>
<td>0.02</td>
<td>0.02 (02; 4)</td>
<td>-0.81* (20; 4 \times 10^{-5})</td>
<td>-0.34 (20; .1)</td>
</tr>
</tbody>
</table>

Note: See Table 2 for units and key.

*Values significant at \(P \leq .05 \).

ROIs: \(N \) = 273; mean age = 76.65 years; mean ADAS-Cog = 11.68; mean years education = 15.61. Cognitive: \(N \) = 271; mean age = 76.84 years; mean years education = 15.63.