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BRIEF/TECHNICAL REPORT
ADULT BRAIN

Improved Spatiotemporal Resolution of Dynamic
Susceptibility Contrast Perfusion MRI in Brain Tumors Using

Simultaneous Multi-Slice Echo-Planar Imaging
X A. Chakhoyan, X K. Leu, X W.B. Pope, X T.F. Cloughesy, and X B.M. Ellingson

ABSTRACT
SUMMARY: DSC perfusion MR imaging in brain tumors requires a trade-off between spatial and temporal resolution, resulting in less
spatial coverage to meet the temporal resolution requirements for accurate relative CBV estimation. DSC-MR imaging could potentially
benefit from the advantages associated with simultaneous multi-slice imaging, including increased spatiotemporal resolution. In the
current article, we demonstrate how simultaneous multi-slice EPI can be used to improve DSC-MR imaging spatiotemporal resolution in
patients with glioblastoma.

ABBREVIATIONS: rCBV � relative CBV; SMS � simultaneous multi-slice

DSC perfusion MR imaging estimates of relative CBV (rCBV)

have been shown to differentiate histologic tumor grade,1,2

predict survival, and be useful for therapeutic monitoring in brain

tumors3; however, DSC requires compromises in image resolu-

tion, slice coverage, and temporal resolution. The TR must be

short enough to capture the rapid passage of the contrast bolus

through the blood vasculature, but at the same time, there must be

enough spatial coverage to encapsulate the entire tumor or brain.

Simultaneous multi-slice (SMS) EPI4 has drawn widespread at-

tention due to the advent of highly accelerated images5 through

the application of composite radiofrequency pulses to simultane-

ously excite multiple slice planes.6 The SMS technique excites

multiple slices physically separated across the z-axis simultane-

ously so that each SMS “slab” has slices acquired interleaved

within that section. SMS has been shown to not have appreciable

loss in SNR compared with traditional methods,4 and studies have

shown that SMS is effective in reducing the acquisition time with

higher spatiotemporal resolution.5,7,8 In the current article, we

demonstrate the clinical utility of using SMS-EPI to increase the

spatiotemporal resolution of DSC-MR imaging in patients with

glioblastoma.

MATERIALS AND METHODS
Patients
Thirteen patients with pathologically confirmed primary glioblas-

toma with recurrence based on either MR imaging, clinical dete-

rioration, and/or histology were enrolled in this prospective

study, which was approved by our local ethics institutional review

board (University of California, Los Angeles). All patients under-

went DSC-MR imaging with conventional single-shot EPI fol-

lowed by SMS-EPI, 1–2 months later.

DSC-MR Imaging Acquisition
A preload bolus of 0.025 mmol/kg of Gd-DTPA (Magnevist;

Bayer HealthCare Pharmaceuticals, Wayne, New Jersey) was ad-

ministered to reduce leakage effects followed by 0.075 mmol/kg of

Gd-DTPA at a rate of 5 mL/s. Two minutes of data were acquired,

including a 30-second prebolus baseline and 90 seconds of data

during and following contrast injection.

Conventional DSC-MR imaging was then acquired using a

single-shot gradient-echo EPI at 3T (Prisma; Siemens, Erlangen,

Germany) with TE � 35 ms, TR � 1.25–1.9 seconds, flip angle �

60°, FOV � 24 � 24 cm, matrix size � 128 � 128, generalized
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autocalibrating partially parallel acquisition � 2, slice thickness �

5 mm with no interslice gap, and 15- to 20-slice coverage. The

voxel size was 1.875 � 1.875 � 5 mm, and the temporal resolution

was 1.25–1.90 seconds.

Accelerated DSC-MR imaging was obtained with single-shot

SMS-EPI with TE � 35ms, TR � 750 ms, flip angle � 60°, FOV �

21.6 � 24 cm, matrix size � 180 � 200, slice thickness � 4 mm

with no interslice gap, controlled aliasing in parallel imaging re-

sults in higher acceleration factor � 2, and an SMS acceleration

factor of 4 for a total of 30 slices through the whole brain. Voxel

sizes were 1.2 � 1.2 � 4 mm with temporal resolution of 0.75

seconds.

Postprocessing of DSC-MR Imaging
Relative cerebral blood volume maps were generated with custom

scripts including correction for bidirectional contrast agent ex-

change between the vascular and extravascular space.9 All rCBV

values were normalized to contralateral normal-appearing white

matter.

ROI and Statistical Analyses
Contrast-enhancing tumor ROIs were defined in 3D using cus-

tom scripts from Analysis of Functional Neuro Images (AFNI;

http://afni.nimh.nih.gov/afni), excluding hemorrhage, large

vessels, and central necrosis, followed by manual editing to

exclude nonlesional voxels.9 Additionally, 2-cm-diameter spheric

ROIs were placed on contralateral normal-appearing white

matter for normalization of rCBV measurements. The percent-

age difference in the mean rCBV ratio, maximum tumor rCBV

difference, and voxelwise correlations between single-shot EPI

and SMS-EPI were estimated from the resulting data for all 13

patients. GraphPad Prism software, Version 6.0h (GraphPad

Software, San Diego, California) was used for all statistical

analyses.

RESULTS
Both raw DSC and calculated rCBV maps were of comparable

quality; however, rCBV maps calculated with SMS-EPI were ob-

tained for the entire brain and at slightly higher spatial resolution

compared with rCBV maps obtained with conventional single-

shot EPI (Fig 1A, -B). The mean tumor rCBV difference between

these 2 techniques was 4.7% � 0.6% (Fig 1C), and the maximum

tumor rCBV difference was 10.8% � 1.2% (Fig 1D). Voxelwise

correlations in rCBV between the 2 techniques showed a signifi-

cant association in all patients examined (Fig 1E), with rCBV ra-

tios in the tumor with respect to normal-appearing white matter

slightly higher when estimated using SMS-EPI.

FIG 1. Postcontrast T1-weighted images, T2-weighted FLAIR images, and raw T2*-weighted DSC MR images with corresponding signal-time
curves across time from tumor regions accompanied by resulting relative cerebral blood volume maps for conventional single-shot EPI (A) and
simultaneous multi-slice EPI (B) (left to right). Percentage difference in mean tumor rCBV ratio (tumor to normal-appearing white matter) (C) and
percentage difference in the maximum tumor rCBV ratio (tumor to normal-appearing white matter) (D) in 13 patients with recurrent glioblas-
toma. E, Voxelwise correlation of rCBV ratio between conventional single-shot EPI and SMS-EPI.
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CONCLUSIONS
SMS-EPI can increase the spatiotemporal resolution in DSC-MR

imaging, resulting in larger brain coverage (12 versus 10 cm),

higher in-plane spatial resolution (1.2 � 1.2 � 4 mm versus

1.875 � 1.875 � 5 mm), and faster temporal resolution (0.75

versus 1.25–1.90 seconds), with comparable results in quantifica-

tion of tumor vascularity and clinical feasibility. While the poten-

tial impact on slice-to-slice perfusion quantitation is not currently

known and results suggest that there may be little effect, a larger

study is warranted. Together, these data demonstrate the poten-

tial clinical value of using SMS-EPI to estimate rCBV in patients

with brain tumors with a high degree of reproducibility in terms

of vascular biology quantification compared with historical test-

retest studies.10
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