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Interaction of Developmental Venous Anomalies with
Resting-State Functional MRI Measures

X B. Sundermann, X B. Pfleiderer, X H. Minnerup, X K. Berger, and X G. Douaud

ABSTRACT

BACKGROUND AND PURPOSE: Functional MR imaging of the brain, used for both clinical and neuroscientific applications, relies on
measuring fluctuations in blood oxygenation. Such measurements are susceptible to noise of vascular origin. The purpose of this study was
to assess whether developmental venous anomalies, which are frequently observed normal variants, can bias fMRI measures by appearing
as true neural signal.

MATERIALS AND METHODS: Large developmental venous anomalies (1 in each of 14 participants) were identified from a large neuroim-
aging cohort (n � 814). Resting-state fMRI data were decomposed using independent component analysis, a data-driven technique that
creates distinct component maps representing aspects of either structured noise or true neural activity. We searched all independent
components for maps that exhibited a spatial distribution of their signals following the topography of developmental venous anomalies.

RESULTS: Of the 14 developmental venous anomalies identified, 10 were clearly present in 17 fMRI independent components in total.
While 9 (52.9%) of these 17 independent components were dominated by venous contributions and 2 (11.8%) by motion artifacts, 2
independent components (11.8%) showed partial neural signal contributions and 5 independent components (29.4%) unambiguously
exhibited typical neural signal patterns.

CONCLUSIONS: Developmental venous anomalies can strongly resemble neural signal as measured by fMRI. They are thus a potential
source of bias in fMRI analyses, especially when present in the cortex. This could impede interpretation of local activity in patients, such
as in presurgical mapping. In scientific studies with large samples, developmental venous anomaly confounds could be mainly addressed
using independent component analysis– based denoising.

ABBREVIATIONS: BOLD � blood oxygen level– dependent; DVA � developmental venous anomaly; IC � independent component; ICA � independent compo-
nent analysis; rsfMRI � resting-state fMRI

Functional MR imaging of the brain is extensively used for task-

specific presurgical functional mapping1-3 and for task-based

group studies.4 Analyses of spontaneous brain activity and con-

nectivity by resting-state fMRI (rsfMRI)5-9 have been more re-

cently introduced as a potential clinical tool, both in presurgical

motor10,11 and language mapping,10,12-15 particularly in patients

less able to adhere to task instruction, and mapping of epilepto-

genic foci.8 Additionally, rsfMRI combined with automatic ma-

chine learning shows promise for individual diagnosis and prog-

nosis estimation in large datasets, especially in psychiatric and

neurodegenerative disorders,16-19 as well as for genome-wide as-

sociation studies.20 fMRI is based on blood oxygen level– depen-

dent (BOLD) contrast and thus provides indirect measures of

neural activity. BOLD changes are attributed predominantly to

both extravascular tissue and local capillaries and veins.21 Conse-

quently, there are various sources of potential bias to the BOLD
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Please address correspondence to Benedikt Sundermann, MD, Institute of Clinical
Radiology, Medical Faculty, University of Münster, and University Hospital
Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany; e-mail:
benedikt.sundermann@uni-muenster.de

Indicates open access to non-subscribers at www.ajnr.org

Indicates article with supplemental on-line tables.

Indicates article with supplemental on-line photos.

http://dx.doi.org/10.3174/ajnr.A5847

2326 Sundermann Dec 2018 www.ajnr.org

https://orcid.org/0000-0003-4390-3464
https://orcid.org/0000-0002-1238-6225
https://orcid.org/0000-0002-9706-7599
https://orcid.org/0000-0001-8966-3684
https://orcid.org/0000-0003-1981-391X


signal measured by fMRI, including global and local perfusion as

well as vascular architecture.21

Incidental findings and normal variants are frequently en-

countered in brain MR imaging.22-26 While debates on the man-

agement of incidental findings in scientific studies mostly focus

on participant safety,27 little is known about potential biases of

particular findings on measures of scientific or clinical interest

(putative correlates of neural signals) in fMRI.

Developmental venous anomalies (DVAs)28 are frequent

(around 2% prevalence29,30) and are usually clinically irrelevant

but can be associated, in rare circumstances, with other vascular

lesions, such as cavernous malformations, or with abnormalities

of neuronal migration.28,31 DVAs can also exhibit signs of venous

congestion.32 The normal venous drainage of the cerebral hemi-

spheres can be divided into 2 systems: 1) The superficial system

drains blood from cortical and immediately subcortical capillaries

into pial veins; and 2) the deep system drains large parts of the

deep white matter and basal ganglia into deep veins (the internal

cerebral veins and the basal vein of Rosenthal). The cerebellum

features a comparable, 2-system venous angioarchitecture.31 The

term DVA describes variants in which a superficial venous terri-

tory drains into deep veins or a deep venous territory drains to-

ward either the superficial pial veins or directly into a dural ve-

nous sinus.31

The detectability of DVAs depends largely on the imaging

techniques used. However, DVAs are characterized by very typical

morphologic imaging features. These are large collector veins

crossing the brain parenchyma in locations where usually only

capillaries and small veins are expected, and radially contributing

veins resulting in a typical caput medusae appearance.29,31 These

veins drain blood from an atypical territory. The presence of a

DVA thus potentially undermines common assumptions about

the origin of observed BOLD signal fluctuations in gray matter

regions.

The purpose of this study was to assess if and how DVAs bias

fMRI measures by assessing the similarity of DVA correlates in

rsfMRI to typical patterns of neural activity in a large, communi-

ty-based imaging population.33 If such similarity exists, then the

presence of DVAs might lead to misinterpretations of local

activity patterns in presurgical mapping and confound conclu-

sions in group studies and new rsfMRI-based diagnostic

approaches.

MATERIALS AND METHODS
Subjects
This analysis is based on subjects with large DVAs identified dur-

ing routine radiologic review and quality assessment of brain MR

imaging for the BiDirect cohort study.33,34 They were selected

from a mixed sample of patients with depression and population-

dwelling controls (n � 814). The study was approved by the local

ethics committee, and all subjects gave their written informed

consent. Demographic characteristics of the BiDirect cohort and

the imaging sample used here are presented in On-line Table 1.

MR Imaging Data Acquisition
Structural and functional MR imaging data were acquired using a

3T scanner (Intera with an Achieva upgrade; Philips Healthcare,

Best, the Netherlands) and a standard transmit/receive head coil.

Full details on the imaging protocol have been published

separately.33

The main analyses were based on the following sequences: a

3D T1-weighted gradient-echo sequence with an inversion pre-

pulse—turbo field echo, TR/TE � 7.26/3.56 ms, TI � 404 ms, flip

angle � 9°, sagittal orientation, matrix � 256 � 256 mm, field of

view � 256 � 256 � 160 mm, voxel size � 1 � 1 � 2 mm

reconstructed to 1 � 1 � 1 mm by zero-filling in the k-space;

rsfMRI using a T2*-weighted echo-planar imaging technique—

fast-field echo, TR/TE � 3000/38 ms, flip angle � 90°, 72 vol-

umes, matrix dimensions � 64 � 64, FOV � 230 � 230 mm, 36

axial slices, thickness � 3.6 mm, pixel size � 3.6 � 3.6 mm.

Additional information about DVA morphology was obtained

from the following: FLAIR—TR/TE � 11,000/80 ms, TI � 2600

ms, flip angle � 90°, matrix dimensions � 352 � 206, FOV �

230 � 186 mm, 27 axial slices, thickness � 4 mm, gap � 1 mm,

reconstructed pixel size � 0.45 � 0.45 mm; and a T2*-weighted

fast-field echo sequence—TR/TE � 574/16 ms, flip angle � 18°,

matrix dimensions � 256 � 164, FOV � 230 � 183 mm, 27 axial

slices, thickness � 4 mm, gap � 1 mm, reconstructed pixel size �

0.45 � 0.45 mm.

DVA Identification
Suspected DVAs were confirmed in a separate step after initial

screening during visual data-quality assessment based on T1-

weighted images using the following criteria: 1) a large vessel

crossing the brain parenchyma, and 2) a typical caput medusae

appearance of feeding vessels. Finally, a typical hypointense ap-

pearance was confirmed on T2* fast-field echo. We excluded sub-

jects with signs of other associated vascular lesions, for example,

cavernous malformations. FLAIR images were inspected for sur-

rounding hyperintensity as a potential sign of venous conges-

tion.32 Demographic information about all subjects selected for

the DVA analysis as well as DVA locations is presented in On-line

Table 2.

Resting-State fMRI Data Analysis with Independent
Component Analysis
Spatial independent component analysis (ICA) refers to a range of

data-driven analysis techniques decomposing time-series data

into a set of spatially independent components (ICs) character-

ized by spatial maps and signal time courses. ICA is particularly

popular for the analysis of rsfMRI data because it can isolate sep-

arate representations of well-known functionally relevant brain

networks.35 In addition to these components related to the signal

of interest originating from the gray matter, further components

represent distinct sources of noise such as arterial or CSF pulsa-

tions or movement artifacts.36 ICA is therefore very suitable for

identifying and characterizing such biasing influences. ICA can

identify general sources of noise independent of specific model

assumptions in other fMRI analysis techniques. Thus, findings

from ICA generalize to other analysis techniques and to task-

fMRI data. Indeed, it can reveal potential biases that might have

otherwise not been directly visible despite potentially significantly

influencing results and conclusions. ICA is therefore increasingly

applied as a preprocessing step for noise clean-up of both rsfMRI
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and task-fMRI data before performing further analyses (see the

Discussion for details).36-38

Two types of components representing venous signal fluctua-

tions are particularly relevant for DVAs: those showing mainly the

venous sinuses and large veins and those putatively representing

transmedullary and subependymal veins (traditionally referred to

as white matter components). Given the partially venous origin of

the BOLD signal of interest, venous noise components can exhibit

temporal characteristics that greatly resemble signal compo-

nents.36 Thus, additional spatial features (eg, based on sinus

masks) have to be used in automatic noise-classification tools,37

but the underlying spatial assumptions behind these predefined

masks could be broken in the presence of a large DVA.

Single-session analyses of the rsfMRI time-series data were

conducted using the FMRIB Software Library (FSL, Version 5.0.9;

http://www.fmrib.ox.ac.uk/fsl).39,40 Preprocessing included mo-

tion correction,41 non-brain tissue masking,42 spatial smoothing

using a Gaussian kernel (full width at half maximum � 7 mm),

and high-pass temporal filtering (cutoff period � 100 seconds).

The resulting image time-series were then decomposed using

probabilistic ICA with automatic dimensionality estimation as

implemented in MELODIC (Version 3.15; https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/MELODIC).35,43-45

Identification of DVAs in the ICA Decomposition of rsfMRI
To help with the identification of the presence of DVAs in our

ICA, we linearly registered ICA spatial maps to the T1-weighted

anatomic images using boundary-based registration.46 ICA spa-

tial maps were thresholded at �Z� � 2.3 and overlaid with ana-

tomic images with FSLeyes (Version 0.9.11; https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FSLeyes). Components were individually as-

sessed for contributions spatially corresponding to the courses of

the DVAs (B.S.). Those ICs that were identified as containing

DVA rsfMRI signal correlates were subsequently evaluated for

whether they exhibited contributions of neural signal of interest

or artifacts (eg, motion or arterial pulsations) by taking spatial

maps, time courses, and power spectra into account.36

RESULTS
General DVA Characteristics
Sixteen DVAs without an associated second vascular lesion were

identified in 16 subjects. None of the DVAs exhibited associated

hyperintensities on FLAIR, kinking of the draining vein, or other

indirect signs of venous congestion. Two of these findings located

in the cerebellum were excluded from further analyses because

they were partially cut by the fMRI acquisition volume.

DVA Occurrence in the ICA Decomposition of rsfMRI
All of the 14 DVAs subsequently included were present in at least

1 IC. Ten DVAs (71.4%) had unique local presence, closely fol-

lowing their spatial distribution in at least 1 IC per subject and up

to 4 ICs per subject. The remaining 4 DVAs had less specific spa-

tial coverage. In other words, it could not be determined whether

alterations in ICs corresponding to these 4 DVAs (at least 1 IC per

subject) were directly related to the DVA or whether these alter-

ations represented signal fluctuations of interest in the surround-

ing tissue or other sources of noise.

In total, 43 ICs thus covered spatial locations specific to DVAs

across subjects. Seventeen of these ICs (39.5%) exhibited unique

contributions following the spatial distribution of the DVAs,

while a further 26 ICs (60.5%) were less specific, with their spatial

distribution only partially overlapping that of the DVAs.

Characteristics of rsfMRI ICs Containing DVAs
Among the 17 ICs closely following the spatial distribution of the

DVAs, 9 (52.9%) were ICs with predominantly vascular patterns

and clear contributions of venous sinuses, deep cerebral veins, or

subependymal veins (white matter components), one of which

exhibited partial signal contribution. Two ICs (11.8%) were dom-

inated by motion artifacts. Most important, 5 ICs (29.4%) in 3

subjects exhibited dominant patterns typical of true neural signal.

Three of these 5 ICs had clean low-frequency power spectra, while

contamination in the higher frequency range was present in 2 ICs.

One final IC was unstructured in its overall spatial distribution

but showed partial overlap with neural signal (see Fig 1 for an

overview of these results).

Illustrative cases are presented in Figs 2 and 3. A full list of the

sample including DVA-related findings is presented in On-line

Table 2. All 17 ICs distinctly following the spatial distribution of

the DVAs are presented in On-line Figs 1–10.

DISCUSSION
In summary, most DVAs clearly appeared in �1 component on

the basis of ICA decomposition of the rsfMRI data. While some of

these ICs demonstrated unambiguous venous ICs including the

venous sinuses, some of the DVAs were present in ICs that mostly

exhibited typical features of neural signal ICs or that could not be

unambiguously classified as noise. These findings show that signal

fluctuations in DVAs can contribute to the fMRI signal in the

brain and thus have the potential to bias conclusions in both

clinical and scientific fMRI analyses if not appropriately consid-

ered, especially in a superficial/cortical location. DVAs could thus

lead to pseudoactivations in presurgical mapping, biasing the pos-

sible extent of subsequent tumor resection if not recognized.

FIG 1. Overview of dominant effects represented by the indepen-
dent components which included unique contributions of DVAs.
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Local pseudoactivity might also bias conclusions in the rsfMRI

group studies, focusing on disease mechanisms, particularly in

small samples. Finally, altered activity patterns may lead to false

individual diagnostic decisions in highly automated diagnostic

modeling, for example, when a classifier (supervised learning) is

applied to rsfMRI data biased by a DVA in a single subject.

Potentially strong biases of vascular abnormalities on fMRI

measures are well-known from imaging in patients with arterio-

venous malformations, which are high-flow lesions.1,47 Our find-

ings demonstrate that such biases can also be caused by usually

clinically irrelevant low-flow lesions such as DVAs. Perfusion im-

aging in DVAs has revealed a diverse pattern: The large collector

veins typically present as strictly local hyperperfusion compared

with the surrounding brain parenchyma. Surrounding brain tis-

sue can either exhibit normal perfusion patterns48 or show signs

of venous congestion with delayed perfusion and increased cere-

bral blood volume extending beyond the visible transparenchy-

mal vessels.32,48-52 Such venous congestion may be due to a rare

stenosis of the draining vein31 and could further invalidate as-

sumptions of fMRI in the affected area. We did not observe indi-

rect signs of such venous congestion in our sample. Evidence of a

more widespread influence of DVAs on adjacent brain tissue is

provided by findings of reduced uptake of fluorodeoxyglucose in

a subset of subjects with DVAs, suggesting hypometabolism.53

In addition to identification of interpretable signal compo-

nents,36 ICA has a practical application for reduction of such bi-

ases. Indeed, it can be used to separate signals of interest from

noise in fMRI data based on either hand classification of ICs36,54

or by using automated IC classification tools.36,37,55-65 Our results

suggest that biasing signal fluctuations

in DVAs can not only be identified but

also addressed by ICA-based denoising

in most cases. However, our results also

demonstrate that a non-negligible pro-

portion of DVAs cannot be reasonably

separated from the neural signal of in-

terest and may contaminate clear signal

ICs, as well as unclear ICs (which are

typically not removed from the dataset

with these cleaning methods). The co-

occurrence of DVA signal and typical

neural signal patterns might be mainly

based on similarly low (and potentially

aliased) frequencies of the BOLD signal

fluctuations in the temporal domain.

We therefore believe that this observa-

tion points to the typical problem that

the indirect measurement of neural ac-

tivity by BOLD fMRI can be confounded

by vascular sources of noise.55 In our

opinion, this aspect is underappreciated

in many fMRI and particularly rsfMRI

studies, and both researchers and clini-

cal personnel should be more aware of

this general issue.

Another practically important find-

ing is that the significant signal altera-

tions related to DVAs strictly followed the spatial distribution of

the collecting vein and large tributaries. This finding supports the

idea that a potential bias is relatively local, though subthreshold

alterations in the immediate vicinity cannot be excluded.

An important-but-controversial differential diagnostic aspect

is the rare observation of arteriovenous malformations draining

into DVAs or microshunts.66,67 While the latter is primarily an

angiographic finding, whether the observation of DVA signal

fluctuations with arteries, rather than with veins, might add to the

diagnostic information in such cases remains to be evaluated.

However, current temporal resolution typically below the fre-

quency of arterial pulsations does not facilitate reliable diagnostic

assessment of this issue due to aliasing.38,68

Limitations
This analysis focused on large DVAs clearly identifiable by their

typical branching morphology (ie, no hard size criterion). Be-

cause 3D susceptibility-weighted imaging or contrast-enhanced

T1-weighted data were not available in this sample, the true DVA

prevalence is probably underestimated. Thus, the sample size of

14 subjects with clear DVAs in this study is comparatively small.

In particular, DVAs with a superficial drainage pattern were po-

tentially underrepresented because they can be more difficult to

identify by nonenhanced MR imaging. We expect superficial

DVAs to be more problematic, even if smaller, because the spatial

interpretation of the signal origin (cortex versus DVA) is more

difficult in these cases. Because we did not observe rare DVAs with

signs of venous congestion in our substantial cohort of 814 par-

ticipants, we unfortunately could not assess how rsfMRI captures

FIG 2. An example of a unique contribution of a DVA with deep drainage in an IC dominated by
venous pulsations (subject 5). Typical anatomic features of the DVA (arrow, A) with a caput
medusae appearance, unique contribution following the course of the DVA through the paren-
chyma (arrow, B) and contributions attributable to normal subependymal veins in the periven-
tricular white matter (asterisk, B). C, Midsagittal view representing the typical venous character of
this component, including venous sinuses and deep veins.

FIG 3. An example of a unique contribution of a DVA (arrows) in an IC exhibiting typical charac-
teristics of a neural signal component (subject 3).
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this clinically relevant information. While focusing on ICA out-

puts might be perceived at first as a limitation, this analysis

method actually provides an unbiased way to assess the true char-

acteristics of the DVA signal and therefore its potential bias.

CONCLUSIONS
This work provides a proof of concept that DVAs can have fea-

tures very similar to those of neural signal patterns and can thus

potentially be a source of bias in fMRI analyses, probably espe-

cially when present in a superficial location involving the cortex.

Thus, our study raises awareness of a potential issue that has been

neglected so far. Although most effects of DVAs on fMRI signal

were local and potentially amenable to dedicated noise-correction

methods, there is evidence of more widespread alterations and a

contamination of putative neural signal. In the clinical setting,

physicians should be aware of potential “pseudoactivations”

caused by DVAs, especially in the context of presurgical mapping,

as well as potential biases these could cause in highly automated

diagnostic approaches using supervised learning16-19 in big data

and genome-wide association studies.20 DVAs in brain regions of

interest could bias conclusions in small-group studies and thus

warrant exclusion on a case-by-case basis.

Even though DVAs are usually not a clinically relevant finding,

they should thus be reported to researchers by radiologists or

neuroradiologists involved in the routine evaluation of scientific

MR images of the brain. Awareness of potential biases caused by

these frequent normal variants is important not only for neuro-

scientists but also for correct interpretation of clinical fMRI data.
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