Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleBrain
Open Access

MS Lesions Are Better Detected with 3D T1 Gradient-Echo Than with 2D T1 Spin-Echo Gadolinium-Enhanced Imaging at 3T

A. Crombé, M. Saranathan, A. Ruet, M. Durieux, E. de Roquefeuil, J.C. Ouallet, B. Brochet, V. Dousset and T. Tourdias
American Journal of Neuroradiology March 2015, 36 (3) 501-507; DOI: https://doi.org/10.3174/ajnr.A4152
A. Crombé
aFrom the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Saranathan
cDepartment of Radiology (M.S.), Stanford University, Stanford, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Ruet
bPôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
dINSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Durieux
aFrom the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. de Roquefeuil
aFrom the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Ouallet
bPôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.C. Ouallet
B. Brochet
bPôle de Neurosciences Cliniques (A.R., J.C.O., B.B.), Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
dINSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Dousset
aFrom the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
dINSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Tourdias
aFrom the Service de NeuroImagerie Diagnostique et Thérapeutique (A.C., M.D., E.d.R., V.D., T.T.)
dINSERM U862 (A.R., B.B., V.D., T.T.), Neurocentre Magendie, Université de Bordeaux, Bordeaux, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Filippi M,
    2. Rocca MA
    . MR imaging of multiple sclerosis. Radiology 2011;259:659–81
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Río J,
    2. Comabella M,
    3. Montalban X
    . Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 2009;5:553–60
    CrossRefPubMed
  3. 3.↵
    1. Freedman MS,
    2. Selchen D,
    3. Arnold DL, et al
    . Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci 2013;40:307–23
    CrossRefPubMed
  4. 4.↵
    1. Simon JH,
    2. Li D,
    3. Traboulsee A, et al
    . Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines. AJNR Am J Neuroradiol 2006;27:455–61
    FREE Full Text
  5. 5.↵
    1. Lövblad KO,
    2. Anzalone N,
    3. Dorfler A, et al
    . MR imaging in multiple sclerosis: review and recommendations for current practice. AJNR Am J Neuroradiol 2010;31:983–89
    Abstract/FREE Full Text
  6. 6.↵
    1. Vrenken H,
    2. Jenkinson M,
    3. Horsfield MA, et al
    . Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis. J Neurol 2013;260:2458–71
    CrossRefPubMedWeb of Science
  7. 7.↵
    MAGNetic resonance In Multiple Sclerosis. MAGNIMS online. http://www.magnims.eu/. Accessed April 15, 2014.
  8. 8.↵
    L'Observatoire Français de la Sclérose en Plaques. http://www.edmus.org/en/proj/observatoire.html. Accessed April 15, 2014.
  9. 9.↵
    1. Barkhof F,
    2. Pouwels PJ,
    3. Wattjes MP
    . The Holy Grail in diagnostic neuroradiology: 3T or 3D? Eur Radiol 2011;21:449–56
    CrossRefPubMed
  10. 10.↵
    1. Moraal B,
    2. Roosendaal SD,
    3. Pouwels PJ, et al
    . Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis. Eur Radiol 2008;18:2311–20
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Bink A,
    2. Schmitt M,
    3. Gaa J, et al
    . Detection of lesions in multiple sclerosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T: initial results. Eur Radiol 2006;16:1104–10
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Naganawa S,
    2. Koshikawa T,
    3. Nakamura T, et al
    . Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 2004;14:1901–08
    PubMed
  13. 13.↵
    1. Mugler JP 3rd.,
    2. Brookeman JR
    . Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 1990;15:152–57
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Mugler JP 3rd.,
    2. Brookeman JR
    . Theoretical analysis of gadopentetate dimeglumine enhancement in T1-weighted imaging of the brain: comparison of two-dimensional spin-echo and three-dimensional gradient-echo sequences. J Magn Reson Imaging 1993;3:761–69
    CrossRefPubMed
  15. 15.↵
    1. Brant-Zawadzki M,
    2. Gillan GD,
    3. Nitz WR
    . MP RAGE: a three-dimensional, T1-weighted, gradient-echo sequence: initial experience in the brain radiology. Radiology 1992;182:769–75
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Chappell PM,
    2. Pelc NJ,
    3. Foo TK, et al
    . Comparison of lesion enhancement on spin-echo and gradient-echo images. AJNR Am J Neuroradiol 1994;15:37–44
    Abstract/FREE Full Text
  17. 17.↵
    1. Blüml S,
    2. Schad LR,
    3. Scharf J, et al
    . A comparison of magnetization prepared 3D gradient-echo (MP-RAGE) sequences for imaging of intracranial lesions. Magn Reson Imaging 1996;14:329–35
    CrossRefPubMed
  18. 18.↵
    1. Wenz F,
    2. Hess T,
    3. Knopp MV, et al
    . 3D MPRAGE evaluation of lesions in the posterior cranial fossa. Magn Reson Imaging 1994;12:553–58
    CrossRefPubMed
  19. 19.↵
    1. Nöbauer-Huhmann IM,
    2. Ba-Ssalamah A,
    3. Mlynarik V, et al
    . Magnetic resonance imaging contrast enhancement of brain tumors at 3 Tesla versus 1.5 Tesla. Invest Radiol 2002;37:114–19
    CrossRefPubMed
  20. 20.↵
    1. Ba-Ssalamah A,
    2. Nöbauer-Huhmann IM,
    3. Pinker K, et al
    . Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 2003;38:415–22
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Trattnig S,
    2. Pinker K,
    3. Ba-Ssalamah A, et al
    . The optimal use of contrast agents at high field MRI. Eur Radiol 2006;16:1280–87
    CrossRefPubMed
  22. 22.↵
    1. Wattjes MP,
    2. Lutterbey GG,
    3. Harzheim M, et al
    . Higher sensitivity in the detection of inflammatory brain lesions in patients with clinically isolated syndromes suggestive of multiple sclerosis using high field MRI: an intraindividual comparison of 1.5 T with 3.0 T. Eur Radiol 2006;16:2067–73
    CrossRefPubMedWeb of Science
  23. 23.↵
    1. Kakeda S,
    2. Korogi Y,
    3. Hiai Y, et al
    . Detection of brain metastasis at 3T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol 2007;17:2345–51
    CrossRefPubMed
  24. 24.↵
    1. Uysal E,
    2. Erturk SM,
    3. Yildirim H, et al
    . Sensitivity of immediate and delayed gadolinium-enhanced MRI after injection of 0.5 M and 1.0 M gadolinium chelates for detecting multiple sclerosis lesions. AJR Am J Roentgenol 2007;188:697–702
    CrossRefPubMed
  25. 25.↵
    1. Goerner FL,
    2. Clarke GD
    . Measuring signal-to-noise ratio in partially parallel imaging MRI. Med Phys 2011;38:5049–57
    CrossRefPubMed
  26. 26.↵
    1. Kober T,
    2. Granziera C,
    3. Ribes D, et al
    . MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Invest Radiol 2012;47:346–52
    CrossRefPubMed
  27. 27.↵
    1. Yu SM,
    2. Choi SH,
    3. Kim SS, et al
    . Correlation of the R1 and R2 values of gadolinium-based MRI contrast media with the ΔHounsfield unit of CT contrast media of identical concentration. Current Applied Physics 2013;13:857–63
    CrossRef
  28. 28.↵
    1. Rinck PA,
    2. Muller RN
    . Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents. Eur Radiol 1999;9:998–1004
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Polman CH,
    2. Reingold SC,
    3. Banwell B, et al
    . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Wiendl H,
    2. Toyka KV,
    3. Rieckmann P, et al
    . Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 2008;255:1449–63
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Tourdias T,
    2. Dousset V
    . Neuroinflammatory imaging biomarkers: relevance to multiple sclerosis and its therapy. Neurotherapeutics 2013;10:111–23
    CrossRefPubMed
  32. 32.↵
    1. Rovira A,
    2. Swanton J,
    3. Tintore M, et al
    . A single, early magnetic resonance imaging study in the diagnosis of multiple sclerosis. Arch Neurol 2009;66:587–92
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Wiesinger F,
    2. Van de Moortele PF,
    3. Adriany G, et al
    . Parallel imaging performance as a function of field strength: an experimental investigation using electrodynamic scaling. Magn Reson Med 2004;52:953–64
    CrossRefPubMed
  34. 34.↵
    1. Hodel J,
    2. Outteryck O,
    3. Ryo E, et al
    . Accuracy of postcontrast 3D turbo spin-echo MR sequence for the detection of enhanced inflammatory lesions in patients with multiple sclerosis. AJNR Am J Neuroradiol 2014;35:519–23
    Abstract/FREE Full Text
  35. 35.↵
    1. Saranathan M,
    2. Tourdias T,
    3. Kerr AB, et al
    . Optimization of magnetization-prepared 3-dimensional fluid attenuated inversion recovery imaging for lesion detection at 7 T. Invest Radiol 2014;49:290–98
    CrossRefPubMed
  36. 36.↵
    1. Mugler JP 3rd.
    . Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014;39:745–67
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 36 (3)
American Journal of Neuroradiology
Vol. 36, Issue 3
1 Mar 2015
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
MS Lesions Are Better Detected with 3D T1 Gradient-Echo Than with 2D T1 Spin-Echo Gadolinium-Enhanced Imaging at 3T
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
MS Lesions Are Better Detected with 3D T1 Gradient-Echo Than with 2D T1 Spin-Echo Gadolinium-Enhanced Imaging at 3T
A. Crombé, M. Saranathan, A. Ruet, M. Durieux, E. de Roquefeuil, J.C. Ouallet, B. Brochet, V. Dousset, T. Tourdias
American Journal of Neuroradiology Mar 2015, 36 (3) 501-507; DOI: 10.3174/ajnr.A4152

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
MS Lesions Are Better Detected with 3D T1 Gradient-Echo Than with 2D T1 Spin-Echo Gadolinium-Enhanced Imaging at 3T
A. Crombé, M. Saranathan, A. Ruet, M. Durieux, E. de Roquefeuil, J.C. Ouallet, B. Brochet, V. Dousset, T. Tourdias
American Journal of Neuroradiology Mar 2015, 36 (3) 501-507; DOI: 10.3174/ajnr.A4152
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Gadolinium-Enhanced Susceptibility-Weighted Imaging in Multiple Sclerosis: Optimizing the Recognition of Active Plaques for Different MR Imaging Sequences
  • Diagnostic Performance of a 10-Minute Gadolinium-Enhanced Brain MRI Protocol Compared with the Standard Clinical Protocol for Detection of Intracranial Enhancing Lesions
  • Cumulative Dose of Macrocyclic Gadolinium-Based Contrast Agent Improves Detection of Enhancing Lesions in Patients with Multiple Sclerosis
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Predictors of Reperfusion in Patients with Acute Ischemic Stroke
  • Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis
  • Progression of Microstructural Damage in Spinocerebellar Ataxia Type 2: A Longitudinal DTI Study
Show more BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire