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ABSTRACT

BACKGROUND AND PURPOSE: Quantitative susceptibility mapping has been used to characterize iron and myelin content in the deep
gray matter of patients with multiple sclerosis. Our aim was to characterize the susceptibility mapping of cortical lesions in patients with
MS and compare it with neuropathologic observations.

MATERIALS AND METHODS: The pattern of microglial activation was studied in postmortem brain tissues from 16 patients with second-
ary-progressive MS and 5 age-matched controls. Thirty-six patients with MS underwent 3T MR imaging, including 3D double inversion
recovery and 3D-echo-planar SWI.

RESULTS: Neuropathologic analysis revealed the presence of an intense band of microglia activation close to the pial membrane in subpial
cortical lesions or to the WM border of leukocortical cortical lesions. The quantitative susceptibility mapping analysis revealed 131 cortical
lesions classified as hyperintense; 33, as isointense; and 84, as hypointense. Quantitative susceptibility mapping hyperintensity edge found
in the proximity of the pial surface or at the white matter/gray matter interface in some of the quantitative susceptibility mapping–
hyperintense cortical lesions accurately mirrors the microglia activation observed in the neuropathology analysis.

CONCLUSIONS: Cortical lesion susceptibility maps are highly heterogeneous, even at individual levels. Quantitative susceptibility map-
ping hyperintensity edge found in proximity to the pial surface might be due to the subpial gradient of microglial activation.

ABBREVIATIONS: CL � cortical lesion; DIR � double inversion recovery; EDSS � Expanded Disability Status Scale; MHC � major histocompatibility complex;
MOG � myelin oligodendrocyte glycoprotein; NAGM � normal-appearing gray matter; nQSM � QSM value in the NAGM; nQSMcontra � median value of susceptibility
from the reference tissue mask in the contralateral hemisphere; nQSMsurr � median value of susceptibility from the reference tissue mask surrounding the lesion;
QSM � quantitative susceptibility mapping; RRMS � relapsing-remitting multiple sclerosis; SPMS � secondary-progressive multiple sclerosis

In recent years, it has become increasingly clear that cortical and

deep gray matter are not spared in multiple sclerosis.1,2 Several

neuropathologic studies have consistently demonstrated that cor-

tical gray matter lesions (CLs) are frequent in MS and that their

accumulation strongly correlates with long-term disability mea-

sures.3 These observations have been confirmed and extended by

imaging studies showing that CLs correlate with both physical and

cognitive disability.4,5 Unfortunately, despite these data, little is

known about the pathogenetic mechanisms underlying CL

development.

Neuropathologic studies have highlighted the lack of substan-

tial focal immune infiltrates, complement deposition, and blood-

brain barrier damage in MS CLs6,7 and have suggested that men-

ingeal inflammation and activated microglia may have a key role

in GM damage.3,8 In particular, most of the examined CLs in

postmortem brain samples exhibit a chronic inflammatory phe-

notype and rims of activated microglia close to the pial surface or

the lesion edge.3,8,9

In a previous MR imaging/histopathologic combined study,10

hypointense rings on T2*, representing activated microglia or
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macrophages, were observed at the edge of chronic active CLs.

Similar rings have been reported in white matter lesions by using

T2* phase imaging.11 These results, in line with those by Kooi et

al,12 showed that some patients with MS had rims of activated

microglia at the border of the CLs, whereas others did not. More

recently, a study on ultra-high-field MR imaging on postmortem

specimens of 2 patients with MS13 did not find rings of activated

iron-laden microglia within CLs, and all CLs appeared darker in

R2* images and brighter in magnitude images.

Magnetic susceptibility is a fundamental physical tissue prop-

erty, which is known to reflect clinically relevant tissue character-

istics, such as tissue iron content. During the last decades, phase

imaging,14 SWI,15 and T2* imaging16 have been used to qualita-

tively assess magnetic susceptibility variations in cerebral tissue,

including deep and cortical gray matter.17 Increased paramag-

netic susceptibility-weighted filtered phase values were observed

in the putamen in patients with clinically isolated syndrome com-

pared with healthy controls.18 Thus, this finding suggests that

susceptibility is sensitive to MS even in the early phase of the

disease. In this context, quantitative susceptibility mapping

(QSM),19 which overcomes several nonlocal restrictions of sus-

ceptibility-weighted and phase imaging, could shed some light on

the pathologic process taking place in the cortical GM of patients

with MS. A recent study has investigated MS, using QSM in the

basal ganglia,20 showing that iron accumulation correlated with

disease progression even in a patient with clinically isolated syn-

drome. Moreover, another group showed how WM MS lesions

could be investigated longitudinally with QSM; the investigation

could provide insight into the pathogenesis of those lesions.21

However, limited quantitative susceptibility data of cortical GM

and, especially, of CLs are available. Indeed, only a recent study at

7T showed,22 in a restricted cohort of patients with MS, hetero-

geneity in CLs, with a predominant iron loss hypothesis.

In the present study, the characteristics of CLs were first deter-

mined with an analysis of microglial/macrophage activity in the

postmortem MS brain, followed by the analysis of similar lesions

in patients. 3D echo-planar imaging, which uses phase data to

quantify local tissue susceptibility, was combined with a 3D dou-

ble inversion recovery (DIR) at 3T to characterize the in vivo

susceptibility of CLs in patients with MS.

MATERIALS AND METHODS
Neuropathologic Analysis
This study was performed on postmortem brain tissues from

16 patients with secondary-progressive multiple sclerosis

(SPMS) (mean age at death, 44.4 � 6.2 years, Table 1; disease

duration, 23.31 � 8.55 years; time to wheelchair [from onset to

Expanded Disability Status Scale {EDSS} 7], 41.21 � 7.83

years; relapse rate in the first 2 years of the disease, 2.6 � 1.3)

selected for the presence of widespread cortical demyelination

associated with meningeal inflammation and by more rapid

and severe disease outcome associated with intense inflamma-

tory activity among a larger group of 48 patients with SPMS

previously extensively characterized for the presence and levels

of inflammatory features and the extent of gray and white mat-

ter demyelination.23 Postmortem brain tissues from 8 con-

trols, with no neurologic diseases, were also examined. In 3

snap-frozen tissue blocks for each SPMS and control case, the

presence and extent of demyelination and characterization of

CL activity were determined by immunostaining with mono-

clonal antibodies for myelin oligodendrocyte glycoprotein

(MOG) and major histocompatibility complex (MHC class

II).3,24 CLs were classified, as previously described8 into leu-

kocortical type I, intracortical type II, or subpial type III.

In Vivo Study Population
Thirty-six patients with MS25 having at least 1 MR imaging–

visible CL were studied (Table 2). Twenty-one had relapsing-

remitting MS (RRMS), and 15 had secondary-progressive MS.

At study entry, most patients were under immunomodulatory

therapy: Twelve were treated with interferon �1a/b�1b or

glatiramer acetate; 6, with fingolimod; 4, with natalizumab; 3,

with azathioprine; and 3, with dimethyl fumarate; and 8 were

untreated.

Each patient was assessed with the Expanded Disability Status

Scale26 and underwent 3T MR imaging as described below. The

study was approved by the University of Verona ethics commit-

tee, and informed consent was obtained from all patients.

MR Imaging Acquisition and Analysis
All patients were scanned with an Achieva 3T MR imaging scan-

ner (Philips Healthcare, Best, the Netherlands). Isotropic 3D DIR

(1 � 1 � 1 mm, 10 minutes 49 seconds), 3D T1-MPRAGE (1 �

1 � 1 mm, 5 minutes 50 seconds), and 3D EPI-SWI (0.55 �

0.55 � 0.55 mm, 5 minutes 51 seconds) images were acquired.

Quantification of susceptibility maps was performed by using the

recently introduced total generalized variation framework.27

After coregistration with 3D EPI, 3D DIR images were visually

Table 1: Neuropathologic details of postmortem brain tissue used
in the study

Sex/Age
at Death (yr)

Postmortem
Delay (hr)

Age at
Onset (yr)

SPMS cases
MS92 F/38 26 21
MS121 F/49 24 36
MS154 F/35 12 23
MS160 F/44 18 29
MS176 M/37 12 10
MS180 F/44 9 26
MS229 M/53 13 37
MS230 F/42 31 22
MS234 F/39 15 23
MS286 M/45 7 29
MS289 M/45 9 27
MS317 F/48 21 18
MS330 F/59 24 19
MS356 F/45 10 28
MS408 M/39 21 29
MS517 F/48 12 23

Control cases
C14 F/64 18
C25 M/35 22
C28 F/60 13
C30 M/75 17
C36 M/68 30
C41 M/51 22
C48 M/68 10
C54 M/66 16
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inspected and CLs were identified as intracortical or leukocortical

lesions. Each CL was identified following the recent recommen-

dations for CL scoring in patients with MS.28 All DIR images were

assessed by consensus of experienced observers who were blinded

to patient identity.

The appearance of CLs (identified with the DIR) on the QSM

map was then evaluated. Each lesion was manually segmented on

the DIR and then moved on the QSM. T1 was segmented to obtain

a normal-appearing gray matter (NAGM) map.29,30 A threshold

of P � .9 was used to ensure including mainly GM. The NAGM

mask was then moved to the QSM space. The obtained GM mask

was then used to segment a portion of the NAGM surrounding the

lesion. Each CL mask was dilated (a circle of 7 pixels was used as

the kernel) and was used to reduce the whole GM mask to the

surrounding NAGM tissue. The surrounding mask was then re-

fined by subtracting a dilated mask of the CL (circle of 3 pixels) to

exclude the proximity of the lesion. We repeated the procedure,

choosing a contralateral area of the brain as a reference (in-

cluding only NAGM tissue). The median values of susceptibil-

ity from the reference tissue mask surrounding the lesion

(nQSMsurr) and in the contralateral hemisphere (nQSMcontra)

were subtracted from the QSM estimates within the CL. The

distributions of both nQSMsurr and nQSMcontra were then

tested with a t test versus a zero-mean distribution. If both test

results were statistically significant, the CL was classified as not

isointense; otherwise, it was considered isointense. If the mean

of both nQSMsurr and nQSMcontra was greater (lesser) than

zero, the CL was classified as hyperintense (hypointense). If the

mean value was discordant between the 2 references, the CL

was discarded from the evaluation.

Statistical Analysis
Differences between RRMS and SPMS were assessed with

ANOVA. The Pearson �2 was applied to test the difference

between the 2 patient groups in terms of categoric data (per-

centage of lesions). The Pearson correlation coefficient was

used to assess the correlation between disease duration and

lesion-counting metrics, whereas the Spearman coefficient was

used to analyze the correlation with the EDSS. When we calcu-

lated correlations, a false discovery rate (with a false-positive rate

of 0.05) correction technique was used to address multiple com-

parison correction issues. Each statistical test was considered sig-

nificant with a level of .05 when not otherwise specified.

RESULTS
Neuropathologic Analysis of Microglia Activity in CLs
To evaluate the microglia/macrophage activation in the different

types of CLs, we performed immunostaining for MHC class II and

CD68 on tissue blocks from 16 SPMS cases. The activity of all 127

CLs identified in the examined SPMS cases was analyzed: the larg-

est proportion (45.0%) was chronic active, identified as cortical

areas with MHC-II� cells mainly localized at the lesion edge (Fig

1A), in agreement with previous studies.3,8 This type of CL was

more abundant compared with both chronic inactive (25.9%),

with very low MHC II� cell density through the entire lesion, and

active (29.1%) CLs, characterized by numerous MHC-II� lesions

in the lesion core and borders (Fig 1A).

Examination of the inflammatory activity of large CLs (Fig 1B)

showed that MHC class II immunostaining was mainly restricted

to activated microglia with ramified morphology, with a higher

density in the most external cortical layers close to the pial mem-

brane in subpial type III CLs (Fig 1C) or close to the WM portion

in type I CLs (Fig 1D), either in actively demyelinating or chronic

active lesions. In chronic inactive lesions, a lower density of

MHC-II� cells was present, scattered in all demyelinated areas

(Fig 1E, -F). Furthermore, for each of the examined patients with

MS, all the different types of CL activity were found. Large CLs

(Fig 1B) sometimes contained, simultaneously, rims of activated

microglia either close to the pial surface (Fig 1C) or toward the

WM lesion border (Fig 1D).

Imaging Data
Two hundred fifty-five CLs were identified in the living popula-

tion. On the basis of the DIR sequence, 126 CLs were pure intra-

cortical and 129 CLs were leukocortical; on the basis of QSM, 131

were hyperintense, 33 were isointense, and 84 were hypointense (Fig

2). Seven CLs were discarded from the analysis because discordant

results of the t test between nQSMsurr and nQSMcontra were found.

Among the 36 patients with MS, 32 showed at least 1 QSM-hyperin-

tense CL, 16 showed at least 1 QSM-isointense CL, and 23 showed at

least 1 QSM-hypointense CL. Twenty-six patients (72.22%) showed

at least 2 QSM subtypes of CLs, and 11 patients showed all QSM

subtypes of CLs at the same time. Table 2 shows the differences be-

tween intracortical and mixed GM/WM lesions.

The number of hyperintense CLs was higher in RRMS (mean,

4.1 � 1.4; range, 0–14) compared with SPMS (mean, 2.2 � 1.5;

range, 0–5), while the number of hypointense CLs was higher in

patients with SPMS (mean, 0.8 � 1.1; range, 0–4 in RRMS; mean,

3.5 � 3.5; range, 0–11 in SPMS). Indeed, in RRMS, 61.4% of CLs

were hyperintense and 23.4% were hypointense, whereas in SPMS,

40.7% of CLs were hyperintense and 48.5% were hypointense.

Table 2: Demographic, clinical, and QSM-related characteristics
of the patient population

RRMS SPMS
Whole
Group

No. 21 15 36
Age (yr) 36.2 � 5.8 49.5 � 9.2 40.5 � 8.0
Disease duration (yr) 9.7 � 6.3 16.9 � 7.0 12.7 � 7.5
Sex (F/M) 16:5 9:6 25:11
EDSS (mean) (range) 2.0 (1.0–5.5) 5.0 (4.0–7.0) 3.0 (1.0–7.0)
No. of intracortical lesions

(mean)
Total 4.5 � 3.6 2.1 � 2.6 3.5 � 3.4
QSM-hyperintense 2.8 � 2.3 0.9 � 1.2 2.0 � 2.1
QSM-isointense 0.6 � 0.7 0.1 � 0.4 0.4 � 0.6
QSM-hypointense 1.1 � 1.5 0.9 � 1.8 1.0 � 1.6

No. of leukocortical lesions
(mean)

Total 2.6 � 3.1 5.0 � 3.5 3.6 � 3.5
QSM-hyperintense 1.5 � 1.8 1.9 � 1.5 1.7 � 1.7
QSM-isointense 0.5 � 0.9 0.6 � 1.3 0.5 � 1.1
QSM-hypointense 0.5 � 0.9 2.4 � 2.4 1.3 � 1.9

No. of total lesions (mean)
Total 7.1 � 5.2 7.1 � 5.0 7.1 � 5.1
QSM-hyperintense 4.2 � 3.4 2.8 � 2.3 3.6 � 3.0
QSM-isointense 1.0 � 1.2 0.7 � 1.3 0.9 � 1.3
QSM-hypointense 1.6 � 1.8 3.3 � 3.7 2.3 � 2.8
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A moderate inverse correlation was observed between hyper-

intense intracortical CLs and disease duration (r � �0.48), while
no correlation was observed between disease duration and hy-
pointense or isointense CLs.

The total number of CLs correlated with EDSS (r � 0.51). In
patients with RRMS, the correlation between both total QSM-
hyperintense CLs and intracortical hyperintense CLs with
EDSS was marked (r � 0.63 and 0.71, P � .05), while no cor-
relation was observed between EDSS and QSM-hypointense or
isointense CLs. Moreover, no correlation was found among
hyperintense, hypointense, or isointense CLs and EDSS in pa-
tients with SPMS.

Neuropathology/Imaging
Comparison
The QSM hyperintensity edge found

in proximity to the pial surface in

some examined QSM-hyperintense CLs

mirrored the intense microglia ac-

tivation found close by the pial surface

in most subpial CLs observed in post-

mortem SPMS cases. Indeed, the in-

tense band of microglia activation fre-

quently found at the depth of cerebral

sulci of active CLs (Fig 3A, B, -E, blue

arrowheads), with a characteristic gra-

dient of increased microglia density in

the external cortical layers (I-III), de-

creasing toward the most inner corti-

cal layers (Fig 3E), resembled the hy-

perintense QSM signal seen in Fig 3J

(blue arrowheads). Similar intense

MHC-II immunostaining was also ob-

served along the surface of the cerebral

sulci (Fig 3A, -C yellow arrowheads),

especially in regions of active demyeli-

nating subpial GM, comparable with

the QSM hyperintensity edge found in

proximity to the pial surface within ce-

rebral sulci (Fig 3J, yellow arrow-

heads). Also, the QSM hyperintensity

edge found at the WM/GM border

seems to resemble the microglia/mac-

rophage activation detected at the

WM/GM interface in leukocortical le-

sions (Fig 3H). Most interesting, a

marked difference in MHC-II� den-

sity and morphology has been ob-

served in WM and GM (Fig 3H)

portions of type I CLs, suggesting

functional differences in the resident

microglia cells in these areas and a dif-

ferent ratio of microglia/monocyte-

derived macrophages in the presence

of a higher myelin density.

DISCUSSION
In this preliminary study, we combined
neuropathologic analysis of GM lesion

activity and a new imaging approach with 3D DIR and QSM, with
the aim of better characterizing CLs in patients with RRMS and
SPMS. Our results suggest that combined 3D DIR and QSM may
reveal the area of intense microglia/macrophage activity and den-
sity in CLs as also detected by neuropathologic assessment. Fur-
thermore, our data show that CLs are highly heterogeneous as
revealed by their susceptibility maps. This heterogeneity was pres-
ent across, and in some cases within, the lesions. These data are
partially in contrast to a recent MR imaging study performed at
7T showing negative relative susceptibility values in 25 of the 27
CLs.22 However, the low number of patients and CLs analyzed
might account for this discordance. Moreover, it is likely that the

FIG 1. Neuropathologic assessment of cortical lesion activity. The number of active, chronic
active, and chronic inactive GM lesions was evaluated with MHC class II immunostaining in 3
snap-frozen tissue blocks (A) for each of the examined 16 postmortem MS cases. A significant
increased level of chronic active CL has been found compared with both active and chronic
inactive CL. MOG immunostaining (B) shows an extensive chronic active subpial type III GM
lesion, also reaching the WM (arrowheads). Combined MHC class II immunostaining of serial
sections (C and D) demonstrates the high density of activated MHC-II� cells close to the pial
surface of the lesion (arrow in B, higher magnification in C) and toward the WM edge of the
lesion (arrowheads in B, higher magnification in D). In a chronic inactive subpial CL (D),
minimal density of MHC-II� cells (E) has been found. In extensive chronic inactive lesions
shown by MOG immunostaining loss (E), the lower density of MHC-II� cells was present and
scattered in all the demyelinated area, also close to the pial surface (asterisk in E, and higher
magnification in F). Original magnifications �25 (B and E),�200 (C, D, and F).
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susceptibility of CLs changes with time in relation to their ac-
tivity as previously shown for WM lesions. Therefore, the low
activity of the patients with MS and of the number of CLs
detected at the time of the MR imaging might also help explain
this contradiction.31-33

The high variability of CLs in inflammatory activity in patients
with MS has been already described by several neuropathologic
studies mainly based on SPMS patients with a relatively long dis-
ease duration3,8,12,34 or on material from biopsies of patients with
early MS with tumefactive lesions.9 Despite these neuropatho-
logic observations, there are no available data in vivo that charac-
terize the inflammatory activity of CLs in the early phase of the
disease. In a previous MR imaging study, we observed that a small
subgroup of CLs was significantly hyperperfused; this finding sug-
gested the presence of an active inflammatory process within cor-
tical GM.35

Although the number of patients with SPMS was quite low for
drawing definitive conclusions, QSM-hyperintense CLs appeared to
be more frequent in the RRMS group, while QSM-hypointense le-
sions were more frequent in SPMS. This result, along with the mod-
erate inverse correlation between the number of QSM-hyperintense
CLs and disease duration, might suggest that QSM-hyperintense le-
sions characterize the more inflammatory and acute phases of the

disease, while QSM-hypointense CLs characterize the chronic (less
inflammatory) disease stage. Nevertheless, the presence of each type
of QSM-visible CL in both RRMS and SPMS suggests that the heter-
ogeneity of GM lesion types persists during the entire disease course.
Of course, we are aware that the DIR sequence detects only a reduced
portion of CLs36 and that the use of other sequences such as phase-
sensitive inversion recovery might help improve their detection.37

However, recent comparative histologic/MR imaging studies have
demonstrated that the “tip of the iceberg” detected by MR imaging
and its “bulk” differ only in size and that the number of detectable
CLs correlates with their overall number and with the overall per-
centage of cortical demyelination.36 The ability of QSM in detecting
CLs itself has not been tested; however, we do not advise acquiring
only the SWI sequence. Using the DIR or even the phase-sensitive
inversion recovery sequence is recommended as a guide for detecting
CLs.

Although the factors contributing to the susceptibility in the
cortex are not fully established,38 initial studies of healthy brains
both in vivo and postmortem have suggested that myelin and
both heme and nonheme iron have dominant effects in condi-
tioning the susceptibility map.39,40 In contrast to R2*, which in-
creases proportionally to the concentration of both iron41 and
myelin,42 the 2 substances have opposing effects on the magnetic

FIG 2. Illustration of examples of cortical lesion appearance on the quantitative susceptibility map obtained with the total generalized variation
algorithm from the 3D EPI susceptibility-weighted scan. Each panel denoted by a letter is divided in 3 subpanels: 1) QSM with contoured CL (red
line); 2) QSM with a superimposed CL (red), the NAGM reference tissue used in the CL classification (yellow), and NAGM obtained from the
segmentation of the 3D T1 MPRAGE (cyan); 3) QSM with superimposed the 3D double inversion recovery sequence, where the CL detection and
segmentation was performed. A–D, Hypointense lesions. E–H, Hyperintense lesions. The classification of CLs was performed with a 2-sided t test
between QSM estimates in the lesion (with subtracted the median value of the reference QSM value in the NAGM) and a zero mean Gaussian
distribution. When the t test was significant and the mean of nQSM was greater (lesser) than zero, the lesion was classified as hyperintense
(hypointense).
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FIG 3. Combined neuropathologic and MR imaging characterization of lesion activity in CLs. A–H, Immunohistochemistry staining of MOG (A–C and
G) and MHC class II (D–F and H) in subpial (A–F) and leukocortical (G and H) CLs in postmortem MS brains. I–K, MR images of heterogeneous CLs in
patients with MS in vivo; I, 3D double inversion recovery. J, Quantitative susceptibility mapping calculated with the total generalized variation algorithm.
K, DIR superimposed on the QSM map. MOG and MHC-II immunostaining on serial sections show ongoing subpial demyelination (blue arrowheads in
A, higher magnification in B) and intense pick of MHC-II� glia activation (D, higher magnification in E) at the depth of a cerebral sulcus, resembling the
QSM hyperintense signal (blue arrowheads in J) in similar regions. Concurrent complete subpial demyelination (yellow arrowheads in A, higher
magnification in C) and intense peak of MHC-II� glia activation (F) were also detected along the pial surface of the same cerebral sulcus (yellow
arrowheads in A), respectively, resembling similar QSM hyperintense signal (yellow arrowheads in J). In type I leukocortical lesions, shown by MOG
immunostaining (G), high occurrence and density of MHC-II� activated microglia and macrophages (H) were observed at the GM/WM interface (green
arrowheads in G and H). Higher magnification of the GM/WM interface (green arrowheads in H) reveals higher density of MHC-II� cells mainly in
proximity to inflammatory infiltrates (asterisks in G) within the WM border of the lesions, possibly corresponding to the frequent QSM hyperintense
signal shown by green arrowheads in J. Original magnifications �100 (A, D, and G), �200 (B, C, E, F, and H).
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susceptibility maps,43,44 because the proteins and lipids associ-
ated with myelin render its susceptibility diamagnetic.45,46

Our neuropathologic data, in line with previous studies,3,8,47

confirmed that a significant proportion of type III and type I
chronic active CLs are associated with a gradient of increased
microglia activation in the most external cortical layer, close to the
pial surface (in subpial type III CLs; Fig 3, yellow arrows) or to the
WM interface (in leukocortical type I CLs; Fig 3, blue arrows).
This finding was also observed in a recent neuropathologic
study12 showing that in a subset of patients with MS with CLs, part
of the CLs were characterized by a rim of activated microglia at
their border. The examined postmortem SPMS cohort included
MS cases that, at the time of death, had differences in both disease
duration and clinical disability compared with the in vivo SPMS
cases. These differences may explain the increased activity of the
CLs detected in the postmortem SPMS cases.

Although our pathologic and MR imaging analyses are derived
from 2 different cohorts of patients and therefore a direct com-
parison is only theoretic, on the basis of the similarity of the neu-
ropathlogic and MR images, we hypothesize that the QSM-hyper-
intensity could be due to activated microglia/macrophages that
phagocytose nonheme iron–rich cellular debris. As suggested by
previous pathologic and imaging studies,3,10,48,49 the presence of
a hyperintense rim in part of the detected CLs could indicate the
presence of iron accumulation in microglia/macrophages at the
subpial edge (in type III CLs) or at the WM/GM interface. If this is
the case, the sensitivity of QSM in detecting activated microglia
might explain some of the subpial hyperintensities observed with
this sequence and not with the DIR sequence, which is usually not
sensitive enough for subpial lesions (Fig 2). A recent study50 on a
limited number of patients showed the capability of QSM to bet-
ter discriminate intracortical and leukocortical lesions, thus sug-
gesting that QSM could be useful in predicting and detecting early
modifications of normal-appearing tissues.51 Nevertheless, fur-
ther studies that combine postmortem MR imaging and neuro-
pathologic analysis on the same cohort are currently in progress.

The QSM hyperintense signal frequently observed in proxim-
ity to, or within, the WM portion of the detected leukocortical
lesions might resemble the similar increased density of MHC-II�
microglia found in the WM portion of the type I CLs. This resem-
blance might indicate the expanding inflammatory rim involved
in the neuropathogenesis of type I CLs.

At least 2 alternative hypotheses might explain the presence of
a hyperintense QSM signal: The hyperintense QSM signal could
be generated by the increased iron release from intracellular de-
posits to extracellular spaces or by the iron leakage following
blood-brain barrier damage in the acute phases of the disease.
However, it is not usual within the cortical GM to have a BBB
breakdown.52 The second hypothesis suggests that oligodendro-
cytes constitute an important source of iron, and changes in iron
signal could be associated with a loss of oligodendrocytes and
reduction of nonheme iron within oligodendrocytes and myelin
in MS plaques and periplaque areas.52 Therefore, the detected
QSM-hypointensity could be due to a decrease of nonheme tissue
iron, which characterizes those inactive GM lesions without acti-
vated microglia and is more frequent in patients with a long dis-
ease duration.53

Several observations have suggested that an abnormal deposi-

tion of iron might also play a significant role in the pathophysiol-
ogy of GM damage in patients with MS54 as also is shown for
many age-related degenerative disorders.55 While confirming the
well-known relationship between CLs and disability,56 our data
have extended these results, showing a significant correlation be-
tween QSM-hyperintense CLs (more than the hypointense CLs)
and EDSS within the RRMS group. The reason for the lack of
correlation in the SPMS group may be likely found in the low
number of patients included in the study and in the lower number
of QSM-hyperintense CLs; this possibility is in line with the neu-
ropathologic observation of the higher frequency of chronic ac-
tive lesions in the examined postmortem SPMS brains. Neverthe-
less, the correlation with disability has not been found with
hypointense or isointense CLs because of the possible detrimental
role of chronic activated microglia.57 Further longitudinal studies
on larger sample sizes may clarify this interesting clinical point.

CONCLUSIONS
Our study revealed that CLs in MS are heterogeneous during the

entire course of the disease, not only among patients but also

within the same patient and, sometimes, within the same lesion.

These results corroborate the hypothesis of substantial clinical

and immunopathologic heterogeneous patterns of MS inflamma-

tion/demyelination during the disease course. Moreover, the

highest frequency of QSM-hyperintense CLs in RRMS and their

correlation with EDSS in this group of patients seem to suggest a

key role of activated microglia/macrophages in the early and acute

phases of the disease. The combined use of QSM and DIR could be

a useful tool to monitor the disease evolution and to identify those

patients with higher rates of inflammatory cortical demyelination

and associated neurodegeneration.
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