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ORIGINAL RESEARCH
ADULT BRAIN

Performance Assessment for Brain MR Imaging
Registration Methods

X J.S. Lin, X D.T. Fuentes, X A. Chandler, X S.S. Prabhu, X J.S. Weinberg, X V. Baladandayuthapani, X J.D. Hazle, and
X D. Schellingerhout

ABSTRACT

BACKGROUND AND PURPOSE: Clinical brain MR imaging registration algorithms are often made available by commercial vendors
without figures of merit. The purpose of this study was to suggest a rational performance comparison methodology for these products.

MATERIALS AND METHODS: Twenty patients were imaged on clinical 3T scanners by using 4 sequences: T2-weighted, FLAIR, suscepti-
bility-weighted angiography, and T1 postcontrast. Fiducial landmark sites (n � 1175) were specified throughout these image volumes to
define identical anatomic locations across sequences. Multiple registration algorithms were applied by using the T2 sequence as a fixed
reference. Euclidean error was calculated before and after each registration and compared with a criterion standard landmark registration.
The Euclidean effectiveness ratio is the fraction of Euclidean error remaining after registration, and the statistical effectiveness ratio is
similar, but accounts for dispersion and noise.

RESULTS: Before registration, error values for FLAIR, susceptibility-weighted angiography, and T1 postcontrast were 2.07 � 0.55 mm,
2.63 � 0.62 mm, and 3.65 � 2.00 mm, respectively. Postregistration, the best error values for FLAIR, susceptibility-weighted angiography,
and T1 postcontrast were 1.55 � 0.46 mm, 1.34 � 0.23 mm, and 1.06 � 0.16 mm, with Euclidean effectiveness ratio values of 0.493, 0.181, and
0.096 and statistical effectiveness ratio values of 0.573, 0.352, and 0.929 for rigid mutual information, affine mutual information, and a
commercial GE registration, respectively.

CONCLUSIONS: We demonstrate a method for comparing the performance of registration algorithms and suggest the Euclidean error,
Euclidean effectiveness ratio, and statistical effectiveness ratio as performance metrics for clinical registration algorithms. These figures of
merit allow registration algorithms to be rationally compared.

ABBREVIATIONS: ANTs � advanced normalization tools; AOI � algorithm of interest; CC � cross-correlation; EER � Euclidean effectiveness ratio; LM �
landmarks; MI � mutual information; SER � statistical effectiveness ratio; SWAN � susceptibility-weighted angiography; T1C � T1 postcontrast; TRE � target-to-
registration error

Image registration is an essential step in the analysis of brain MR

imaging data from multiple images because it ensures the spa-

tial correspondence of anatomy across complementary informa-

tion sources for diagnosis and treatment. Most commercially

available MR image–analysis software packages have some imple-

mentation of image registration, and such techniques have a thor-

ough, well-documented grounding in the literature.1-6

Research publications about new registration methods for MR

images of the brain nearly always include quantitative assessments

of their performance, while commercial registration solutions are

often released without disclosing the performance metrics of the

vendor. Furthermore, due to the proprietary nature of these com-

mercial algorithms, the explicit transformations are often not dis-

closed; thus, there are relatively few publicly available figures of
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merit to assess the performance of these heavily used commercial

solutions that are essential to clinical neuroimaging.

Performance assessments of these products from commercial

vendors would be clinically useful, however, such information is sel-

dom available. In a study that used a widely accepted, neurosurgical

commercial package, Hoelper et al7 placed 25 anatomic landmarks in

T1 and T2 brain volumes to test the registration error for 39 patients,

a rare example of a publicly available assessment for a commercial

registration solution. They demonstrated that whole-brain volume

registrations could have errors ranging from 0.7 to 2 mm, depending

on the region of the brain, and they therefore recommended using a

volume of interest to improve local registrations when a particular

area was important.7 Such knowledge of the behavior of a commer-

cial product can improve its use in the clinic, but if commercial ven-

dors do not use objective metrics to characterize thoroughly the per-

formance of their products and then make these results available,

rational choices and improvements cannot be made. This situation is

to the ultimate detriment of the patient undergoing treatments that

rely on these algorithms being highly accurate.

Within the academic research world, various prior methods have

been used to assess the performance of registration algorithms. Ex-

ternal, invasive skull-implanted markers have been used as fiducial

landmarks to assess CT-MR imaging and PET-MR imaging reg-

istrations,4 the 8 corner voxels of a box around the head have been

used to assess MR-MR brain registrations,8 and 256 anatomic

landmarks throughout the brain have been used to assess inter-

subject MR-MR registrations.9 An on-line data base of MR imag-

ing and sonography brain volumes also contains 19 – 40 land-

marks per patient to assess registration accuracy.10

In addition to fiducial landmarks, other quantitative and

semi-quantitative methodologies for assessment have been used.

Examples include tissue edge distances as measured by the Hauss-

dorff distance,11 comparing the resulting transformations with

the criterion standard reference transformations,12 using the

amount of tissue overlap for equivalent regions,6,13 using image-

similarity measures calculated between images,14 and using visual

assessments by human observers.15 Extensive neuroimaging algo-

rithm comparison studies have shown that registration perfor-

mance is minimally affected by the many variations of labeling

protocols and overlap measures.6

In light of these examples, there is a real need for simple, ob-

jective metrics to serve as figures of merit for clinically used reg-

istration algorithms from academic and commercial vendors. The

aim of this project was therefore to demonstrate the feasibility of

a performance-testing methodology for modern registration al-

gorithms by using fiducial landmark sites in routinely used clini-

cal images. This method was then used to assess the performance

of both commercial and open-source registration algorithms as

applied to a set of intrasubject, multisequence, MR images of the

brain. Internal, anatomic landmark-based fiducials served as the

criterion standard against which to measure performance. By cal-

culating several objective metrics of performance from the results

of these registrations on clinically acquired data, we show how

various methods of registration can be meaningfully compared by

end users. We use a limited set of algorithms in demonstration,

but any registration algorithm could be substituted and similarly

assessed (the authors could be contacted to arrange this).

MATERIALS AND METHODS
This study was a retrospective analysis of data acquired as part of

a Health Insurance Portability and Accountability Act– compli-

ant, institutional review board–approved clinical protocol that

required signed consent from study participants.

Images
Patients were consecutively recruited on the basis of specific cri-

teria for inclusion (18 years of age or older, candidate for cerebral

tumor resection with suspected or biopsy-proved primary brain

tumor) and exclusion (prior brain tumor treatment, including

surgical resection, radiation therapy, or chemotherapy). From

February 2013 to October 2015, 20 patients (mean age, 45.3 years;

range, 21–75 years) were imaged for surgical-planning purposes

on Signa HDxt 3T or Discovery MR750 3T clinical scanners (GE

Healthcare, Milwaukee, Wisconsin). This cohort included 11

women (mean, 40.7 years; range, 21–75 years) and 9 men (mean,

50.9 years; range, 28 – 67 years). The imaging protocol (On-line

Table 1) included a high-resolution T2-weighted scan (voxel size,

0.5469 � 0.5469 � 2 mm), a FLAIR scan (voxel size, 0.5 � 0.5 �

1 mm), a susceptibility-weighted angiography (SWAN) scan

(voxel size, 0.3906 � 0.3906 � 1 mm), and a T1 postcontrast

(T1C) scan (voxel size, 0.4688 � 0.4688 � 3.5 mm) obtained after

injecting 0.1 mmol/kg of either gadopentetate dimeglumine

or gadobutrol (Magnevist; Bayer HealthCare Pharmaceuticals,

Wayne, New Jersey; or Gadavist; Bayer Schering Pharma, Berlin,

Germany, respectively) at 5 mL/s, followed by 30 mL of saline at 5

mL/s. Because 2 separate contrast doses were needed for the scan-

ning session, the total dosage was 20 mL of Magnevist or Gadavist

and 60 mL saline. DICOM image files were converted into the

NIfTI file format (https://nifti.nimh.nih.gov/nifti-1) with func-

tions from the Insight ToolKit (https://lhncbc.nlm.nih.gov/

project/insight-toolkit).16 Images were skull-stripped by using

the Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

BET)17 from the FMRIB Software Library (fsl.fmrib.ox.ac.uk),

followed by manual refinement of the mask with Amira3D (Ver-

sion 6.0; FEI, Hillsboro, Oregon) and application of the mask by

using Matlab (MathWorks, Natick, Massachusetts). These clini-

cally acquired imaging sequences, with nonisotropic voxel sizes,

different section thicknesses, and different contrast mechanisms,

were intentionally used for this study to emphasize its real-world

applicability, because such images would be registered to each

other in the clinic for various purposes.

Landmarks
Fifteen landmarks (LMs) were manually specified per patient se-

quence, meaning that 60 independent landmark sites were speci-

fied across the 4 imaging sequences. For the entire set of 20 pa-

tients, 1200 LM points were planned. Landmarks were placed at

anatomically distinct locations across the entire brain volume

(Fig 1, On-line Fig 1, and On-line Table 2) by using the Amira3D

software. All fiducial sites were reviewed by multiple observers

(J.S.L., D.S.) with expertise in neuroanatomy, including a neuro-

radiologist with 15 years’ clinical experience (D.S.).

Landmark fiducial sites were chosen for their unambiguous

appearance across imaging sequences (ie, vessel intersections, bi-

furcations, inflection points, and unique geometries), so as to
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ensure correspondence between homologous sites (On-line Fig

2). The general locations of landmarks were similar across pa-

tients, but the exact placements differed from patient to patient

because of natural anatomic variations. Landmarks were intended

to be spatially distributed within the brain, to capture registration

error in many different regions. However, most suitable fiducial

sites ended up being in the midaxial area of the brain, due to

plentiful, easily identifiable anatomy being located there. Key sites

were therefore chosen in extreme anterior, posterior, inferior, and

superior locations to round out the placement of landmarks.

The standardized landmark coordinates shown in On-line Ta-

ble 2 were obtained by registering the T2 volume to the Inter-

national Consortium for Brain Mapping 152 Nonlinear Sym-

metric 2009b template,18 thereby generating coordinates in the

right-anterior-superior convention with the anterior commis-

sure as the origin. This template volume was only used for

determining these coordinates and was not part of the actual

registration experiments.

Registrations
Each patient’s T2 image volume served as the fixed image, and the

FLAIR, SWAN, and T1C images served as the moving image for

registration procedures.

Landmark registration was performed as a criterion stan-

dard reference. Rigid (6 df ) and affine (12 df ) transformations

with the fiducial LM sites as input were performed by using

convert3D (c3d).19 These registrations disregarded all imaging

content and focused only on minimizing the gap between cor-

responding landmarks, thereby creating a lower bound for tar-

get-to-registration error (TRE), defined as the Euclidean dis-

tance between 2 points in space.

The Volume Viewer software package (Version 11.3 Ext. 14;

GE Healthcare) available on the Advantage Workstation Server

(Version 2; GE Healthcare) was used for its Integrated Registra-

tion module with its specialized Neuro Registration mode. Regis-

trations for GE were performed on a stand-alone server dedicated

to this software.

The open-source Advanced Normalization Tools software

package (ANTs; http://stnava.github.io/ANTs/20) was used to

perform multiple registrations for each of the FLAIR-T2, SWAN-

T2, and T1C-T2 image pairs, by using both different similarity

measures (cross-correlation [CC] versus mutual information

[MI]) and different dfs for image movement (rigid versus affine).

All registrations were performed on a Linux workstation (Xeon

X5675 CPU @ 3.07GHz with 24 cores, 96 GB RAM; Intel, Santa

Clara, California).

FIG 1. Fiducial landmark locations in a synthetic 3D head volume model. Refer to On-line Table 2 for descriptions and coordinates.
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Analysis
Euclidean TRE values between fixed and moving images were

calculated at baseline (preregistration) and for 7 different regis-

tration experiments (Table 1). To create independent TRE mea-

surements for analysis, we averaged together multiple TRE values

within each patient by sequence. For location-dependent analy-

ses, TRE values were averaged across patients on the basis of co-

ordinate locations.

Baseline TRE values were analyzed on the basis of the time of

image acquisition and location in space. Postregistration TRE val-

ues were also analyzed, with Shapiro-Wilk test results used to

determine the appropriate ANOVA test for comparing means of

groups for main effects (On-line Fig 3). When we compared TRE

values of 8 different groups for a single sequence, if all groups

passed the Shapiro-Wilk test, the repeated measures ANOVA was

used, with post hoc testing with the Tukey test to adjust P values

for multiple comparisons (� � .05). Otherwise, the Friedman

nonparametric ANOVA was used, with post hoc testing by using

the Dunn test (� � .05). Pair-wise comparisons were also per-

formed between the best-performing algorithm for each sequence

and its runners-up (On-line Fig 4), with the paired t test used if

results for both groups passed the Shapiro-Wilk test. Otherwise,

the Wilcoxon signed-rank test was used. All statistical testing was

performed by GraphPad Prism software (Version 6.07, 2015;

GraphPad Software, San Diego, California) with P � .05 denoting

significance.

The Euclidean effectiveness ratio (EER, On-line Fig 5) repre-

sents the fraction of Euclidean error remaining after registration,

defined as 1 TRE gap (between the results of an algorithm of

interest and the affine LM algorithm [LM12]) divided by another

TRE gap (between baseline and LM12 results). The EER scale will

always be between 0 and 1 with values at the boundary interpreted

accordingly. The statistical effectiveness ratio (SER, On-line Fig 5)

is similar to the EER, but accounts for statistical noise. It is defined

as the ratio of 1 Cohen d (between an algorithm of interest [AOI]

and the LM12 results) divided by another Cohen d (between base-

line and LM12 results). The Cohen effect size d was calculated

between algorithms by using

dA � B �
�TREA � B

sA � B

where the 2 algorithms being compared are A and B, the pooled

SD, sA � B � ��nA � 1�sA
2 � �nB � 1�sB

2

nA � nB � 2
, sA is the SD of group A,

and nA is the number of samples in group A.

RESULTS
Images
Table 2 contains demographic information about patients from

this clinical trial. The “high movers” and “low movers” subgroups

are defined in “Baseline TRE as a Function of Time.”

Landmarks
Of the 1200 fiducial LM sites planned, 1175 were realized. Because

SWAN volumes in 17 of 20 patients had limited superior/inferior

head coverage, LM sites 14 and/or 15 had to be omitted, depend-

ing on the patient, for a deficit of 25 SWAN landmark sites (n � 10

omitted for LM site 14, and n � 15 omitted for LM site 15). The

resulting 1175 points translated to 875 LM pairs (300 for FLAIR-

T2, 275 for SWAN-T2, and 300 for T1C-T2). In 3 of 20 patients,

the SWAN imaging volume was located too superiorly to include

the normal locations of LM sites 1– 4 (the next most inferior land-

marks, after LM site 14). In these cases, alternative fiducial sites

were chosen, superior enough to still allow a valid site pairing with

the T2 volume.

Registrations and Analysis

Baseline TRE as a Function of Time. Baseline TRE increased as a

function of time in the magnet for the entire population (Fig 2,

left), with a best-fit line significantly different from the zero slope

(F � 17.80, P � .0001, R2 � 0.2348). Using z scores based on T1C

TRE values, we dichotomized patients into high movers (z 	

0.35) and low movers (z � 0.35). The line for the high movers was

significantly different from the zero slope (Fig 2, right; F � 33.64,

P � .0001), but the line for the low movers was not (F � 0.004419,

P � .9474).

Baseline TRE as a Function of Loca-
tion. We analyzed the high movers

group, and found that their predomi-

nant motion appeared to be rotatory in

nature, around an axis passing through

the dens (On-line Fig 6). TRE values

were therefore plotted against their dis-

tance from a point on this fulcrum axis

(Fig 3). For the T1C sequence (Fig 3,

lower row), the baseline TRE increased

with the distance from this point, with a

Table 1: Registration experiment inputs, parameters, and outputs
Registration
Experiment Inputs Software

Similarity
Measure df Outputs

Pre-registration NA NA NA NA TRE, EER, SER
GE Images GE Proprietary Proprietary TRE, EER, SER
Rigid CC Images ANTs CC 6 TRE, EER, SER
Rigid MI Images ANTs MI 6 TRE, EER, SER
Affine CC Images ANTs CC 12 TRE, EER, SER
Affine MI Images ANTs MI 12 TRE, EER, SER
Rigid LM LM c3d LM 6 TRE, EER, SER
Affine LM LM c3d LM 12 TRE, EER, SER

Note:—NA indicates not applicable; c3d, Convert3D; GE, GE Volume Viewer.

Table 2: Age, race, and frontal lobe tumor involvement of patient groups
All (n = 20) Female (n = 11) Male (n = 9) High Movers (n = 9) Low Movers (n = 11)

Age (mean) 45.3 � 16.4 40.7 � 17.7 50.9 � 14.3 38.1 � 15.3 51.2 � 15.5
Age range (yr) 21–75 21–75 28–67 21–66 29–75
Race (White/Black/Hispanic/Asian) (No.) 15/2/2/1 8/2/1/0 7/0/1/1 6/1/1/1 9/1/1/0
No. of patients with tumor with frontal lobe

involvement
11 (55%) 7 (64%) 4 (44%) 8 (89%) 3 (27%)
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best-fit line significantly different from the zero slope (F � 42.12,

P � .0074). However, the best-fit lines for FLAIR (F � 8.311, P �

.0634) and SWAN (F � 1.331, P � .3322) were not significantly

different from the zero slope, suggesting a threshold effect for

movement as time increases.

TRE and Euclidean Effectiveness Ratio after Registration. For

FLAIR TRE and EER values (Fig 4 upper row and On-line Table 3),

the rankings were the following: rigid MI � rigid CC � affine

CC � GE � affine MI. Pair-wise TRE comparisons between the

best algorithm and its runners-up did not reveal significant dif-

ferences for the rigid MI–rigid CC pair (P � .0552 paired t, effect

size d � 0.1492) or the rigid MI–affine CC pair (P � .0532 paired

t, effect size d � 0.3620). Significant differences did exist for the

rigid MI–GE pair (P � .0323 paired t, effect size d � 0.4627).

For SWAN TRE and EER values (Fig 4 middle row and On-line

Table 3), the rankings were the following: affine MI � GE �

rigid MI � affine CC � rigid CC. Pair-wise TRE comparisons

between the best algorithm and its runners-up revealed signif-

icant differences for the affine MI–GE pair (P � .0136, Wil-

coxon signed-rank test, effect size d � 0.4969) and the affine

MI–rigid MI pair (P � .0121, Wilcoxon signed-rank test, effect

size d � 0.6454).

For T1C, TRE, and EER values (Fig 4 lower row and On-line

Table 3), the rankings were: GE � affine MI � affine CC � rigid

MI � rigid CC. Pair-wise TRE comparisons between the best

algorithm and its runners-up did not reveal significant differences

for the GE–affine MI pair (P � .6640 paired t, effect size d �

0.0669), but they did reveal significant differences for the GE–

affine CC pair (P � .0042 Wilcoxon signed-rank test, effect size

d � 0.7720).

The SER rankings were the same as rankings based on TRE and

EER for the FLAIR and SWAN sequences. For the T1C sequence,

the SER ranking was different, selecting rigid CC as the top algo-

rithm (On-line Table 4).

TRE Values before Registration: FLAIR versus SWAN versus
T1C. Before registration, the mean TRE rankings were as follows:

FLAIR � SWAN � T1C. Differences among these 3 groups were

statistically significant (Friedman ANOVA, F � 9.300, P � .0096),

and post hoc testing showed significant differences for the FLAIR-

T1C pair, but not for the FLAIR-SWAN or SWAN-T1C pairs (P �

.0133, P � .0531, and P 	 .9999, respectively; Dunn test).

TRE Values after the Affine LM Registration: FLAIR versus SWAN
versus T1C. Affine LM results, representing the criterion standard

minimum possible TRE, consistently had the smallest TRE values

FIG 2. Plot of baseline TRE versus time, sorted by image sequence (left, FLAIR: blue diamonds, SWAN: red squares, T1C: green triangles) and by
patient movement (right, high movers: blue diamonds; low movers: red squares) (n � 15 for FLAIR and T1C, n � 12–15 for SWAN per data point).

FIG 3. Plots of TRE versus distance from the fulcrum point for FLAIR
(upper row), SWAN (middle row), and T1C (lower row). All TRE values
shown are from the high movers subpopulation (n � 27 for FLAIR and
T1C; n � 25–26 for SWAN per data point).

AJNR Am J Neuroradiol 38:973– 80 May 2017 www.ajnr.org 977



for each sequence, with rankings as follows: T1C � FLAIR �

SWAN. Differences among the 3 sequences were significant

(Friedman ANOVA, F � 12.40, P � .0020), with post hoc testing

showing significant differences for the SWAN-T1C pair, but not

the FLAIR-SWAN or FLAIR-T1C pairs (P � .0015, P � .6177,

and P � .0806, respectively; Dunn test).

TRE Differences by Landmark: Preregistration and Affine LM
Registration. Baseline TRE differences between landmarks (On-

line Fig 7, left) were significant (Friedman ANOVA, F � 30.23,

P � .0071), but post hoc testing with the Dunn test revealed sig-

nificant differences only for the LM site 5 to LM site 13 pair (P �

.0191), suggesting mainly random, not systematic, differences

among landmark locations. Differences among landmarks after

the affine LM registration (On-line Fig 7, right) were not signifi-

cant (Friedman ANOVA, F � 23.13, P � .0581).

DISCUSSION
The main findings from this study were the following:

1) The FLAIR, SWAN, and T1C image volumes, on average, all

had lower TRE values after registrations that corrected for spa-

tial errors due to patient motion. For open-source methods,

MI outperformed CC registrations and affine usually outper-

formed rigid registrations.

2) Spatial error values after registration were comparable with or

better than values found in the literature.

3) The unregistered spatial error increased as a function of time

in the magnet, and a subpopulation of patients, most with

frontal lobe tumor involvement, was responsible for most of

the time-dependence of the spatial error.

4) Better correction was possible between sequences with similar

planes of acquisition. If images are acquired in different

planes, out-of-plane distortion corrections should be applied.

5) The best algorithms with the EER metric were the same as the

best algorithms by TRE values.

The FLAIR, SWAN, and T1C image volumes, on average, all

had lower TRE values after registrations that corrected for spatial

errors due to patient motion, a finding that is compatible with

conventional wisdom regarding spatially aligning images before

analysis.21,22 For open-source methods, MI generally outper-

formed CC registrations, given the same df and image sequence;

this outcome agrees with existing literature.23 Affine usually out-

performed rigid transformations, given the same similarity mea-

sure and image sequence; this finding makes sense, given that the

latter is a special case of the former.22

The smallest TRE values for FLAIR (1.55 mm), SWAN (1.34

mm), and T1C (1.06 mm) were comparable with error values

from a commercial vendor that performed rigid, whole-volume

registrations on brain MR images (1.6 mm7). They were also com-

parable with or better than average nonlinear registration errors

for other body parts and imaging modalities, including CT-CT

lung (1.0 mm,24 2.05 mm25), CT-CT liver (1.8 mm24), MR-CT

liver (3.9 mm24), and MR-MR prostate (2.3 mm24).

Spatial error increased as a function of time in the magnet; this

finding supports previous observations about image misalign-

ments increasing with time during a scanning session26 and which

likely occurs due to patient restlessness expressed by repositioning

of the head. The high movers subpopulation, responsible for most

of the time-dependent error, was younger than the overall cohort

(38.1 versus 45.3 years), and 8 of 9 patients had tumors with

involvement in the frontal lobe, an area of the brain associated

with motor impulse control.27 Analysis of error versus location

suggests that most head movement during the scanning session

occurs as rotation about a fulcrum that is in line with the dens.

Better spatial corrections were possible between sequences

with similar planes of acquisition, because differences in native

orientations lead to differences in residual, out-of-plane distor-

tions. Specifically, FLAIR had left/right distortions (with the brain

pinched along the left/right axis, especially near the superior/in-

ferior edges of the volume), while T2, SWAN, and T1C did not

have such distortions (because reverse-pin-cushion-shaped cor-

rections had restored the brain to its proper shape and size, On-

line Fig 8). As a result, the smallest TRE value for FLAIR was larger

FIG 4. TRE and EER values (boxplots and circles, respectively; n � 20)
for FLAIR (upper row), SWAN (middle row), and T1C (lower row). TRE
differences among the 8 groups are statistically significant for FLAIR
(repeated measures ANOVA, F � 19.22, P � .0001), SWAN (Friedman
ANOVA, F � 103.5, P � .0001), and T1C (Friedman ANOVA, F � 108.5,
P � .0001). Asterisks indicate statistically significant TRE differences
from baseline. Asterisk indicates P � .05; 2 asterisks, P � .01; 3 aster-
isks, P � .001; 4 asterisks, P � .0001; FLAIR: Dunnett test; SWAN, T1C:
Dunn test).

978 Lin May 2017 www.ajnr.org



than the smallest TRE values for SWAN and T1C. Rigid also out-

performed affine registrations for the FLAIR sequence, because

affine transformations attempted to recreate the nonlinear effects

of distortion correction and unintentionally worsened FLAIR-T2

matching. Out-of-plane distortion corrections should therefore

be applied by MR imaging scanners, whenever available, to coun-

ter this problem.

The best algorithms by EER values (FLAIR, rigid MI; SWAN,

affine MI; T1C, GE) were the same as the best algorithms by TRE

values, which makes sense given that the EER is a normalization of

TRE that preserves the relative rankings of different algorithms

while facilitating comparisons across different sequences. The

SER, however, gave different rankings for T1C and is a less intui-

tive metric to interpret but attractive from a statistical perspective

due to its incorporation of noise.

Both single-voxel landmarks and labeled regions have been

used to assess registration accuracy for various purposes, with the

best assessment method ultimately dictated by the application

area and, to some degree, the resources available for the time-

intensive, manual label, and/or landmark dataset curation process

to create the criterion standard control. We believe that single-

voxel landmarks were an appropriate choice for our study, rela-

tive to labeled regions and their derived metrics. First, volume and

surface overlap metrics, as used in other literature, are well-

known to be biased by the total volume/surface and also ignore

misregistrations within the labeled regions themselves because no

landmarks exist inside those areas to assess correspondence.6

Also, using volume size as a metric is reasonable in the context of

nonlinear registration algorithms that can locally deform the im-

age volume and change the size of labeled anatomic regions, but

our affine registrations create minimal regional size changes,

making volume size an inappropriate metric and further motivat-

ing the use of pinpoint, single-voxel landmarks in a manner that

extends prior work.7 Additionally, surface distance, which de-

scribes registration success by using the average distance between

points on one surface to the closest points on another surface,6

disregards whether homologous points are being compared and

highlights a possible lack of spatial precision.

This article targets the radiologic clinic, where patient care

involves the affine registration of a single patient’s images across

modalities and/or techniques to assess pathology. Because of the

guaranteed anatomic correspondence across these images, single-

voxel landmarks can be successfully used to assess registration

performance. Additionally, spatially precise landmarks are pre-

ferred over a labeled region overlap measure in this context be-

cause the use of a single person’s images guarantees that a homol-

ogous point can be found. Moreover, if wisely distributed

throughout the brain volume, these single-voxel landmarks can

give a sense of the regional registration error not obtainable by

using labeled regions. However, if the registration goal is to spa-

tially align the images from different patients (as is frequently the

case in the grouping of functional MR imaging data), it makes

sense to use volume overlap as the metric of success, particularly

given anatomic variations among patients.

Multiple limitations existed for this study. The placement of

fiducial landmark sites was subject to user error, voxel size limi-

tations, and image deformations caused by patient motion. A

neuroanatomic expert therefore evaluated all landmark sites, fol-

lowed by adjustments, if needed. Fiducial sites were also limited to

those locations that could be reliably identified across images with

widely different contrast mechanisms, with most sites ending up

in the central region of the brain. To help compensate for this

limitation, we sought a well-rounded distribution of landmarks in

the anatomy that was usable and also placed landmarks at extreme

anterior, posterior, superior, and inferior locations. Measure-

ment precision was limited by using voxels (discretized represen-

tations of anatomy) to measure spatial error on a continuous

scale. All voxel sizes and error values as originally calculated are

therefore reported, to allow readers to form their own judgments.

Our patient number was low and focused on a treatment-naïve

patient population with gliomas. Further studies are needed to

investigate biases in the registration accuracy that may be influ-

enced by the major disease phenotypes seen in a general patient

population, including brain metastases, stroke, neurodegenera-

tion, postsurgery, and postradiation.

CONCLUSIONS
In summary, we developed and evaluated a methodology to quan-

tify the registration accuracy of registration algorithms. The

method could be used to test any algorithm, providing easy-to-

interpret figures of merit that allowed meaningful comparisons

with other algorithms in clinical practice. We advocate the publi-

cation of figures of merit such as these for all clinical registration

algorithms, to better inform the choices of clinical users and allow

the future development of improved algorithms for clinical use.
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