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ORIGINAL RESEARCH
ADULT BRAIN

Diffusion-Weighted Imaging and Diffusion Tensor Imaging for
Differentiating High-Grade Glioma from Solitary Brain

Metastasis: A Systematic Review and Meta-Analysis
X C.H. Suh, X H.S. Kim, X S.C. Jung, and X S.J. Kim

ABSTRACT

BACKGROUND: Accurate diagnosis of high-grade glioma and solitary brain metastasis is clinically important because it affects the
patient’s outcome and alters patient management.

PURPOSE: To evaluate the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary brain metastasis.

DATA SOURCES: A literature search of Ovid MEDLINE and EMBASE was conducted up to November 10, 2017.

STUDY SELECTION: Studies evaluating the diagnostic performance of DWI and DTI for differentiating high-grade glioma from solitary
brain metastasis were selected.

DATA ANALYSIS: Summary sensitivity and specificity were established by hierarchic logistic regression modeling. Multiple subgroup
analyses were also performed.

DATA SYNTHESIS: Fourteen studies with 1143 patients were included. The individual sensitivities and specificities of the 14 included
studies showed a wide variation, ranging from 46.2% to 96.0% for sensitivity and 40.0% to 100.0% for specificity. The pooled sensitivity of
both DWI and DTI was 79.8% (95% CI, 70.9%– 86.4%), and the pooled specificity was 80.9% (95% CI, 75.1%– 85.5%). The area under the
hierarchical summary receiver operating characteristic curve was 0.87 (95% CI, 0.84 – 0.89). The multiple subgroup analyses also demon-
strated similar diagnostic performances (sensitivities of 76.8%– 84.7% and specificities of 79.7%– 84.0%). There was some level of hetero-
geneity across the included studies (I2 � 36%); however, it did not reach a level of concern.

LIMITATIONS: The included studies used various DWI and DTI parameters.

CONCLUSIONS: DWI and DTI demonstrated a moderate diagnostic performance for differentiation of high-grade glioma from
solitary brain metastasis.

ABBREVIATIONS: FA � fractional anisotropy; HSROC � hierarchic summary receiver operating characteristic; MD � mean diffusivity; PRISMA � Preferred
Reporting Items for Systematic Reviews and Meta-Analyses; QUADAS-2 � Quality Assessment of Diagnostic Accuracy Studies-2

The accurate diagnosis of high-grade glioma and solitary brain

metastasis is clinically important because it affects the pa-

tient’s outcome and alters patient management.1,2 Because

high-grade glioma and solitary brain metastasis have similar

findings on conventional MR imaging, the clinical context or

patient history could be helpful. In addition, advanced MR

imaging techniques have been introduced to assist in their

differentiation.

Multiple studies report on the use of DWI and DTI for differ-

entiating high-grade glioma from solitary brain metastasis.3-16

High-grade glioma typically shows an infiltrative growth pattern

with invasion of the surrounding brain tissues, whereas brain me-

tastasis shows an expansive growth pattern causing displacement

of the surrounding brain tissue.17,18 In addition, high-grade gli-

oma cells tend to produce large amounts of extracellular matrix,

which play an important role in tumor growth and infiltra-

tion.19,20 Therefore, assessment of the enhancing tumor and pe-

rienhancing area with DWI and DTI parameters has been intro-
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duced. However, the results have been quite varied, and the utility

of these techniques is still an issue under debate.7,9,12 Some stud-

ies have reported a high diagnostic performance for DWI or DTI;

however, other studies have reported a low diagnostic perfor-

mance or no added value of DWI or DTI compared with conven-

tional MR imaging.

Therefore, we considered it appropriate to assess the diagnos-

tic performance of DWI and DTI for differentiating high-grade

glioma from solitary brain metastasis using the currently available

published resources. We thus performed a systematic review and

meta-analysis evaluating the diagnostic performance of DWI and

DTI for differentiating high-grade glioma from solitary brain

metastasis.

MATERIALS AND METHODS
The current systematic review and meta-analysis are reported ac-

cording to the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) guidelines.21 The following re-

search question was established21: What are the diagnostic perfor-

mances of DWI and DTI for differentiating high-grade glioma

from solitary brain metastasis?

Literature Search
A literature search of Ovid MEDLINE and EMBASE was con-

ducted to find relevant original articles up to November 10, 2017.

The search query combined equivalents for “glioma,” “brain me-

tastasis,” “DWI,” and “DTI” as follows: ((brain metastasis) OR

(brain metastases) OR (metastatic brain tumor*) OR (intraaxial

metastatic tumor*) OR (cerebral metastasis) OR (cerebral metasta-

ses) OR (solitary metasta*)) AND ((glioblastoma) OR (glioma))

AND ((diffusion-weighted imaging) OR (diffusion-weighted imag-

ing) OR (DWI) OR (“apparent diffusion coefficient”) OR (diffusion

tensor imaging) OR (DTI)). The literature search was restricted to

English language publications. Any additional relevant articles iden-

tified were also investigated.

Literature Selection

Inclusion Criteria. We used the following inclusion criteria: 1)

population: patients with a solitary enhancing brain lesion; 2)

index test: DWI and DTI scans available; 3) reference standard:

histopathologic diagnosis; 4) outcomes: differentiation of high-

grade glioma (glioblastoma and/or anaplastic astrocytoma) from

solitary brain metastasis, with sufficient data provided to establish

2 � 2 tables for sensitivity and specificity; and 5) articles published

as original articles.

Exclusion Criteria. We applied the following exclusion criteria: 1)

case reports/series (a sample size of �10 patients), conference

abstracts, reviews, and notes; 2) studies including patients with

low-grade gliomas; 3) studies including patients with recurrent

brain metastasis; 4) insufficient information for reconstruction of

2 � 2 tables; and 5) a partially overlapping patient population. In

the case of an overlapping study population, the study with the

largest study population was selected. When 2 � 2 tables could

not be established, authors of the eligible studies were contacted

for further data.

Data Extraction and Quality Assessment
The following data were extracted from the included studies: 1)

study characteristics: authors, year of publication, institution, du-

ration of patient recruitment, study design (prospective versus

retrospective), study enrollment (consecutive versus nonconsec-

utive), and reference standard; 2) patient characteristics: number

of patients, number of patients with high-grade glioma, mean age,

age range, and male/female ratio; 3) MR imaging characteristics:

magnet field strength, scanner vendor, scanner model, channels

of head coil, and MR imaging techniques including DWI, DTI,

b-value (s mm�2), ROI placement, parameters, and cutoff values;

and 4) MR imaging interpretation: number of readers, experience

of readers, and blinding of readers to the reference standard.

The study quality was assessed using the Quality Assessment of

Diagnostic Accuracy Studies-2 (QUADAS-2) tool.22 The litera-

ture search, literature selection, data extraction, and quality as-

sessment were performed independently by 2 reviewers (C.H.S.

and H.S.K.).

Data Synthesis and Statistical Analysis
The primary aim of this study was to determine the diagnostic

performance of DWI and DTI for differentiating high-grade gli-

oma from solitary brain metastasis. We obtained 2 � 2 tables

from the studies to identify their individual sensitivities and spec-

ificities. Summary sensitivity and specificity were established by

hierarchic logistic regression modeling (bivariate random-effects

model and hierarchic summary receiver operating characteristic

[HSROC] model).23-25 An HSROC curve with 95% confidence

and prediction regions was obtained, and the area under the

HSROC curve was also calculated. Publication bias was investi-

gated using the Deeks asymmetry test.26

Heterogeneity across the studies was evaluated as follows: 1)

Cochran Q test (P � .05 indicating the presence of heterogeneity);

2) Higgins inconsistency index (I2 test)27 (I2 � 0%– 40%, heter-

ogeneity might not be important; 30%– 60%, moderate heteroge-

neity may be present; 50%–90%, substantial heterogeneity may be

present; and 75%–100%, considerable heterogeneity); 3) visual

assessment of a coupled forest plot or a Spearman correlation

coefficient (�0.6 indicating a threshold effect) to assess a thresh-

old effect (positive correlation between sensitivity and the false-

positive rate)28; and 4) visual assessment of the difference in the

95% confidence and prediction regions in the HSROC.

Multiple subgroup analyses were performed as follows: 1)

studies using DWI, 2) studies using DTI, 3) studies including

glioblastoma only, 4) studies including both glioblastoma and

anaplastic astrocytoma, 5) studies using enhancing tumor for ROI

placement, 6) studies using perienhancing area for ROI place-

ment, 7) studies using fractional anisotropy (FA), 8) studies using

mean diffusivity (MD), and 9) studies using perienhancing ADC

or MD. Statistical analyses for the meta-analysis were performed

by one of the reviewers (C.H.S., with 4 years of experience in

performing systematic reviews and meta-analyses), using the

metandi and midas modules in STATA 15.0 (StataCorp, College

Station, Texas) and the mada package in R statistical and comput-

ing software, Version 3.4.1 (http://www.r-project.org/). P � .05

indicated statistical significance.
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RESULTS
Literature Search
The detailed literature-selection process is illustrated in Fig 1. The

literature search identified 215 articles. After we removed 54 du-

plicate articles, screening of the titles and abstracts of the remain-

ing 161 articles yielded 44 potentially eligible articles. Full-text

reviews were performed, and 30 studies were excluded because of

the following: 1) twelve studies because the 2 � 2 table could not

be obtained29-40; 2) seven studies not in the field of interest41-47;

3) five studies with a partially overlapping patient cohort48-52; 4)

four studies with mixed brain tumors53-56; 5) one study with a

low-grade glioma57; and 6) one case series.58 Fourteen studies

evaluating the diagnostic performance of DWI and DTI for dif-

ferentiating high-grade glioma from solitary brain metastasis,3-16

covering 1143 patients, were included in the analyses.

Characteristics of the Included Studies
The detailed study and patient characteristics are shown in

On-line Table 1. Nine studies enrolled patients with glioblastoma

only,3-7,10-12,15 while 5 studies enrolled patients with high-grade

gliomas.8,9,13,14,16 Twelve studies used histopathology as the reference

standard,3-5,7-13,15,16 and 1 study used histopathology and clinical

diagnosis only for brain metastasis.14

The detailed MR imaging characteristics are described in

On-line Table 2. DWI was used in 7 studies6,8,10-13,16; and DTI,

in 7 studies.3-5,7,9,14,15 A quantitative ADC value was used in 7

studies using DWI.6,8,10-13,16 Five of the 7 DTI studies used

both FA and MD,3,5,9,14,15 whereas 2 studies used FA only.4,7 In

terms of ROI placement, both enhancing tumor and perien-

hancing area were selected in 12 studies3,5-11,13-16; enhancing

tumor only, in 1 study4; and perienhancing area only, in 1

study.12

Quality Assessment
The results of the quality assessment are

illustrated in On-line Fig 1. In the pa-

tient-selection domain, 10 studies re-

vealed an unclear risk of bias because of

nonconsecutive enrollment.3,5-7,9,11-15

In the index test domain, 6 studies re-

vealed an unclear risk of bias because it

was unclear whether imaging analysis

had been conducted blinded to the ref-

erence standard.3,5,7,9,15,16 In the refer-

ence standard domain, 2 studies re-

vealed a high risk of bias, with 1 study

not mentioning the reference standard6

and 1 study using both histopathology

and clinical diagnosis.14 In the flow and

timing domain, 13 studies revealed an

unclear risk of bias because the time

intervals between MR imaging and the

reference standard were not men-

tioned.3,4,6-16 However, there were no

concerns regarding the applicability of

all 3 domains.

Diagnostic Accuracy
The individual sensitivities and specificities of the 14 included

studies showed a wide variation, ranging from 46.2% to 96.0% for

sensitivity and 40.0% to 100.0% for specificity. The pooled sensi-

tivity was 79.8% (95% CI, 70.9%– 86.4%), and the pooled speci-

ficity was 80.9% (95% CI, 75.1%– 85.5%) (Fig 2 and On-line

Table 3). The area under the HSROC curve was 0.87 (95% CI,

0.84 – 0.89; On-line Fig 2). The Deeks funnel plot demonstrated

that no publication bias was present (P � .98; On-line Fig 3).

In the investigation of heterogeneity, a Cochran Q test showed

that heterogeneity was not present (Q � 3.117, df � 2, P � .104),

and there was some level of heterogeneity across the included

studies (I2 � 36%); however, it did not reach a level of concern.

Visual assessment of the coupled forest plots revealed no thresh-

old effect (Fig 2), and the Spearman correlation coefficient was

0.188 (95% CI, �0.653– 0.381), also indicating no threshold ef-

fect. The HSROC curve illustrated a small difference between the

95% confidence prediction regions, indicating a low possibility of

heterogeneity (On-line Fig 2).

Multiple Subgroup Analyses
On-line Table 4 shows the results of multiple subgroup analyses.

In the subgroup analysis according to MR imaging technique,

those studies using DWI showed a pooled sensitivity of 81.4%

(95% CI, 70.6%– 88.9%) and a pooled specificity of 81.8% (95%

CI, 69.5%– 89.9%).6,8,10-13,16 Studies using DTI showed a pooled

sensitivity of 77.0% (95% CI, 62.3%–87.1%) and a pooled specificity

of 80.3% (95% CI, 73.5%–85.7%).3-5,7,9,14,15 There was no statistical

difference between DWI and DTI (P � .59). In the subgroup anal-

ysis according to study population, the studies including glio-

blastoma showed only a pooled sensitivity of 82.2% (95% CI,

71.9%– 89.3%) and a pooled specificity of 81.4% (95% CI,

FIG 1. Flow diagram illustrating the study-selection process for the systematic review and
meta-analysis.
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74.8%– 86.6%).3-5,13-16 Studies including both glioblastoma

and anaplastic astrocytoma showed a pooled sensitivity of

76.8% (95% CI, 61.45%– 87.4%) and a pooled specificity of

81.2% (95% CI, 69.9%– 88.9%).6-12

In the subgroup analysis according to the ROI placement,

studies using enhancing tumor showed a pooled sensitivity of

72.6% (95% CI, 63.4%– 80.3%) and a pooled specificity of

77.0% (95% CI, 71.7%– 81.6%).3,4,7,11,13,15 Studies using a pe-

rienhancing area showed a pooled sensitivity of 80.1% (95%

CI, 69.1%– 87.9%) and a pooled specificity of 81.0% (95% CI,

70.6%– 88.3%).3,6,8-10,12,14,16 In the subgroup analysis accord-

ing to DTI parameters, studies using FA showed a pooled sen-

sitivity of 70.8% (95% CI, 61.0%–79.0%) and a pooled speci-

ficity of 74.5% (95% CI, 69.0%–79.3%).3,4,7,9,14,15 MD showed

a pooled sensitivity of 84.5% (95% CI, 71.7%–92.1%) and a

pooled specificity of 81.3% (95% CI, 72.0%– 88.1%).3,9,14,15

Studies using perienhancing ADC or MD showed a pooled

sensitivity of 84.7% (95% CI, 73.6%–91.6%) and a pooled

specificity of 84.0% (95% CI, 71.8%–91.6%).3,6,8,10,14,16

DISCUSSION
We identified 14 studies providing the diagnostic performance of

DWI and DTI for differentiating high-grade glioma from solitary

brain metastasis. DWI and DTI showed not only a wide range of

individual sensitivities and specificities but also only a moderate

diagnostic performance (ie, a pooled sensitivity of 79.8% [95%

CI, 70.9%– 86.4%] and a pooled specificity of 80.9% [95% CI,

75.1%– 85.5%]). Multiple subgroup analyses also demonstrated

similar diagnostic performances (sensitivities of 76.8%– 84.7%

and specificities of 79.7%– 84.0%). DWI and DTI are rarely used

as a single sequence, whereas DWI and DTI are usually part of a

multiparametric MR imaging protocol for differentiating high-

grade glioma from solitary brain metastasis. Therefore, DWI and

DTI could actually be helpful in the context of multiparametric

MR imaging.

High-grade glioma typically shows an infiltrative growth pat-

tern with invasion of the surrounding brain tissues. However,

brain metastasis shows an expansive growth pattern and displaces

the surrounding brain tissue.10 Therefore, many researchers have

used various advanced MR imaging techniques in attempts to

differentiate the infiltrative edema of glioma from metastatic va-

sogenic edema. DWI and DTI have been used for testing the pe-

rienhancing area of solitary enhancing brain lesions; however, the

results are conflicting. Two studies reported that the mean mini-

mum perienhancing ADC values in high-grade glioma were sig-

nificantly higher than those in brain metastases,6,8 whereas 1

study reported lower mean minimum perienhancing ADC values

in high-grade glioma.10 Two studies also reported that perien-

hancing MD was significantly lower in high-grade glioma than in

brain metastasis.3,14

The current meta-analysis revealed a moderate diagnostic per-

formance in 6 studies that used perienhancing ADC or MD as a

parameter to determine optimal cutoff values, with a pooled sen-

FIG 2. Coupled forest plots of pooled sensitivity and specificity. Numbers are pooled estimates with 95% confidence intervals in parentheses.
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sitivity of 84.7% (95% CI, 73.6%–91.6%) and a pooled specificity

of 84.0% (95% CI, 71.8%–91.6%).3,6,8,10,14,16 Assessment of the

perienhancing area with DWI or DTI presents several limitations

or challenges. First, primary (de novo) glioblastoma shows mini-

mal microscopic tumor infiltration in the perienhancing area.

Therefore, a differentiation from brain metastasis could be chal-

lenging. Second, secondary glioblastoma, anaplastic astrocytoma,

and oligodendroglioma generally show definite microscopic tu-

mor infiltration in the perienhancing area, even on conventional

MR imaging sequences such as FLAIR. Therefore, the added value

of advanced MR imaging is controversial. Third, when it comes to

extensive peritumoral edema, microscopic tumor infiltration in

the perienhancing area could be overestimated on advanced MR

imaging.

Glioma cells tend to produce large amounts of extracellular

matrix components.19,20 This extracellular matrix serves as a sub-

strate for adhesion and subsequent migration of the tumor cells

along the enlarged extracellular space.19 These molecules are con-

centrated and are oriented in the extracellular matrix, which re-

sults in high FA.15,59 In the current meta-analysis, 3 studies dem-

onstrated that high-grade glioma showed higher FA values in

enhancing tumor than brain metastases; in 2 of these studies, the

difference was statistically significant,4,15 though the difference

did not reach statistical significance in the other one.3 However, 2

further studies did not show any meaningful differences between

the 2 groups.9,14 A recent systematic review also revealed no sig-

nificant changes in the FA of enhancing tumor between high-

grade glioma and brain metastasis.60 The underlying mechanism

for this discrepancy is not fully understood, and further studies

are required.

Although all the studies using DWI used ADC, the exact pa-

rameters varied and included minimum ADC, ADC ratio, gradi-

ent of ADC, or a combination of these. Despite the use of these

various parameters, DWI is available in most institutions with

MR imaging facilities, and the benefit is fast acquisition and

easy image processing.11 A variety of parameters were also used

for DTI, including perienhancing MD and FA of the enhancing

tumor. DTI had several drawbacks, including low spatial reso-

lution and image distortion.61 Therefore, considerable effort is

required to achieve standardization, and further studies are

needed.

This study has several limitations. First, only 21.4% (3 of 14) of

the included studies were prospective.5,13,16 However, the in-

cluded studies are the only currently available ones. Second, we

combined the MR imaging techniques used for diagnostic perfor-

mance (ie, DWI and DTI). Third, the included studies used vari-

ous parameters. However, we demonstrated the absence of heter-

ogeneity across the included studies. In addition, we also

performed multiple subgroup analyses. Furthermore, we con-

ducted this study using robust methodology (hierarchic logistic

regression modeling23) and have reported the results in accor-

dance with several guidelines (PRISMA,21 the Handbook for Di-

agnostic Test Accuracy Reviews published by the Cochrane Col-

laboration,62 and the Agency for Healthcare Research and

Quality63). Nevertheless, caution is required in applying our re-

sults to daily clinical practice.

CONCLUSIONS
DWI and DTI demonstrated a moderate diagnostic performance

for differentiating high-grade glioma from solitary brain

metastasis.
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