Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleAdult Brain

Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field

O. Shearkhani, A. Khademi, A. Eilaghi, S.-P. Hojjat, S.P. Symons, C. Heyn, M. Machnowska, A. Chan, A. Sahgal and P.J. Maralani
American Journal of Neuroradiology November 2017, 38 (11) 2059-2066; DOI: https://doi.org/10.3174/ajnr.A5352
O. Shearkhani
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for O. Shearkhani
A. Khademi
cDepartment of Biomedical Engineering (A.K.), Ryerson University, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Khademi
A. Eilaghi
dMechanical Engineering Department (A.E.), Australian College of Kuwait, Kuwait City, Kuwait.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Eilaghi
S.-P. Hojjat
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.-P. Hojjat
S.P. Symons
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.P. Symons
C. Heyn
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Heyn
M. Machnowska
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Machnowska
A. Chan
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Chan
A. Sahgal
bRadiation Oncology (A.S.), University of Toronto, Toronto, Ontario, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Sahgal
P.J. Maralani
aFrom the Departments of Medical Imaging (O.S., S.-P.H., S.P.S., C.H., M.M., A.C., P.J.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P.J. Maralani
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Nussbaum ES,
    2. Djalilian HR,
    3. Cho KH, et al
    . Brain metastases: histology, multiplicity, surgery, and survival. Cancer 1996;78:1781–88 pmid:8859192
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Okunieff P,
    2. Schell MC,
    3. Ruo R, et al
    . Long-term management of patients with multiple brain metastases after shaped beam radiosurgery: case report and review of the literature. J Neurosurg 2004;101(suppl 3):46–12 doi:10.3171/jns.2004.101.supplement 3.0406 pmid:15537197
    CrossRefPubMed
  3. 3.↵
    1. Patchell RA,
    2. Tibbs PA,
    3. Walsh JW, et al
    . A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494–500 doi:10.1056/NEJM199002223220802 pmid:2405271
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Smith ML,
    2. Lee JY
    . Stereotactic radiosurgery in the management of brain metastasis. Neurosurg Focus 2007;22:1–8 doi:10.3171/foc.2007.22.6.7 pmid:17608358
    CrossRefPubMed
  5. 5.↵
    1. Patel SH,
    2. Robbins JR,
    3. Gore EM, et al
    ; Expert Panel on Radiation Oncology–Brain Metastases. ACR Appropriateness Criteria® follow-up and retreatment of brain metastases. Am J Clin Oncol 2012;35:302–06 doi:10.1097/COC.0b013e31824be246 pmid:22609733
    CrossRefPubMed
  6. 6.↵
    1. Kakeda S,
    2. Korogi Y,
    3. Hiai Y, et al
    . Detection of brain metastasis at 3T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol 2007;17:2345–51 doi:10.1007/s00330-007-0599-9 pmid:17318603
    CrossRefPubMed
  7. 7.↵
    1. Prastawa M,
    2. Bullitt E,
    3. Moon N, et al
    . Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol 2003;10:1341–48 doi:10.1016/S1076-6332(03)00506-3 pmid:14697002
    CrossRefPubMed
  8. 8.↵
    1. Loganathan AG,
    2. Chan MD,
    3. Alphonse N, et al
    . Clinical outcomes of brain metastases treated with Gamma Knife radiosurgery with 3.0 T versus 1.5 T MRI-based treatment planning: have we finally optimised detection of occult brain metastases? J Med Imaging Radiat Oncol 2012;56:554–60 doi:10.1111/j.1754-9485.2012.02429.x pmid:23043576
    CrossRefPubMed
  9. 9.↵
    1. Ambrosini RD
    . Automated Detection and Growth Rate Determination of Metastatic Tumors in the Brain and Lungs [dissertation]. Rochester: University of Rochester; 2010:134
  10. 10.↵
    1. Ambrosini RD,
    2. Wang P,
    3. O'Dell WG
    . Computer-aided detection of metastatic brain tumors using automated three-dimensional template matching. J Magn Reson Imaging 2010;31:85–93 doi:10.1002/jmri.22009 pmid:20027576
    CrossRefPubMed
  11. 11.↵
    1. Farjam R,
    2. Parmar HA,
    3. Noll DC, et al
    . An approach for computer-aided detection of brain metastases in post-Gd T1-W MRI. Magn Reson Imaging 2012;30:824–36 doi:10.1016/j.mri.2012.02.024 pmid:22521993
    CrossRefPubMed
  12. 12.↵
    1. Pérez-Ramírez Ú,
    2. Arana E,
    3. Moratal D
    . Computer-aided detection of brain metastases using a three-dimensional template-based matching algorithm. In: Proceedings of the 36th Annual International Conference of the Institute of Electrical and Electronics Engineers Engineering in Medicine and Biology Society, Chicago, Illinois. August 26–30, 2014:2384–87
  13. 13.↵
    1. Pérez-Ramírez Ú,
    2. Arana E,
    3. Moratal D
    . Brain metastases detection on MR by means of three-dimensional tumor-appearance template matching. J Magn Reson Imaging 2016;44:642–52 doi:10.1002/jmri.25207 pmid:26934581
    CrossRefPubMed
  14. 14.↵
    1. Yang S,
    2. Nam Y,
    3. Kim MO, et al
    . Computer-aided detection of metastatic brain tumors using magnetic resonance black-blood imaging. Invest Radiol 2013;48:113–19 doi:10.1097/RLI.0b013e318277f078 pmid:23211553
    CrossRefPubMed
  15. 15.↵
    1. Durrleman S,
    2. Fletcher T,
    3. Gerig G,
    4. Niethammer M
    1. Chitphakdithai N,
    2. Chiang VL,
    3. Duncan JS
    . Tracking metastatic brain tumors in longitudinal scans via joint image registration and labeling. In: Durrleman S, Fletcher T, Gerig G, Niethammer M, eds. Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data: STIA 2012. Berlin: Springer; 2012:124–36
  16. 16.↵
    1. Patriarche J,
    2. Erickson B
    . A review of the automated detection of change in serial imaging studies of the brain. J Digit Imaging 2004;17:158–74 doi:10.1007/s10278-004-1010-x pmid:15534751
    CrossRefPubMed
  17. 17.↵
    1. Doi K
    . Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007;31:198–211 doi:10.1016/j.compmedimag.2007.02.002 pmid:17349778
    CrossRefPubMed
  18. 18.↵
    1. Doi K
    . Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol 2006;51:R5–27 doi:10.1088/0031-9155/51/13/R02 pmid:16790920
    CrossRefPubMed
  19. 19.↵
    1. Takahashi R,
    2. Kajikawa Y
    . Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform 2017;101:58–67 doi:10.1016/j.ijmedinf.2017.02.004 pmid:28347448
    CrossRefPubMed
  20. 20.↵
    1. Lladó X,
    2. Ganiler O,
    3. Oliver A, et al
    . Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 2012;54:787–807 doi:10.1007/s00234-011-0992-6 pmid:22179659
    CrossRefPubMed
  21. 21.↵
    1. Martola J,
    2. Bergström J,
    3. Fredrikson S, et al
    . A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images. Neuroradiology 2010;52:109–17 doi:10.1007/s00234-009-0593-9 pmid:19774369
    CrossRefPubMed
  22. 22.↵
    1. Tian W,
    2. Zhu T,
    3. Zhong J, et al
    . Progressive decline in fractional anisotropy on serial DTI examinations of the corpus callosum: a putative marker of disease activity and progression in SPMS. Neuroradiology 2012;54:287–97 doi:10.1007/s00234-011-0885-8 pmid:21567135
    CrossRefPubMed
  23. 23.↵
    1. Calcagno G,
    2. Staiano A,
    3. Fortunato G, et al
    . A multilayer perceptron neural network-based approach for the identification of responsiveness to interferon therapy in multiple sclerosis patients. Information Sciences 2010;180:4153–63 doi:10.1016/j.ins.2010.07.004
    CrossRef
  24. 24.↵
    1. Südmeyer M,
    2. Pieperhoff P,
    3. Ferrea S, et al
    . Longitudinal deformation-based morphometry reveals spatio-temporal dynamics of brain volume changes in patients with corticobasal syndrome. PLoS One 2012;7:e41873 doi:10.1371/journal.pone.0041873 pmid:22848644
    CrossRefPubMed
  25. 25.↵
    1. Durand-Dubief F,
    2. Belaroussi B,
    3. Armspach J, et al
    . Reliability of longitudinal brain volume loss measurements between 2 sites in patients with multiple sclerosis: comparison of 7 quantification techniques. AJNR Am J Neuroradiol 2012;33:1918–24 doi:10.3174/ajnr.A3107 pmid:22790248
    Abstract/FREE Full Text
  26. 26.↵
    1. Fuentes D,
    2. Contreras J,
    3. Yu J, et al
    . Morphometry-based measurements of the structural response to whole-brain radiation. Int J Comput Assist Radiol Surg 2015;10:393–401 doi:10.1007/s11548-014-1128-3 pmid:25408306
    CrossRefPubMed
  27. 27.↵
    1. Unay D
    . Local and global volume changes of subcortical brain structures from longitudinally varying neuroimaging data for dementia identification. Comput Med Imaging Graph 2012;36:464–73 doi:10.1016/j.compmedimag.2012.03.006 pmid:22658230
    CrossRefPubMed
  28. 28.↵
    1. Thirion JP,
    2. Calmon G
    . Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences. IEEE Trans Med Imaging 1999;18:429–41 doi:10.1109/42.774170 pmid:10416804
    CrossRefPubMed
  29. 29.↵
    1. Höhne KH,
    2. Kinikis R
    1. Davatzikos C,
    2. Vaillant M,
    3. Resnick S, et al
    . Morphological analysis of brain structures using spatial normalization. In: Höhne KH, Kinikis R. Visualization in Biomedical Computing: 4th International Conference, VBC ‘96, Hamburg, Germany, September 22–25, 1996: Proceedings. Berlin: Springer-Verlag; 1996:355–60
  30. 30.↵
    1. Rey D,
    2. Subsol G,
    3. Delingette H, et al
    . Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Med Image Anal 2002;6:163–79 doi:10.1016/S1361-8415(02)00056-7 pmid:12045002
    CrossRefPubMed
  31. 31.↵
    1. Evans AC,
    2. Collins DL,
    3. Mills S, et al
    . 3D statistical neuroanatomical models from 305 MRI volumes. In: Institute of Electrical and Electronics Engineers. IEEE Nuclear and Plasma Sciences Society. Nuclear Science Symposium and Medical Imaging Conference, 1993; 1993 IEEE Conference Record. Piscataway: Institute of Electrical and Electronics Engineers; 1993:1813–17
  32. 32.↵
    1. Ashburner J,
    2. Friston KJ
    . Unified segmentation. Neuroimage 2005;26:839–51 doi:10.1016/j.neuroimage.2005.02.018 pmid:15955494
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Ashburner J,
    2. Barnes G,
    3. Chen C, et al
    . SPM12 Manual. London: Wellcome Trust Centre for Neuroimaging; 2016
  34. 34.↵
    1. Ashburner J,
    2. Ridgway GR
    . Symmetric diffeomorphic modeling of longitudinal structural MRI. Front Neurosci 2012;6:197 doi:10.3389/fnins.2012.00197 pmid:23386806
    CrossRefPubMed
  35. 35.↵
    1. Seghier ML,
    2. Ramlackhansingh A,
    3. Crinion J, et al
    . Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage 2008;41:1253–66 doi:10.1016/j.neuroimage.2008.03.028 pmid:18482850
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Greiner M,
    2. Pfeiffer D,
    3. Smith R
    . Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 2000;45:23–41 doi:10.1016/S0167-5877(00)00115-X pmid:10802332
    CrossRefPubMedWeb of Science
  37. 37.↵
    1. Hanley JA,
    2. McNeil BJ
    . The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29–36 doi:10.1148/radiology.143.1.7063747 pmid:7063747
    CrossRefPubMedWeb of Science
  38. 38.↵
    1. Miller RG
    . The jackknife–a review. Biometrika 1974;61:1–15
    CrossRefWeb of Science
  39. 39.↵
    1. Cabezas M,
    2. Corral J,
    3. Oliver A, et al
    . Improved automatic detection of new T2 lesions in multiple sclerosis using deformation fields. AJNR Am J Neuroradiol 2016 Jun 9. [Epub ahead of print] doi:10.3174/ajnr.A4829 pmid:27282863
    Abstract/FREE Full Text
  40. 40.↵
    1. Wells WM,
    2. Colchester AC,
    3. Delp S
    1. Frangi AF,
    2. Niessen WJ,
    3. Vincken KL, et al
    . Multiscale vessel enhancement filtering. In: Wells WM, Colchester AC, Delp S. Medical Image Computing and Computer-Assisted Interventation: MICCAI'9. Berlin: Springer-Verlag; 1998:130–37
  41. 41.↵
    1. Li Q,
    2. Sone S,
    3. Doi K
    . Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys 2003;30:2040–51 doi:10.1118/1.1581411 pmid:12945970
    CrossRefPubMed
  42. 42.↵
    1. Forkert N,
    2. Fiehler J,
    3. Suniaga S, et al
    . A statistical cerebroarterial atlas derived from 700 MRA datasets. Methods Inf Med 2013;52:467–74 doi:10.3414/ME13-02-0001 pmid:24190179
    CrossRefPubMed
  43. 43.↵
    1. Park J,
    2. Kim EY
    . Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553–61 doi:10.1002/mrm.22261 pmid:20187162
    CrossRefPubMedWeb of Science
  44. 44.↵
    1. Park J,
    2. Kim J,
    3. Yoo E, et al
    . Detection of small metastatic brain tumors: comparison of 3D contrast-enhanced whole-brain black-blood imaging and MP-RAGE imaging. Invest Radiol 2012;47:136–41 doi:10.1097/RLI.0b013e3182319704 pmid:22104961
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 38 (11)
American Journal of Neuroradiology
Vol. 38, Issue 11
1 Nov 2017
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field
O. Shearkhani, A. Khademi, A. Eilaghi, S.-P. Hojjat, S.P. Symons, C. Heyn, M. Machnowska, A. Chan, A. Sahgal, P.J. Maralani
American Journal of Neuroradiology Nov 2017, 38 (11) 2059-2066; DOI: 10.3174/ajnr.A5352

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field
O. Shearkhani, A. Khademi, A. Eilaghi, S.-P. Hojjat, S.P. Symons, C. Heyn, M. Machnowska, A. Chan, A. Sahgal, P.J. Maralani
American Journal of Neuroradiology Nov 2017, 38 (11) 2059-2066; DOI: 10.3174/ajnr.A5352
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Anatomic and Embryologic Analysis of the Dural Branches of the Ophthalmic Artery
  • Automated Cerebral Hemorrhage Detection Using RAPID
  • Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports
Show more ADULT BRAIN

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire