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ABSTRACT

BACKGROUND AND PURPOSE: Convolutional neural networks are a powerful technology for image recognition. This study evaluates a
convolutional neural network optimized for the detection and quantification of intraparenchymal, epidural/subdural, and subarachnoid
hemorrhages on noncontrast CT.

MATERIALS AND METHODS: This study was performed in 2 phases. First, a training cohort of all NCCTs acquired at a single institution
between January 1, 2017, and July 31, 2017, was used to develop and cross-validate a custom hybrid 3D/2D mask ROI-based convolutional
neural network architecture for hemorrhage evaluation. Second, the trained network was applied prospectively to all NCCTs ordered from
the emergency department between February 1, 2018, and February 28, 2018, in an automated inference pipeline. Hemorrhage-detection
accuracy, area under the curve, sensitivity, specificity, positive predictive value, and negative predictive value were assessed for full and
balanced datasets and were further stratified by hemorrhage type and size. Quantification was assessed by the Dice score coefficient and
the Pearson correlation.

RESULTS: A 10,159-examination training cohort (512,598 images; 901/8.1% hemorrhages) and an 862-examination test cohort (23,668
images; 82/12% hemorrhages) were used in this study. Accuracy, area under the curve, sensitivity, specificity, positive predictive value, and
negative-predictive value for hemorrhage detection were 0.975, 0.983, 0.971, 0.975, 0.793, and 0.997 on training cohort cross-validation and
0.970, 0.981, 0.951, 0.973, 0.829, and 0.993 for the prospective test set. Dice scores for intraparenchymal hemorrhage, epidural/subdural
hemorrhage, and SAH were 0.931, 0.863, and 0.772, respectively.

CONCLUSIONS: A customized deep learning tool is accurate in the detection and quantification of hemorrhage on NCCT. Demonstrated
high performance on prospective NCCTs ordered from the emergency department suggests the clinical viability of the proposed deep
learning tool.

ABBREVIATIONS: CNN � convolutional neural networks; EDH/SDH � epidural/subdural hemorrhage; GPU � graphics processing unit; ICH � intracranial
hemorrhage; IPH � intraparenchymal hemorrhage; mask R-CNN � mask ROI-based CNN

Intracranial hemorrhages (ICHs) represent a critical medical

event that results in 40% patient mortality despite aggressive

care.1 Early and accurate diagnosis is necessary for the manage-

ment of acute ICHs.2,3 However, increasing imaging use and dis-

tractions from noninterpretive tasks are known to cause delays in

diagnosis4 with turn-around time for noncontrast CT head exam-

inations reported up to 1.5– 4 hours in the emergency depart-

ment.4 These delays impact patient care because acute deteriora-

tion from hemorrhage expansion often results early, within the

initial 3– 4.5 hours of symptom onset.5-7 Therefore, a tool for

expeditious and accurate diagnosis of ICHs may facilitate a

prompt therapeutic response and ultimately improved outcomes.

In addition to ICH detection, a tool for automated quantifica-

tion of hemorrhage volume may provide a useful metric for pa-

tient monitoring and prognostication.8,9 For intraparenchymal

hemorrhage (IPH) specifically, the current clinical standard for

quantification relies on a simplified formula (ABC/2) calculation
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that commonly overestimates true IPH volumes by up to 30%.10

Alternatively, while manual delineation of hemorrhage may pro-

vide accurate volume estimates, time constraints make this im-

practical in the emergency setting. Accordingly, a fully automated

and objective tool for rapid quantification of ICH volume may be

a compelling alternative to current approaches, offering more ac-

curate, detailed information to guide clinical decision-making.

In this study, we propose a tool based on deep learning con-

volutional neural networks (CNN), an emerging technology now

capable of image interpretation tasks that were once thought to

require human intelligence.11 The effectiveness of CNNs is based

on the capacity of the algorithm for self-organization and pattern

recognition without explicit human programming. Using a deep

learning approach, Prevedello et al12 previously described a ge-

neric algorithm for broad screening of various acute NCCT find-

ings (hemorrhage, mass effect, hydrocephalus) with an overall

sensitivity and specificity of 90% and 85%, respectively. We ex-

tend this preliminary work by customizing a new mask ROI-based

CNN (mask R-CNN) architecture optimized specifically for ICH

evaluation and training the network on an expanded cohort of

NCCT head examinations. In addition to validation on a retrospec-

tive cohort, the trained algorithm will be tested for real-time inter-

pretation of new, prospectively acquired NCCT examinations as part

of an automated inference pipeline. By testing performance in a re-

alistic environment of consecutive NCCT examinations, we hope to

assess the feasibility of future implementation in clinical practice.

In summary, the 3 key objectives of this study include deep

learning algorithm development and assessment of final trained

CNN performance in the following: 1) detection of ICH including

intraparenchymal, epidural/subdural (EDH/SDH), and subarach-

noid hemorrhages; 2) quantification of ICH volume; and 3) prospec-

tive, real-time inference on an independent test set as part of an au-

tomated pipeline.

MATERIALS AND METHODS
Patient Selection
After approval of the institutional review board of the University

of California, Irvine Medical Center, 2 separate cohorts were

identified for this study: one cohort for training (combined with

cross-validation) and a second cohort as an independent test set.

The initial retrospectively defined training cohort consisted of

every NCCT examination acquired at the study institution be-

tween January 1, 2017, and July 31, 2017. The subsequent pro-

spectively acquired independent test set cohort consisted of every

NCCT examination ordered from the emergency department be-

tween February 1, 2018, and February 28, 2018. For both cohorts,

cases positive for hemorrhage (IPH, EDH/SDH, and SAH) were

identified from clinical reports and confirmed with visual inspec-

tion by a board-certified radiologist. 3D ground truth masks were

generated for all cases positive for hemorrhage using a custom

semiautomated Web-based annotation platform developed at

our institution, implementing a variety of tools for level-set seg-

mentation and morphologic operations. All masks were visually

inspected for accuracy by a board-certified radiologist.

Convolutional Neural Network
A custom architecture derived from the mask R-CNN algorithm

was developed for detection and segmentation of hemorrhage.13

In brief, the mask R-CNN architecture provides a flexible and

efficient framework for parallel evaluation of region proposal

(attention), object detection (classification), and instance seg-

mentation (Fig 1). In the first step, a preconfigured distribution of

bounding boxes at various shapes and resolutions is tested for the

presence of a potential abnormality. Next, the highest ranking

bounding boxes are identified and used to generate region pro-

posals, thus focusing algorithm attention on specific regions of

the image. These composite region proposals are pruned using

nonmaximum suppression and are used as input into a classifier

to determine the presence or absence of hemorrhage. In the case

of detection positive for hemorrhage, a final segmentation branch

of the network is used to generate binary masks.

The efficiency of a mask R-CNN architecture arises from a

common backbone network that generates a shared set of image

features for the various parallel detection, classification, and seg-

mentation tasks (Fig 2). The backbone network used in this article

is a custom hybrid 3D/2D variant of the feature pyramid net-

work.14 This custom backbone network was constructed using

standard residual bottleneck blocks15 without iterative tuning,

FIG 1. Overview of the mask R-CNN approach. Mask R-CNN architectures provide a flexible and efficient framework for parallel evaluation of
region proposal (attention), object detection (classification), and instance segmentation. A, Preconfigured bounding boxes at various shapes and
resolutions are tested for the presence of a potential abnormality. B, The highest ranking bounding boxes are identified and used to generate
region proposals that focus algorithm attention. C, Composite region proposals are pruned using nonmaximum suppression and are used as
input into a classifier to determine the presence or absence of hemorrhage. D, Segmentation masks are generated for cases positive for
hemorrhage.
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given the observation that mask R-CNN architectures, partic-

ularly those based on pyramid networks, are robust to many

design choices. In this implementation, a 3D input matrix of 5 �

512 � 512 is mapped to 2D output feature maps at various reso-

lutions, with 3D input from the pyramid network bottom-up

pathway added to the 2D feature maps of the top-down pathway

using a projection operation to match the matrix dimensions.

Thus, the network can use contextual information from the 5

slices immediately surrounding the ROI to predict the presence

and location of hemorrhage.

Implementation
The approximate joint training method as described in the origi-

nal faster mask R-CNN implementation16 was used for parallel

optimization of the region-proposal network classifier and seg-

mentation heads. The mask R-CNN architecture was trained us-

ing 128 sampled ROIs per image, with a ratio of positive-to-neg-

ative samples fixed at 1:3. During inference, the top 256 proposals

by the region-proposal network are pruned using nonmaximum

suppression and are used to generate detection boxes for classifi-

cation. The region-proposal network anchors span 4 scales

(128 � 128, 64 � 64, 32 � 32, 16 � 16) and 3 aspect ratios (1:1,

1:2, 2:1).

Network weights were initialized using the heuristic described

by He et al.17 The final loss function included a term for L2 regu-

larization of the network parameters. Optimization was imple-

mented using the Adam method, an algorithm for first-order gra-

dient-based optimization of stochastic objective functions based

on adaptive estimates of lower order moments.18 An initial learn-

ing rate of 2 � 10�4 was used and annealed whenever a plateau in

training loss was observed.

The software code for this study was written in Python 3.5

using the open-source TensorFlow r1.4 library (Apache 2.0

license; https://github.com/tensorflow/tensorflow/blob/master/

LICENSE).19 Experiments were performed on a graphics process-

ing unit (GPU)-optimized workstation with 4 GeForce GTX Ti-

tan X cards (12GB, Maxwell architecture; NVIDIA, Santa Clara,

California). Inference benchmarks for speed were determined us-

ing a single-GPU configuration.

Image Preprocessing
For each volume, the axial soft-tissue reconstruction series was

automatically identified by a custom CNN-based algorithm. If

necessary, this volume was resized to an in-plane resolution ma-

trix of 512 � 512. Furthermore, all matrix values less than �240

HU or greater than �240 HU were clipped, and the entire volume

was rescaled to a range of [�3, 3].

Statistical Analysis
The primary end point of this study was the detection of hemor-

rhage on a per-study basis. A given NCCT volume was considered

positive for hemorrhage if any single region-proposal prediction

on any given slice was determined to contain hemorrhage. Thus,

algorithm performance including accuracy, sensitivity, specific-

ity, positive predictive value, and negative predictive value was

calculated. Furthermore, by varying the softmax score threshold

for hemorrhage classification, we calculated an area under the

curve.

In addition to complete dataset evaluation, performance sta-

tistics on a balanced dataset (an equal number of positive and

negative cases) were also calculated. By means of a balanced

distribution, accuracy could also be further stratified by hem-

orrhage type (IPH, EDH/SDH, and SAH) and size (punctate,

small, medium, and large, defined as �0.01, 0.01–5.0, 5.0 –25,

and �25 mL).

The secondary end point of this study was the ability of the

algorithm to accurately estimate hemorrhage volume. This was

assessed in 2 ways. First, predicted binary masks of hemorrhage

FIG 2. Convolutional neural network architecture. A, Hybrid 3D-contracting (bottom-up) and 2D-expanding (top-down) fully convolutional
feature-pyramid network architecture used for the mask R-CNN backbone. The architecture incorporates both traditional 3 � 3 filters (blue) as
well as bottleneck 1 � 1–3 � 3–1 � 1 modules (orange). The contracting arm is composed of 3D operations and convolutional kernels.
Subsampling in the x- and y-directions is implemented via 1 � 2 � 2 strided convolutions (marked by s2). Subsampling in the z-direction is
mediated by a 2 � 1 x 1 convolutional kernel with valid padding. The expanding arm is composed entirely of 2D operations. B, Connections
between the contracting and expanding arms are facilitated by residual addition operations between corresponding layers. 3D layers in the
contracting arm are mapped to 2D layers in the expanding arm by projection operations, which are designed both to match in the input (N) and
output (1) z-dimension shape in addition to input (C) and output (128) feature map sizes. Ops indicates operations; Conv, convolutions; BN-ReLU,
Batch Normalization Rectified Linear Unit; Proj-Res, Projection-Residual; Z, Z-axis; I, In plane axis; J, In plane axis.
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were compared with criterion standard manual segmentations

using a Dice score coefficient. Second, predicted volumes of hem-

orrhage were compared with criterion standard annotated vol-

umes using a Pearson correlation coefficient (r). As a comparison,

estimates of IPH volume were also calculated using the simplified

ABC/2 formula.

Training Cohort Evaluation
A 5-fold cross-validation scheme was used for evaluation of the initial

training cohort. In this experimental paradigm, 80% of the data are

randomly assigned into the training cohort, while the remaining 20%

are used for validation. This process is then repeated 5 times until

each study in the entire dataset is used for validation once. Validation

results below are reported for the cumulative statistics across the en-

tire dataset.

Independent Test Cohort Evaluation
After fine-tuning the algorithm design and parameters, we ap-

plied the final trained network to a new, prospective cohort of all

consecutive NCCT examinations ordered from the emergency

department for 1 month. The entire pipeline for inference was

fully automated, including real-time transfer of newly acquired

examinations to a custom GPU server from the PACS, identifica-

tion of the correct input series, and trained network inference. In

addition to initial validation statistics, results from this indepen-

dent test dataset are also reported.

RESULTS
Patient Selection
The initial training set cohort comprised 10,159 NCCT examina-

tions, 901 (8.9%) of which contained hemorrhage including IPH

(n � 358/10,159, 3.5%), EDH/SDH (n � 319, 3.1%), and SAH

(n � 224, 2.2%), yielding a total of 512,598 images. The median

hemorrhage size was 28.2 mL (interquartile range, 9.4 – 44.7 mL).

The independent test set cohort compromised 682 prospective

NCCT examinations, 82 (12.0%) of which contained hemorrhage

including IPH (n � 23, 3.4%), EDH/SDH (n � 38, 5.6%), and

SAH (n � 21, 3.1%), yielding 23,668 images. The median hemor-

rhage size was 24.9 mL (interquartile range, 8.3–35.6 mL). Further

baseline stratification of both training and test set cohorts by

hemorrhage type and size can be found in Table 1.

ICH Detection
Overall algorithm performance on the full dataset as measured by

accuracy, area under the curve, sensitivity, specificity, positive

predictive value, and negative predictive value was 0.975, 0.983,

0.971, 0.975, 0.793, and 0.997 for the cross-validation cohort and

0.970, 0.981, 0.951, 0.973, 0.829, and 0.993 for the prospective test

set. When stratified by ICH type, the sensitivity for IPH, EDH/

SDH, and SAH detection was 98.6% (353/358), 97.4% (311/319),

and 94.2% (211/224) for the cross-validation cohort and 100%

(23/23), 94.7% (36/38), and 90.5% (19/21) for the prospective test

set. In total, 26/901 (2.9%) hemorrhages were missed in the cross-

validation cohort compared with 4/81 (4.9%) hemorrhages in the

prospective test set (Figs 3 and 4).

Balanced dataset results stratified by hemorrhage size show

that in general, algorithm accuracy for hemorrhages of �5 mL

(range, 0.977– 0.999 mL) is higher than for hemorrhages of �5

mL (range, 0.872– 0.965 mL) with only 4 cases of missed hemor-

rhage of �5 mL across both cohorts (all representing EDH/SDH).

Detection accuracy of punctate hemorrhages of �0.01 mL (range,

0.872– 0.883 mL) is noticeably more challenging than that of

small hemorrhages between 0.01 and 5 mL (range, 0.906 – 0.965

mL). When we further stratify results by hemorrhage type, the

most challenging combinations to detect are punctate SAH or

EDH/SDH with accuracy ranges of 0.830 – 0.881 across both co-

horts. Complete stratification of balanced dataset results by hem-

orrhage and size can be found in Table 2.

ICH Quantification
Estimates of IPH, EDH/SDH, and SAH segmentation masks by

the CNN demonstrated Dice score coefficients of 0.931, 0.863,

and 0.772, respectively, compared with manual segmentations.

Estimates of IPH, EDH/SDH, and SAH volume by the CNN dem-

onstrated Pearson correlation coefficients of 0.999, 0.987, and

0.953 compared with volumes derived from manual segmenta-

tions. By comparison, estimates of IPH volume derived from the

simplified ABC/2 formula demonstrated a Pearson correlation of

0.954. On average, the ABC/2-derived hemorrhage volumes over-

estimated ground truth by an average of 20.2%, while the CNN-

derived hemorrhage volumes underestimated ground truth by an

average of just 2.1%.

Network Statistics
Each network for a corresponding validation fold trained for ap-

proximately 100,000 iterations before convergence. Depending

on the number of GPU cards for training distribution, this process

required, on average, 6 –12 hours per fold. Once trained, the mask

R-CNN network was able to determine the presence of hemor-

rhage in a new test case within an average of 0.121 seconds, in-

cluding all preprocessing steps on a single GPU workstation.

DISCUSSION
In this study, we demonstrate that a deep learning solution is

highly accurate in the detection of ICHs, including IPHs, EDHs/

SDHs, and SAHs. In addition, this study demonstrates that a

CNN can quantify ICH volume with high accuracy as reflected by

Dice score coefficients (0.772– 0.931) and Pearson correlations

(0.953– 0.999). Finally, while embedded for 1 month in an auto-

mated inference pipeline, the deep learning tool was able to accu-

rately detect and quantify ICHs from prospective NCCT exami-

nations ordered from the emergency department.

There are several previously described approaches to ICH de-

tection with traditional machine-learning techniques such as

fuzzy clustering,20,21 Bayesian classification,22 level-set thresh-

Table 1: Distribution of hemorrhages by type and sizea

Size

IPH EDH/SDH SAH

Valid Test Valid Test Valid Test
Large 192 13 188 19 85 9
Medium 88 8 79 15 53 3
Small 63 1 49 4 52 6
Punctate 15 1 3 0 34 3
Total 358 23 319 38 224 21

a Large, medium, small, and punctate hemorrhages were defined as �25, 5–25,
0.01–5.0, and �0.01 mL, respectively.
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olds,23 and decision tree analysis.24 However, the image diversity

present on any given NCCT head examination ultimately limits

the accuracy of algorithms that are derived from a priori rules and

hard-coded assumptions. For example, Gong et al24 reported a

sensitivity of 0.60 and a positive predictive value of 0.447 for IPH

detection using decision tree analysis. Furthermore, hard-coded

logic tends to produce narrow algorithms optimized for just a

single task. For example, Prakash et al23 reported a level-set tech-

nique for hemorrhage quantification yielding a Dice score range

between 0.858 and 0.917; however, the algorithm is limited for

hemorrhage detection because it is not designed to exclude hem-

orrhage on an examination with negative findings.

Given the increasing awareness of deep learning potential in

medical imaging, there has been a gradual paradigm shift increas-

ingly favoring convolutional neural networks over other ap-

proaches. For example, Shen et al25 developed a multiscale CNN

for lung nodule detection with CT images, while Wang et al26

devised a 12-layer CNN for predicting cardiovascular disease

from mammograms as well as for detecting spine metastasis.27

More recently, Phong et al28 described a deep learning approach

for hemorrhage detection using several pretrained networks on a

small test set of 20 cases.

However, while this preliminary effort is important, there are

several key limitations to be addressed before clinical deployment

of deep learning tools. First, in addition to high algorithm perfor-

mance, a clinically viable tool must address the traditional “black

box” critique of being unable to rationalize a given interpretation.

While there are some techniques to ameliorate this through gen-

FIG 3. Sample network predictions: true-positives. Network predictions by the algorithm include bounding-box region proposals for potential
areas of abnormality (to focus algorithm attention) and final network predictions, including confidence of results. Correctly identified areas of
hemorrhage (green) include subtle abnormalities representing subarachnoid (A), subdural (B and C), and intraparenchymal (D) hemorrhage.
Correctly identified areas of excluded hemorrhage often include common mimics for blood on NCCT, including thickening/high density along
the falx (A, C, and D) and beam-hardening along the periphery (B).

FIG 4. Sample network predictions: false-positives and false-negatives. Network predictions by the algorithm include bounding-box region
proposals for potential areas of abnormality (to focus algorithm attention) and final network predictions including confidence of results.
False-positive predictions for hemorrhage (purple) often include areas of motion artifacts and/or posterior fossa beam-hardening (A) or
high-density mimics such as cortical calcification (C). False-negative predictions for excluded hemorrhage often include small volume abnor-
malities with relatively lower density, resulting in decreased conspicuity. Examples include subtle subarachnoid hemorrhage along the posterior
right frontal lobe (B) and right inferior parietal lobe (D).
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eration of saliency maps29 or class-activation maps,30 this is a

known limitation of conventional global CNN-based classifica-

tion of an image (or volume). By contrast, the proposed custom

mask R-CNN architecture, through combining an attention-

based object-detection network with more traditional classifica-

tion and segmentation components, allows the algorithm to ex-

plicitly localize suspicious CT findings and provide visual

feedback regarding which findings are likely to represent ICH or a

mimic.

Second, a clinically viable tool needs to be tested on unfiltered

data in a setting that reflects the expected context for deployment.

In this study, we attempted to simulate this by deploying the

trained network in a fully automated inference pipeline that can

perform all the requisite steps to support algorithm prediction,

ranging from PACS image transfer to series identification to

GPU-enabled inference, all without human supervision. Further-

more, the prospectively acquired, independent test set used in this

context is a reflective sample of the target population used,

namely every NCCT head examination performed in the emer-

gency radiology department. That algorithm performance in this

setting remains favorable suggests that the deep learning tool has

promising potential for clinical utility in the near future.

An additional point should also be made of the requisite data

base size for proper algorithm validation. While large datasets are

rare in medical imaging, a representative sample of pathology is

critical for validating algorithm accuracy. As evidenced in this

study, it is often the uncommon findings for which a neural net-

work has the most difficultly learning and generalizing to (eg,

punctate hemorrhages of �0.01 mL represent approximately 56/

10,841 � 0.5% of all examinations yet are also the most difficult to

detect); thus, a large representative dataset is required to assess

performance on these critical rare entities. A large data base also

facilitates algorithm learning, whereby the increased diversity of

training examples helps the network choose more generalizable

and predictive features. Finally, cases without ICH are just as im-

portant as those with ICH because the algorithm must also be able

to correctly identify the absence of hemorrhage in most cases

despite any possible underlying pathology that may be present. To

address these issues, this study takes advantage of a large training

dataset comprising over 512,598 images from �10,000 patients,

at least an order of magnitude higher than that in any previous

study.

The most salient use case of an accurate tool for hemorrhage

detection is a triage system that alerts physicians of examinations

potentially positive for hemorrhage for expedited interpretation,

thus facilitating reduced turn-around time. The recent 2013 Im-

aging Performance Partnership survey of �80 institutions rated

the importance of reduced turn-around time as one of their high-

est priorities, scoring 5.7 of a 6.0 rating,31 allowing an expedited

triage of patients for therapeutic management. As an example,

rapid identification of patients with IPH would facilitate imme-

diate control of blood pressure during the vulnerable first few

3– 4.5 hours of symptom onset when acute deterioration is most

likely.5-7 The importance of rapid diagnosis is supported further

by the recent Intensive Blood Pressure Reduction in Acute Cere-

bral Hemorrhage Trial-2, which concluded that intensive treat-

ment afforded by early diagnosis was associated with improved

functional outcome.32

In addition to hemorrhage detection, ICH volume metrics can

be used to precisely and efficiently quantify the initial burden of

disease as well as serial changes, which, in turn, may have impor-

tant clinical implications.33,34 For IPHs, this is most relevant

within the first 2–3 hours of onset when the hemorrhagic volume

can shift dramatically.5-7 Furthermore, the volume of hemor-

rhage is a known predictor of 30-day mortality and morbidity.8,9

Presently, the clinical standard for estimation of IPH volume is by

the ABC/2 formula of Kwak et al,10,35 in which A and B represent

maximum single-dimensional perpendicular measurements on

the largest axial region of hemorrhage and C represents a graded

estimate of the craniocaudal extent. While easy to use, this limited

Table 2: Balanced dataset performance statistics stratified by hemorrhage type and sizea

Size

Accuracy AUC Sensitivity Specificity PPV NPV

Valid Test Valid Test Valid Test Valid Test Valid Test Valid Test
All ICHs 0.984 0.972 0.991 0.989 0.971 0.951 0.975 0.973 0.975 0.972 0.971 0.952

Large 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Medium 0.992 0.977 0.995 0.982 0.986 0.962 0.975 0.973 0.975 0.972 0.986 0.962
Small 0.965 0.906 0.972 0.987 0.933 0.818 0.975 0.973 0.974 0.968 0.936 0.843
Punctate 0.883 0.872 0.895 0.903 0.769 0.750 0.975 0.973 0.968 0.965 0.809 0.796

IPH 0.992 0.997 0.996 0.999 0.986 1.000 0.975 0.973 0.975 0.973 0.986 1.000
Large 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Medium 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Small 0.983 0.997 0.999 0.999 0.968 1.000 0.975 0.973 0.974 0.973 0.968 1.000
Punctate 0.899 0.997 0.921 0.999 0.800 1.000 0.975 0.973 0.969 0.973 0.830 1.000

EDH/SDH 0.986 0.970 0.989 0.974 0.975 0.947 0.975 0.973 0.975 0.972 0.975 0.949
Large 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Medium 0.980 0.963 0.983 0.971 0.962 0.933 0.975 0.973 0.974 0.971 0.963 0.936
Small 0.958 0.872 0.968 0.882 0.918 0.750 0.975 0.973 0.973 0.965 0.923 0.796
Punctate 0.832 NA 0.857 NA 0.667 NA 0.975 0.973 0.963 NA 0.745 NA

SAH 0.970 0.949 0.972 0.953 0.942 0.905 0.975 0.973 0.974 0.971 0.944 0.911
Large 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Medium 0.999 0.997 0.999 0.999 1.000 1.000 0.975 0.973 0.975 0.973 1.000 1.000
Small 0.950 0.913 0.960 0.928 0.904 0.833 0.975 0.973 0.973 0.968 0.910 0.854
Punctate 0.881 0.830 0.891 0.833 0.765 0.667 0.975 0.973 0.968 0.961 0.806 0.745

Note:—AUC indicates area under the curve; NA, not applicable; PPV, positive predictive value; NPV, negative predictive value.
a Large, medium, small, and punctate hemorrhages were defined as �25, 5–25, 0.01–5.0, and �0.01 mL, respectively.
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approach assumes an ellipsoid shape for all IPHs. In this study, we

show that this assumption results in overestimation of hemor-

rhage by 20.2%, a statistic that has been previously reported with

discrepancies up to 30% compared with manual segmentation.10

While the criterion standard remains manual delineation, this

approach can be both time-consuming and technically challeng-

ing in the emergency department setting. By comparison, the abil-

ity of the trained CNN to rapidly and accurately quantify IPH

volume with �0.999 correlations to human experts offers a clin-

ically feasible, improved alternative to the current standards of

practice.

Several limitations should be addressed when considering our

results. First, examinations in this study were performed at a sin-

gle academic institution. Therefore, while we have demonstrated

that our results generalize well to independent datasets obtained

at our hospital center, further work is necessary to evaluate per-

formance on a variety of vendors and scanning protocols at other

institutions. While we acknowledge this drawback, CT examina-

tions are inherently normalized by Hounsfield Units and show

less image variability than plain radiographs or MR imaging. Sec-

ond, deep learning algorithms are known to be susceptible to the

phenomenon of adversarial noise,36 where small but highly pat-

terned perturbations in images may result in unexpected predic-

tions. However, this is rare and was not encountered in the cur-

rent dataset and, to some extent, can be mitigated using network

ensembles and denoising autoencoders.37 Finally, while the cur-

rent dataset is quite large, there are, nonetheless, rare findings and

contexts that occur at a prevalence of less than our 1/10,000 cases,

and it is foreseeable that such studies may be incorrectly inter-

preted. To this end, we plan to incorporate continued iterative

algorithm updates as new, increasingly larger datasets become

available.

CONCLUSIONS
This study demonstrates the high performance of a fully auto-

mated, deep learning algorithm for detection and quantification

of IPH, EDH/SDH, and SAH on NCCT examinations of the head.

Furthermore, confirmation of high algorithm performance on a

prospectively acquired, independent test set while embedded in

an automated inference environment suggests the clinical viabil-

ity of this deep learning tool in the near future. Such a tool may be

implemented either as a triage system to assist radiologists in

identifying high-priority examinations for interpretation and/or

as a method for rapid quantification of ICH volume, overall ex-

pediting the triage of patient care and offering more accurate,

detailed information to guide clinical decision-making.
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