Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBrain

Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas

V.Z. Miloushev, D.S. Chow and C.G. Filippi
American Journal of Neuroradiology February 2015, 36 (2) 302-308; DOI: https://doi.org/10.3174/ajnr.A4097
V.Z. Miloushev
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Chow
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.G. Filippi
aFrom the Department of Diagnostic Radiology, Columbia University, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Hajnal JV,
    2. Doran M,
    3. Hall AS, et al
    . MR imaging of anisotropically restricted diffusion of water in the nervous system. J Comput Assist Tomogr 1991;15:1–18
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Pierpaoli C,
    2. Jezzard P,
    3. Basser PJ, et al
    . Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–48
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Basser PJ,
    2. Pierpaoli C
    . Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996;111:209–19
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Higano S,
    2. Yun X,
    3. Kumabe T, et al
    . Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 2006;241:839–46
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Murakami R,
    2. Hirai T,
    3. Kitajima M, et al
    . Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol 2008;49:462–67
    FREE Full Text
  6. 6.↵
    1. Yamasaki F,
    2. Kurisu K,
    3. Aoki T, et al
    . Advantages of high b-value diffusion-weighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment. Eur J Radiol 2012;81:2805–10
    CrossRefPubMed
  7. 7.↵
    1. Saksena S,
    2. Jain R,
    3. Narang J, et al
    . Predicting survival in glioblastomas using diffusion tensor imaging metrics. J Magn Reson Imaging 2010;32:788–95
    CrossRefPubMed
  8. 8.↵
    1. Zulfiqar M,
    2. Yousem DM,
    3. Lai H
    . ADC values and prognosis of malignant astrocytomas: does lower ADC predict a worse prognosis independent of grade of tumor? A meta-analysis. AJR Am J Roentgenol 2013;200:624–29
    CrossRefPubMed
  9. 9.↵
    1. Chen L,
    2. Liu M,
    3. Bao J, et al
    . The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS ONE 2013;8:e79008
    CrossRefPubMed
  10. 10.↵
    1. Lu S,
    2. Ahn D,
    3. Johnson G, et al
    . Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 2004;232:221–28
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Beppu T,
    2. Inoue T,
    3. Shibata Y, et al
    . Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 2005;63:56–61, discussion 61
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Morita K,
    2. Matsuzawa H,
    3. Fujii Y, et al
    . Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J Neurosurg 2005;102:336–41
    CrossRefPubMed
  13. 13.↵
    1. Stadlbauer A,
    2. Ganslandt O,
    3. Buslei R, et al
    . Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006;240:803–10
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Lee HY,
    2. Na DG,
    3. Song IC, et al
    . Diffusion-tensor imaging for glioma grading at 3-T magnetic resonance imaging: analysis of fractional anisotropy and mean diffusivity. J Comput Assist Tomogr 2008;32:298–303
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Ferda J,
    2. Kastner J,
    3. Mukensnabl P, et al
    . Diffusion tensor magnetic resonance imaging of glial brain tumors. Eur J Radiol 2010;74:428–36
    CrossRefPubMed
  16. 16.↵
    1. Kinoshita M,
    2. Goto T,
    3. Okita Y, et al
    . Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol 2010;96:409–15
    CrossRefPubMed
  17. 17.↵
    1. Deng Z,
    2. Yan Y,
    3. Zhong D, et al
    . Quantitative analysis of glioma cell invasion by diffusion tensor imaging. J Clin Neurosci 2010;17:1530–36
    CrossRefPubMed
  18. 18.↵
    1. Jakab A,
    2. Molnar P,
    3. Emri M, et al
    . Glioma grade assessment by using histogram analysis of diffusion tensor imaging-derived maps. Neuroradiology 2011;53:483–91
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. White ML,
    2. Zhang Y,
    3. Yu F, et al
    . Diffusion tensor MR imaging of cerebral gliomas: evaluating fractional anisotropy characteristics. AJNR Am J Neuroradiol 2011;32:374–81
    Abstract/FREE Full Text
  20. 20.↵
    1. Zikou AK,
    2. Alexiou GA,
    3. Kosta P, et al
    . Diffusion tensor and dynamic susceptibility contrast MRI in glioblastoma. Clin Neurol Neurosurg 2012;114:607–12
    CrossRefPubMed
  21. 21.↵
    1. Sternberg EJ,
    2. Lipton ML,
    3. Burns J
    . Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary and metastatic brain tumors. AJNR Am J Neuroradiol 2014;35:439–44
    Abstract/FREE Full Text
  22. 22.↵
    1. Stadlbauer A,
    2. Nimsky C,
    3. Buslei R, et al
    . Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 2007;34:949–56
    CrossRefPubMed
  23. 23.↵
    1. Kang Y,
    2. Choi SH,
    3. Kim YJ, et al
    . Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 2011;261:882–90
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Chen Y,
    2. Shi Y,
    3. Song Z
    . Differences in the architecture of low-grade and high-grade gliomas evaluated using fiber density index and fractional anisotropy. J Clin Neurosci 2010;17:824–29
    CrossRefPubMed
  25. 25.↵
    1. Nilsson D,
    2. Rutka JT,
    3. Snead OC 3rd., et al
    . Preserved structural integrity of white matter adjacent to low-grade tumors. Childs Nerv Syst 2008:24:313–20
    CrossRefPubMed
  26. 26.↵
    1. Kingsley PB
    . Introduction to diffusion tensor imaging mathematics. Part II. Anisotropy, diffusion-weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A 2006;28A:123–54
  27. 27.↵
    R Development Core Team. R: A Language and Environment for Statistical Computing. Version 3.0.1. Vienna, Austria: R Foundation for Statistical Computing; 2013
  28. 28.↵
    1. Viechtbauer W
    . Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 2010;36:1–48
  29. 29.↵
    1. Chinn S
    . A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat Med 2000;19:3127–31
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Egger M,
    2. Davey Smith G,
    3. Schneider M, et al
    . Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34
    Abstract/FREE Full Text
  31. 31.↵
    1. Higgins JP,
    2. Thompson SG
    . Controlling the risk of spurious findings from meta-regression. Stat Med 2004;23:1663–82
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Robin X,
    2. Turck N,
    3. Hainard A, et al
    . pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77
    CrossRefPubMed
  33. 33.↵
    1. Wesseling P,
    2. Vandersteenhoven J,
    3. Downey B, et al
    . Cellular components of microvascular proliferation in human glial and metastatic brain neoplasms. Acta Neuropathol 1993;85:508–14
    PubMedWeb of Science
  34. 34.↵
    1. Vargová L,
    2. Homola A,
    3. Zamecnik J, et al
    . Diffusion parameters of the extracellular space in human gliomas. Glia 2003;42:77–88
    CrossRefPubMedWeb of Science
  35. 35.↵
    1. Swanson KR,
    2. Alvord EC Jr.,
    3. Murray JD
    . A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif 2000;33:317–29
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Raab P,
    2. Hattingen E,
    3. Franz K, et al
    . Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology 2010;254:876–81
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Van Cauter S,
    2. Veraart J,
    3. Sijbers J, et al
    . Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012;263:492–501
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Paldino MJ,
    2. Barboriak D,
    3. Desjardins A, et al
    . Repeatability of quantitative parameters derived from diffusion tensor imaging in patients with glioblastoma multiforme. J Magn Reson Imaging 2009;29:1199–205
    CrossRefPubMed
  39. 39.↵
    1. Chow DS,
    2. Qi J,
    3. Guo X, et al
    . Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. AJNR Am J Neuroradiol 2014;35:498–503
    Abstract/FREE Full Text
  40. 40.↵
    1. Phillips HS,
    2. Kharbanda S,
    3. Chen R, et al
    . Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157–73
    CrossRefPubMedWeb of Science
  41. 41.↵
    1. Zinn PO,
    2. Majadan B,
    3. Sathyan P, et al
    . Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 2011;6:e25451
    CrossRefPubMed
  42. 42.↵
    1. Verhaak RG,
    2. Hoadley KA,
    3. Purdom E, et al
    . An integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR and NF1. Cancer Cell 2010;17:98
    CrossRefPubMedWeb of Science
  43. 43.↵
    1. Moon WJ,
    2. Choi JW,
    3. Roh HG, et al
    . Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiol 2012;54:555–63
    CrossRefPubMed
  44. 44.↵
    1. Romano A,
    2. Calabria LF,
    3. Tavanti F, et al
    . Apparent diffusion coefficient obtained by magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with MGMT promoter methylation status. Eur Radiol 2013;23:513–20
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (2)
American Journal of Neuroradiology
Vol. 36, Issue 2
1 Feb 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
V.Z. Miloushev, D.S. Chow, C.G. Filippi
American Journal of Neuroradiology Feb 2015, 36 (2) 302-308; DOI: 10.3174/ajnr.A4097

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Meta-Analysis of Diffusion Metrics for the Prediction of Tumor Grade in Gliomas
V.Z. Miloushev, D.S. Chow, C.G. Filippi
American Journal of Neuroradiology Feb 2015, 36 (2) 302-308; DOI: 10.3174/ajnr.A4097
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Imaging-Based Algorithm for the Local Grading of Glioma
  • A simple model for glioma grading based on texture analysis applied to conventional brain MRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
  • SWI or T2*: Which MRI Sequence to Use in the Detection of Cerebral Microbleeds? The Karolinska Imaging Dementia Study
  • Statin Therapy Does Not Affect the Radiographic and Clinical Profile of Patients with TIA and Minor Stroke
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire