Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleADULT BRAIN

A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?

R. Sheelakumari, M. Madhusoodanan, A. Radhakrishnan, G. Ranjith and B. Thomas
American Journal of Neuroradiology February 2016, 37 (2) 252-258; DOI: https://doi.org/10.3174/ajnr.A4524
R. Sheelakumari
aFrom the Department of Neurology (R.S., M.M., A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Madhusoodanan
aFrom the Department of Neurology (R.S., M.M., A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Radhakrishnan
aFrom the Department of Neurology (R.S., M.M., A.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Ranjith
bDevices Testing Laboratory, Biomedical Technology Wing (G.R.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Thomas
cDepartment of Imaging Sciences and Interventional Radiology (B.T.), Sree Chitra Thirunal Institute of Medical Sciences and Technology, Trivandrum, Kerala, India.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Langkammer C,
    2. Enzinger C,
    3. Quasthoff S, et al
    . Mapping of iron deposition in conjunction with assessment of nerve fiber tract integrity in amyotrophic lateral sclerosis. J Magn Reson Imaging 2010;31:1339–45 doi:10.1002/jmri.22185 pmid:20512885
    CrossRefPubMed
  2. 2.↵
    1. Kiernan MC,
    2. Vucic S,
    3. Cheah BC, et al
    . Amyotrophic lateral sclerosis. Lancet 2011;377:942–55 doi:10.1016/S0140-6736(10)61156-7 pmid:21296405
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Petri S,
    2. Körner S,
    3. Kiaei M
    . Nrf2/ARE signaling pathway: key mediator in oxidative stress and potential therapeutic target in ALS. Neurol Res Int 2012;2012:878030 doi:10.1155/2012/878030 pmid:23050144
    CrossRefPubMed
  4. 4.↵
    1. Jomova K,
    2. Vondrakova D,
    3. Lawson M, et al
    . Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010;345:91–104 doi:10.1007/s11010-010-0563-x pmid:20730621
    CrossRefPubMed
  5. 5.↵
    1. Toosy AT,
    2. Werring DJ,
    3. Orrell RW, et al
    . Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2003;74:1250–57 doi:10.1136/jnnp.74.9.1250 pmid:12933929
    Abstract/FREE Full Text
  6. 6.↵
    1. Aoki S,
    2. Iwata NK,
    3. Masutani Y, et al
    . Quantitative evaluation of the pyramidal tract segmented by diffusion tensor tractography: feasibility study in patients with amyotrophic lateral sclerosis. Radiat Med 2005;23:195–99 pmid:15940067
    PubMed
  7. 7.↵
    1. Oshiro S,
    2. Morioka MS,
    3. Kikuchi M
    . Dysregulation of iron metabolism in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Adv Pharmacol Sci 2011;2011:378278 doi:10.1155/2011/378278 pmid:22013437
    CrossRefPubMed
  8. 8.↵
    1. Péran P,
    2. Hagberg G,
    3. Luccichenti G, et al
    . Voxel-based analysis of R2* maps in the healthy human brain. J Magn Reson Imaging 2007;26:1413–20 doi:10.1002/jmri.21204 pmid:18059009
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Jensen JH,
    2. Szulc K,
    3. Hu C, et al
    . Magnetic field correlation as a measure of iron-generated magnetic field inhomogeneities in the brain. Magn Reson Med 2009;61:481–85 doi:10.1002/mrm.21823 pmid:19161168
    CrossRefPubMed
  10. 10.↵
    1. Bartzokis G,
    2. Tishler TA,
    3. Lu PH, et al
    . Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 2007;28:414–23 doi:10.1016/j.neurobiolaging.2006.02.005 pmid:16563566
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Harder SL,
    2. Hopp KM,
    3. Ward H, et al
    . Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 2008;29:176–83 doi:10.3174/ajnr.A0770 pmid:17989376
    Abstract/FREE Full Text
  12. 12.↵
    1. Yu J,
    2. Qi F,
    3. Wang N, et al
    . Increased iron level in motor cortex of amyotrophic lateral sclerosis patients: an in vivo MR study. Amyotroph Lateral Scler Frontotemporal Degener 2014;15:357–61 doi:10.3109/21678421.2014.906618 pmid:24809595
    CrossRefPubMed
  13. 13.↵
    1. Haacke EM,
    2. Xu Y,
    3. Cheng YC, et al
    . Susceptibility weighted imaging (SWI). Magn Reson Med 2004;52:612–28 doi:10.1002/mrm.20198 pmid:15334582
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Haacke EM,
    2. Ayaz M,
    3. Khan A, et al
    . Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 2007;26:256–64 doi:10.1002/jmri.22987 pmid:17654738
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Haacke EM,
    2. Makki M,
    3. Ge Y, et al
    . Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 2009;29:537–44 doi:10.1002/jmri.21676 pmid:19243035
    CrossRefPubMed
  16. 16.↵
    1. Wu SF,
    2. Zhu ZF,
    3. Kong Y, et al
    . Assessment of cerebral iron content in patients with Parkinson's disease by the susceptibility-weighted MRI. Eur Rev Med Pharmacol Sci 2014;18:2605–08 pmid:25317792
    PubMed
  17. 17.↵
    1. Adachi Y,
    2. Sato N,
    3. Saito Y, et al
    . Usefulness of SWI for the detection of iron in the motor cortex in amyotrophic lateral sclerosis. J Neuroimaging 2015;25:443–51 doi:10.1111/jon.12127 pmid:24888543
    CrossRefPubMed
  18. 18.↵
    1. Thomas B,
    2. Somasundaram S,
    3. Thamburaj K, et al
    . Clinical applications of susceptibility weighted MR imaging of the brain: a pictorial review. Neuroradiology 2008;50:105–16 doi:10.1007/s00234-007-0316-z pmid:17929005
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Brooks BR
    . El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis: Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 1994;124(suppl):96–107 doi:10.1016/0022-510X(94)90191-0 pmid:7807156
    CrossRefPubMedWeb of Science
  20. 20.↵
    1. Chiò A,
    2. Calvo A,
    3. Moglia C, et al
    . Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 2011;82:740–46 doi:10.1136/jnnp.2010.235952 pmid:21402743
    Abstract/FREE Full Text
  21. 21.↵
    1. Roche JC,
    2. Rojas-Garcia R,
    3. Scott KM, et al
    . A proposed staging system for amyotrophic lateral sclerosis. Brain 2012;135:847–852 doi:10.1093/brain/awr351 pmid:22271664
    Abstract/FREE Full Text
  22. 22.↵
    1. Hirayama K,
    2. Tsubaki T,
    3. Toyokura Y, et al
    . The representation of the pyramidal tract in the internal capsule and basis pedunculi: a study based on three cases of amyotrophic lateral sclerosis. Neurology 1962;12:337–42 doi:10.1212/WNL.12.5.337 pmid:13907643
    FREE Full Text
  23. 23.↵
    1. Zhou B,
    2. Li S,
    3. Huijin H, et al
    . The evaluation of iron content in Alzheimer's disease by magnetic resonance imaging: phase and R2* methods. Adv Alzheimer Dis 2013;2:51–59 doi:10.4236/aad.2013.22007
    CrossRef
  24. 24.↵
    1. Ropele S,
    2. de Graaf W,
    3. Khalil M, et al
    . MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 2011;34:13–21 doi:10.1002/jmri.22590 pmid:21698703
    CrossRefPubMed
  25. 25.↵
    1. Zecca L,
    2. Youdim MB,
    3. Riederer P, et al
    . Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 2004;5:863–73 doi:10.1038/nrn1537 pmid:15496864
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Kwan JY,
    2. Jeong SY,
    3. Van Gelderen P, et al
    . Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS One 2012;7:e35241 doi:10.1371/journal.pone.0035241 pmid:22529995
    CrossRefPubMed
  27. 27.↵
    1. Oba H,
    2. Araki T,
    3. Ohtomo K, et al
    . Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 1993;189:843–46 doi:10.1148/radiology.189.3.8234713 pmid:8234713
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. Cheung G,
    2. Gawel MJ,
    3. Cooper PW, et al
    . Amyotrophic lateral sclerosis: correlation of clinical and MR imaging findings. Radiology 1995;194:263–70 doi:10.1148/radiology.194.1.7997565 pmid:7997565
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Hofmann E,
    2. Ochs G,
    3. Pelzl A, et al
    . The corticospinal tract in amyotrophic lateral sclerosis: an MRI study. Neuroradiology 1998;40:71–75 doi:10.1007/s002340050543 pmid:9541915
    CrossRefPubMedWeb of Science
  30. 30.↵
    1. Hecht MJ,
    2. Fellner F,
    3. Fellner C, et al
    . MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images. J Neurol Sci 2001;186:37–44 doi:10.1016/S0022-510X(01)00503-2 pmid:11412870
    CrossRefPubMedWeb of Science
  31. 31.↵
    1. Kato Y,
    2. Matsumura K,
    3. Kinosada Y, et al
    . Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 1997;18:1541–47 pmid:9296197
    Abstract
  32. 32.↵
    1. Cudkowicz M,
    2. Qureshi M,
    3. Shefner J
    . Measures and markers in amyotrophic lateral sclerosis. NeuroRx 2004;1:273–83 doi:10.1602/neurorx.1.2.273 pmid:15717028
    Abstract/FREE Full Text
  33. 33.↵
    1. Mitsumoto H,
    2. Ulug AM,
    3. Pullman SL, et al
    . Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology 2007;68:1402–10 doi:10.1212/01.wnl.0000260065.57832.87 pmid:17452585
    Abstract/FREE Full Text
  34. 34.↵
    1. Iwata NK,
    2. Kwan JY,
    3. Danielian LE, et al
    . White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 2011;134(pt 9):2642–55 doi:10.1093/brain/awr178 pmid:21798965
    Abstract/FREE Full Text
  35. 35.↵
    1. Olsen MK,
    2. Roberds SL,
    3. Ellerbrock BR, et al
    . Disease mechanisms revealed by transcription profiling in SOD1–G93A transgenic mouse spinal cord. Ann Neurol 2001;50:730–40 doi:10.1002/ana.1252 pmid:11761470
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Restagno G,
    2. Lombardo F,
    3. Ghiglione P, et al
    . HFE H63D polymorphism is increased in patients with amyotrophic lateral sclerosis of Italian origin. J Neurol Neurosurg Psychiatry 2007;78:327 doi:10.1136/jnnp.2006.092338 pmid:17308297
    FREE Full Text
  37. 37.↵
    1. Jacob S,
    2. Finsterbusch J,
    3. Weishaupt JH, et al
    . Diffusion tensor imaging for long-term follow-up of corticospinal tract degeneration in amyotrophic lateral sclerosis. Neuroradiology 2003;45:598–600 doi:10.1007/s00234-003-1014-0 pmid:12904924
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Wang S,
    2. Poptani H,
    3. Bilello M, et al
    . Diffusion tensor imaging in amyotrophic lateral sclerosis: volumetric analysis of the corticospinal tract. AJNR Am J Neuroradiol 2006;27:1234–38 pmid:16775271
    Abstract/FREE Full Text
  39. 39.↵
    1. Hong YH,
    2. Lee KW,
    3. Sung JJ, et al
    . Diffusion tensor MRI as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral sclerosis. J Neurol Sci 2004;227:73–78 doi:10.1016/j.jns.2004.08.014 pmid:15546594
    CrossRefPubMedWeb of Science
  40. 40.↵
    1. Sage CA,
    2. Peeters RR,
    3. Görner A, et al
    . Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007;34:486–99 doi:10.1016/j.neuroimage.2006.09.025 pmid:17097892
    CrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 37 (2)
American Journal of Neuroradiology
Vol. 37, Issue 2
1 Feb 2016
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?
R. Sheelakumari, M. Madhusoodanan, A. Radhakrishnan, G. Ranjith, B. Thomas
American Journal of Neuroradiology Feb 2016, 37 (2) 252-258; DOI: 10.3174/ajnr.A4524

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with SWI and Corticospinal Tract Degeneration with DTI Help?
R. Sheelakumari, M. Madhusoodanan, A. Radhakrishnan, G. Ranjith, B. Thomas
American Journal of Neuroradiology Feb 2016, 37 (2) 252-258; DOI: 10.3174/ajnr.A4524
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Assessment of Iron Deposition in the Brain in Frontotemporal Dementia and Its Correlation with Behavioral Traits
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • MGMT Promoter Methylation Status in Initial and Recurrent Glioblastoma: Correlation Study with DWI and DSC PWI Features
  • Traumatic Cerebral Microbleeds in the Subacute Phase Are Practical and Early Predictors of Abnormality of the Normal-Appearing White Matter in the Chronic Phase
  • CTA Evaluation of Basilar Septations: An Entity Better Characterized as Aberrant Basilar Fenestrations
Show more ADULT BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire