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ABSTRACT

BACKGROUND AND PURPOSE: Thin film nitinol can be processed to produce a thin microporous sheet with a low percentage of metal
coverage (�20%) and high pore attenuation (�70 pores/mm2) for flow diversion. We present in vivo results from the treatment of
experimental rabbit aneurysms by using a thin film nitinol– based flow-diversion device.

MATERIALS AND METHODS: Nineteen aneurysms in the rabbit elastase aneurysm model were treated with a single thin film nitinol
flow diverter. Devices were also placed over 17 lumbar arteries to model perianeurysmal branch arteries of the intracranial circula-
tion. Angiography was performed at 2 weeks (n � 7), 1 month (n � 8), and 3 months (n � 4) immediately before sacrifice. Aneurysm
occlusion was graded on a 3-point scale (grade I, complete occlusion; grade II, near-complete occlusion; grade III, incomplete
occlusion). Toluidine blue staining was used for histologic evaluation. En face CD31 immunofluorescent staining was performed to
quantify neck endothelialization.

RESULTS: Markedly reduced intra-aneurysmal flow was observed on angiography immediately after device placement in all aneurysms.
Grade I or II occlusion was noted in 4 (57%) aneurysms at 2-week, in 6 (75%) aneurysms at 4-week, and in 3 (75%) aneurysms at 12-week
follow-up. All 17 lumbar arteries were patent. CD31 staining showed that 75% � 16% of the aneurysm neck region was endothelialized.
Histopathology demonstrated incorporation of the thin film nitinol flow diverter into the vessel wall and no evidence of excessive
neointimal hyperplasia.

CONCLUSIONS: In this rabbit model, the thin film nitinol flow diverter achieved high rates of aneurysm occlusion and promoted tissue
in-growth and aneurysm neck healing, even early after implantation.

ABBREVIATION: TFN � thin film nitinol

Flow diverters are a relatively recent advancement in the endovas-

cular treatment of intracranial aneurysms and have expanded the

types of aneurysms addressable with endovascular techniques.1-5

Numerous different flow diverters have been approved in Europe,

and several are either approved for use or under investigation in the

United States. Each of the flow-diversion devices in current use is

constructed from braided metallic strands, typically nitinol, cobalt

chromium, and/or platinum. These devices, while promising, have

several relative disadvantages. Aneurysm occlusion may be delayed,

precise placement may be challenging because of device shortening,

�1 device is often required, and branch arteries covered by the device

may undergo occlusion.6-8

Thin film nitinol (TFN) is a biomaterial produced in pat-

terned sheets approximately 5 �m thick by using techniques

adapted from the microelectronics industry. Previous reports

have demonstrated that TFN has unique mechanical properties,

excellent biocompatibility, and a low profile that make it well-

suited for use in endovascular devices.9-11 Potential advantages of

a flow-diverting stent based on TFN technology include the ability

to fabricate devices with much higher pore densities and a lower

percentage of metal coverage than is achieved with current-gen-

eration devices based on braided wire technology. The purpose of

this study was to test a novel TFN-based flow-diverting stent in a

rabbit model of saccular aneurysms.
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MATERIALS AND METHODS
Aneurysms (n � 19) were created in New Zealand white rab-

bits. Our Institutional Animal Care and Use Committee ap-

proved all animal procedures. The detailed procedure for an-

eurysm creation has been described previously.12 Briefly,

anesthesia was induced with an intramuscular injection of ket-

amine (35 mg/kg), xylazine (6 mg/kg), and acepromazine (1.0

mg/kg) and was maintained with 2.5%–3.0% isoflurane con-

veyed in 100% oxygen. Using a sterile technique, we exposed

and ligated the right common carotid artery distally. A 1- to

2-mm bevelled arteriotomy was made, and a 5F AVANTI vas-

cular sheath (Cordis, Miami Lakes, Florida) was advanced ret-

rogradely in the right common carotid artery to a point ap-

proximately 3 cm cephalad to the origin of right common

carotid artery. Fluoroscopy (Advantx; GE Healthcare, Milwau-

kee, Wisconsin) was performed by injection of contrast

through the sheath retrogradely in the right common carotid

artery, to identify the junction between the right common ca-

rotid artery and the subclavian and brachiocephalic arteries. A

3F Fogarty balloon (Baxter Healthcare, Irvine, California) was

advanced through the sheath to the level of the origin of the

right common carotid artery with fluoroscopic guidance and

was inflated with iodinated contrast material. Porcine elastase

(5.23 units per mg protein, 40.1 mg protein/mL, approxi-

mately 200 units/mL; Worthington Biochemical, Lakewood,

New Jersey) was incubated within the lumen of the right com-

mon carotid artery above the inflated balloon for 20 minutes,

after which the balloon and sheath were removed and the right

common carotid artery was ligated below the sheath entry site.

Three weeks after creation, patency of all the aneurysms and

parent arteries was confirmed by DSA before TFN-device deploy-

ment. A 5F sheath was advanced on one side of the femoral artery

via cutdown, followed by a 5F Envoy guiding catheter with 0.056-

inch ID (Codman & Shurtleff, Raynham, Massachusetts). A dis-

tal-access catheter with 0.044-inch ID (Concentric Medical,

Mountain View, California) was advanced into the distal end of

parent artery (right subclavian artery) over a 0.038-inch guide-

wire with a hydrophilic coating (Boston Scientific, Natick, Mas-

sachusetts) through the guide catheter.

Prototype TFN flow diverters were fabricated and provided

for this study by NeuroSigma (Los Angeles, California). De-

tailed methods for the fabrication of TFN have been published

previously.13-15 In brief, TFN is sputter-deposited on 4-inch

silicon wafers by using a custom DC
magnetron sputter system. Silicon wa-

fers are micropatterned by using deep
reactive ion etching before the sputter-
deposition process. Following deposi-

tion, the TFN is removed from the sil-
icon wafer and annealed at 500°C. This

process yields a cylindric TFN micro-

mesh that is subsequently used to
cover a laser-cut nitinol backbone
stent (Fig 1). The red box outlines an
area of 1 mm2. The pore attenuation
and percentage of metal coverage of
the TFN flow diverter were calculated

from scanning electron microscope

images of a device at full expansion.

The number of pores in an area of 1 mm2 was counted from the

scanning electron microscope image, and the percentage of

metal coverage was calculated from the following formula: 1 �

Percent Metal Coverage of Stent Backbone. At full expansion,

the TFN flow diverter had a pore attenuation of approximately

70 pores/mm2 and a percentage of metal coverage of �20%.

Results from in vitro and in vivo testing of devices constructed

by using similar methods have been reported previously.9-11

The first TFN device (4.5-mm outside diameter � 12 mm) was

deployed across the aneurysm neck by pushing the device out of

the distal access catheter with the 0.038-inch guidewire with hy-

drophilic coating. The second device (4.5-mm outside diame-

ter � 12 mm) was deployed across a lumbar artery within the

abdominal aorta. DSA was performed through the guide catheter

immediately after deployment. No damage to the device occurred

during deployment. Aspirin (10 mg/kg) and clopidogrel (10 mg/

kg) were given daily 2 days before implantation and continued

until 30 days after treatment.

Sacrifice was performed at 2 weeks (n � 7), 4 weeks (n � 8),

and 12 weeks (n � 4) after treatment. On the day of sacrifice,

anesthesia was administered as a cocktail of ketamine (74 mg/kg),

xylazine (5 mg/kg), and acepromazine (1 mg/kg). Surgical access

of the left common femoral artery was achieved. DSA was per-

formed for both the brachiocephalic trunk and abdominal aorta.

Degrees of aneurysm occlusion immediately after device deploy-

ment and before sacrifice were graded on a 3-point scale based on

DSA images, including grade I (complete flow cessation, no flow

within the aneurysm), grade II (near-complete flow, �10% resid-

ual flow), and grade III (incomplete occlusion, �10% residual

flow).13 Patency of the parent and lumbar arteries (including ste-

nosis or occlusion) was assessed from DSA. Immediately follow-

ing angiography, the subjects were euthanized by using a lethal

injection of pentobarbital. The aneurysm, stented parent artery,

and the aorta were harvested and fixed in 10% formalin. Tolu-

idine blue staining was performed to evaluate thrombus organi-

zation within the aneurysm and neointima coverage of aneurysm

neck and the orifice of lumbar artery.

Gross pathology and en face CD31 immunofluorescent stain-

ing were performed on a subset of devices selected at random

from each of the follow-up time points to quantify neck endothe-

lialization (1 at 2 weeks, 3 at 4 weeks, 2 at 12 weeks). Whole-

mount immunofluorescent staining was performed by using an

FIG 1. A, A prototype TFN flow diverter. B, The scanning electron microscopy image of TFN.
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anti-CD31 antibody. The coverage percentage of endothelialized

neointima across the neck was calculated by using the value of the

neck area of endothelialization measured under the microscope

and the whole neck area. Histopathology of explanted devices was

performed on the device at each of the 3 time points by using

plastic-section mounting and toluidine blue staining.

RESULTS
Mean aneurysm sizes (including aneurysm neck, width, and

height) and angiographic outcomes from the 19 aneurysms are

shown in the Table.

Grades I or II occlusion rates were noted in 57% (n � 4) of

aneurysms at the 2-week follow-up time point (Fig 2A–C). At the

4-week time point, 6 (75%) aneurysms had complete or near-

complete occlusion (grades I or II) (Fig 3A–C). At the 12-week

time point, 3 (75%) aneurysms showed grades I or II occlusion.

The distal parent artery was occluded in 1 aneurysm immediately

after device deployment but reopened at the 3-month follow-up.

Overall, grades I or II occlusion rates were achieved in 13 (68%) of

the 19 aneurysms. All other parent and lumbar arteries remained

patent without stenosis (Figs 2E–G and 3E–G).

For the 6 aneurysms with histologic processing, the average

implant duration was 6.3 weeks. The mean neck orifice area was

6.3 � 2.5 mm2, and 75 � 16% of the aneurysm neck region was

covered by endothelialized tissue at the time of sacrifice (Figs 2D

and 3D). Toluidine blue staining of aneurysms with explanted

devices confirmed these findings, which included minimal neoin-

timal hyperplasia and good incorporation of the TFN and support

stent. Thrombus formation within the aneurysm was also indi-

cated (Fig 4).

DISCUSSION
In this study, we demonstrated that a single TFN flow diverter

could achieve high rates of complete or near-complete aneurysm

occlusion as early as 2 weeks after implantation. Furthermore,

rapid and near-complete endothelialization was noted across an-

eurysm necks, while branch arteries remained patent in all cases.

All these results offer evidence that the TFN flow diverter holds

substantial promise for clinical use.

Numerous flow-diverting devices have previously been tested

in the elastase aneurysm model and have subsequently been ap-

plied clinically.16-22 Aneurysm occlusion, neointimal hyperplasia

of the parent artery (stenosis or occlusion), distal parent artery

emboli, and patency of the branch artery can be assessed in this

aneurysm model. Compared with current flow-diverter devices,

the NeuroSigma TFN flow diverter achieves a very high pore at-

tenuation while, at the same time, allowing a low percentage of

metal coverage. Thus, very small distances are needed for endo-

thelial cells to cross between structural elements of the TFN.

This study has several limitations. The number of subjects

at each time point was relatively small,

and the duration of implantation was

limited. The aneurysms in this study

were small, even though the mean

height of the aneurysm was approxi-

mately 10 mm. The longest time point

for follow-up was only 3 months in

this study. Finally, the morphology of

FIG 2. A, Digital subtraction angiogram shows the aneurysm before treatment (notched right arrow). B, DSA image immediately after device
deployment shows blood flow reduction in the aneurysm (left block arrow). C, DSA image at 2 weeks of deployment shows near-complete
aneurysm occlusion (grade II) (left arrow). D, Gross pathology along with en face CD 31 immunofluorescent staining (original magnification water
lens 20�) shows that 46% of aneurysm neck area is covered by endothelialized tissue (red and yellow arrows). E, DSA image shows the lumbar
arteries before deployment in the abdominal aorta (striped right arrow). F, DSA image immediately after device deployment shows patent
lumbar arteries (striped right arrow). G, DSA image at 2 weeks of deployment shows that the lumbar arteries remain patent (striped right arrow).

Aneurysm size and angiographic outcome

Time Point
(Weeks)

Mean Aneurysm
Size (mm)

Occlusion
Grades Lumbar Artery

Patency (%)Neck Width Height I or II III
2 4.0 � 1.4 4.5 � 1.5 9.8 � 2.4 57% 43% 100
4 4.1 � 1.0 4.1 � 1.4 9.3 � 1.6 75% 25% 100

12 4.1 � 1.0 4.7 � 2.1 9.5 � 2.7 75% 25% 100
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the aneurysms does not provide the range expected clinically,

and the tortuosity of the carotid siphon and other vessel terri-

tories in humans may cause substantial challenges in achieving

adequate wall apposition of the device.

CONCLUSIONS
In this rabbit model, the TFN devices achieved high rates of acute

angiographic occlusion. Vessel branches covered by the devices re-

mained patent. High degrees of endothelialization across the aneu-

rysm neck were achieved, which indicates that in this model, the TFN

can promote tissue in-growth and aneurysm neck healing.
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