Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleAdult Brain
Open Access

Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging

X. Li, D. Wang, S. Liao, L. Guo, X. Xiao, X. Liu, Y. Xu, J. Hua, J.J. Pillai and Y. Wu
American Journal of Neuroradiology April 2020, 41 (4) 583-590; DOI: https://doi.org/10.3174/ajnr.A6466
X. Li
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Li
D. Wang
bSchool of Biomedical Engineering (D.W.), Shanghai Jiao Tong University, Shanghai, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Wang
S. Liao
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
cDivision of CT and MR, Radiology Department (S.L.), First Affiliated Hospital of Gannan Medical University, Ganzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Liao
L. Guo
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Guo
X. Xiao
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Xiao
X. Liu
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for X. Liu
Y. Xu
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Xu
J. Hua
dNeurosection, Division of MR Research (J.H.)
gF.M. Kirby Research Center for Functional Brain Imaging (J.H.), Kennedy Krieger Institute, Baltimore, Maryland.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Hua
J.J. Pillai
eDivision of Neuroradiology (J.P.); Russell H. Morgan Department of Radiology and Radiological Science and
fDepartment of Neurosurgery (J.P.), Johns Hopkins University School of Medicine, Baltimore, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.J. Pillai
Y. Wu
aFrom the Department of Medical Imaging (X. Li, S.L., L.G., X.X., X. Liu, Y.X., Y.W.), Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Wu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Bauer AH,
    2. Erly W,
    3. Moser FG, et al
    . Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 2015;57:697–703 doi:10.1007/s00234-015-1524-6 pmid:25845813
    CrossRefPubMed
  2. 2.↵
    1. Soffietti R,
    2. Abacioglu U,
    3. Baumert B, et al
    . Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro Oncol 2017;19:162–74 doi:10.1093/neuonc/now241 pmid:28391295
    CrossRefPubMed
  3. 3.
    1. Ahmed R,
    2. Oborski MJ,
    3. Hwang M, et al
    . Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag Res 2014;6:149–70 doi:10.2147/CMAR.S54726 pmid:24711712
    CrossRefPubMed
  4. 4.↵
    1. Giese A,
    2. Westphal M
    . Treatment of malignant glioma: a problem beyond the margins of resection. J Cancer Res Clin Oncol 2001;127:217–25 doi:10.1007/s004320000188 pmid:11315255
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Lee EJ,
    2. Ahn KJ,
    3. Lee EK, et al
    . Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol 2013;68:e689–97 doi:10.1016/j.crad.2013.06.021 pmid:23969153
    CrossRefPubMed
  6. 6.↵
    1. Server A,
    2. Orheim TE,
    3. Graff BA, et al
    . Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis. Neuroradiology 2011;53:319–30 doi:10.1007/s00234-010-0740-3 pmid:20625709
    CrossRefPubMed
  7. 7.↵
    1. Maluf FC,
    2. DeAngelis LM,
    3. Raizer JJ, et al
    . High-grade gliomas in patients with prior systemic malignancies. Cancer 2002;94:3219–24 doi:10.1002/cncr.10595 pmid:12115354
    CrossRefPubMed
  8. 8.↵
    1. Wesseling P,
    2. Ruiter DJ,
    3. Burger PC
    . Angiogenesis in brain tumors; pathobiological and clinical aspects. J Neurooncol 1997;32:253–65 doi:10.1023/a:1005746320099 pmid:9049887
    CrossRefPubMed
  9. 9.↵
    1. Long DM
    . Capillary ultrastructure in human metastatic brain tumors. J Neurosurg 1979;51:53–58 doi:10.3171/jns.1979.51.1.0053 pmid:448419
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Cha S,
    2. Knopp EA,
    3. Johnson G, et al
    . Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002;223:11–29 doi:10.1148/radiol.2231010594 pmid:11930044
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Thust SC,
    2. Heiland S,
    3. Falini A, et al
    . Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol 2018;28:3306–17 doi:10.1007/s00330-018-5314-5 pmid:29536240
    CrossRefPubMed
  12. 12.↵
    1. Suh CH,
    2. Kim HS,
    3. Jung SC, et al
    . Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysis. Eur Radiol 2018;28:3819–31 doi:10.1007/s00330-018-5335-0 pmid:29619517
    CrossRefPubMed
  13. 13.↵
    1. Weber MA,
    2. Zoubaa S,
    3. Schlieter M, et al
    . Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 2006;66:1899–906 doi:10.1212/01.wnl.0000219767.49705.9c pmid:16801657
    Abstract/FREE Full Text
  14. 14.↵
    1. Chiang IC,
    2. Kuo YT,
    3. Lu CY, et al
    . Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 2004;46:619–27 doi:10.1007/s00234-004-1246-7 pmid:15243726
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Law M,
    2. Cha S,
    3. Knopp EA, et al
    . High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715–21 doi:10.1148/radiol.2223010558 pmid:11867790
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  17. 17.↵
    1. Sunwoo L,
    2. Yun TJ,
    3. You SH, et al
    . Differentiation of glioblastoma from brain metastasis: qualitative and quantitative analysis using arterial spin labeling MR imaging. PLoS One 2016;11:e0166662 doi:10.1371/journal.pone.0166662 pmid:27861605
    CrossRefPubMed
  18. 18.↵
    1. Lemee JM,
    2. Clavreul A,
    3. Menei P
    . Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro Oncol 2015;17:1322–32 doi:10.1093/neuonc/nov119 pmid:26203067
    CrossRefPubMed
  19. 19.↵
    1. Gulani V,
    2. Calamante F,
    3. Shellock FG, et al
    ; International Society for Magnetic Resonance in Medicine. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol 2017;16:564–70 doi:10.1016/S1474-4422(17)30158-8 pmid:28653648
    CrossRefPubMed
  20. 20.↵
    1. Kuo PH,
    2. Kanal E,
    3. Abu-Alfa AK, et al
    . Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007;242:647–49 doi:10.1148/radiol.2423061640 pmid:17213364
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Schieda N,
    2. Blaichman JI,
    3. Costa AF, et al
    . Gadolinium-based contrast agents in kidney disease: a comprehensive review and clinical practice guideline issued by the Canadian Association of Radiologists. Can J Kidney Health Dis 2018;5:2054358118778573 doi:10.1177/2054358118778573 pmid:29977584
    CrossRefPubMed
  22. 22.↵
    1. Bjornerud A,
    2. Vatnehol SAS,
    3. Larsson C, et al
    . Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology 2017;285:434–44 doi:10.1148/radiol.2017170391 pmid:28885891
    CrossRefPubMed
  23. 23.↵
    1. Hua J,
    2. Liu P,
    3. Kim T, et al
    . MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019;187:17–31 doi:10.1016/j.neuroimage.2018.02.027 pmid:29458187
    CrossRefPubMed
  24. 24.↵
    1. Hua J,
    2. Qin Q,
    3. Donahue MJ, et al
    . Inflow-based vascular-space-occupancy (iVASO) MRI. Magn Reson Med 2011;66:40–56 doi:10.1002/mrm.22775 pmid:21695719
    CrossRefPubMed
  25. 25.↵
    1. Hua J,
    2. Qin Q,
    3. Pekar JJ, et al
    . Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent. NMR Biomed 2011;24:1313–25 doi:10.1002/nbm.1693 pmid:21608057
    CrossRefPubMed
  26. 26.↵
    1. Huber L,
    2. Goense J,
    3. Kennerley AJ, et al
    . Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T. Neuroimage 2014;97:349–62 doi:10.1016/j.neuroimage.2014.04.022 pmid:24742920
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Ito H,
    2. Ibaraki M,
    3. Kanno I, et al
    . Changes in the arterial fraction of human cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab 2005;25:852–57 doi:10.1038/sj.jcbfm.9600076 pmid:15716851
    CrossRefPubMedWeb of Science
  28. 28.↵
    1. van Zijl PC,
    2. Eleff SM,
    3. Ulatowski JA, et al
    . Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat Med 1998;4:159–67 doi:10.1038/nm0298-159 pmid:9461188
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Hua J,
    2. Unschuld PG,
    3. Margolis RL, et al
    . Elevated arteriolar cerebral blood volume in prodromal Huntington’s disease. Mov Disord 2014;29:396–401 doi:10.1002/mds.25591 pmid:23847161
    CrossRefPubMed
  30. 30.
    1. Hua JL,
    2. Blair NIS
    . Abnormal grey matter arteriolar cerebral blood volume and its association with the presence of E4 allele of the apolipoprotein E (APOE) gene in elderly subjects at risk for Alzheimer’s disease. In: Proceedings of the Scientific Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine, May 7–13, 2016. Singapore; 4030
  31. 31.↵
    1. Hua J,
    2. Brandt AS,
    3. Lee S, et al
    . Abnormal grey matter arteriolar cerebral blood volume in schizophrenia measured with 3D inflow-based vascular-space-occupancy MRI at 7T. Schizophr Bull 2017;43:620–32 doi:10.1093/schbul/sbw109 pmid:27539951
    CrossRefPubMed
  32. 32.↵
    1. Wu Y,
    2. Agarwal S,
    3. Jones CK, et al
    . Measurement of arteriolar blood volume in brain tumors using MRI without exogenous contrast agent administration at 7T. J Magn Reson Imaging 2016;44:1244–55 doi:10.1002/jmri.25248 pmid:27028493
    CrossRefPubMed
  33. 33.↵
    1. Wetzel SG,
    2. Cha S,
    3. Johnson G, et al
    . Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 2002;224:797–803 doi:10.1148/radiol.2243011014 pmid:12202717
    CrossRefPubMedWeb of Science
  34. 34.↵
    1. Ricci R,
    2. Bacci A,
    3. Tugnoli V, et al
    . Metabolic findings on 3T 1H-MR spectroscopy in peritumoral brain edema. AJNR Am J Neuroradiol 2007;28:1287–91 doi:10.3174/ajnr.A0564 pmid:17698529
    Abstract/FREE Full Text
  35. 35.↵
    1. Cha S,
    2. Lupo JM,
    3. Chen MH, et al
    . Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078–84 doi:10.3174/ajnr.A0484 pmid:17569962
    Abstract/FREE Full Text
  36. 36.
    1. Cha S
    . Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 2004;15:279–89 doi:10.1097/00002142-200410000-00002 pmid:15627003
    CrossRefPubMed
  37. 37.
    1. Bertossi M,
    2. Virgintino D,
    3. Maiorano E, et al
    . Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol 1997;21:41–49 doi:10.3109/01913129709023246 pmid:9029765
    CrossRefPubMedWeb of Science
  38. 38.
    1. Kelly PJ,
    2. Daumas-Duport C,
    3. Scheithauer BW, et al
    . Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987;62:450–59 doi:10.1016/s0025-6196(12)65470-6 pmid:3553757
    CrossRefPubMedWeb of Science
  39. 39.↵
    1. Daumas-Duport C,
    2. Monsaigneon V,
    3. Blond S, et al
    . Serial stereotactic biopsies and CT scan in gliomas: correlative study in 100 astrocytomas, oligo-astrocytomas and oligodendrocytomas. J Neurooncol 1987;4:317–28 doi:10.1007/bf00195602 pmid:3553439
    CrossRefPubMed
  40. 40.↵
    1. Server A,
    2. Josefsen R,
    3. Kulle B, et al
    . Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 2010;51:316–25 doi:10.3109/02841850903482901 pmid:20092374
    CrossRefPubMed
  41. 41.↵
    1. Halshtok NO,
    2. Sadetzki S,
    3. Chetrit A, et al
    . Perfusion-weighted imaging of peritumoral edema can aid in the differential diagnosis of glioblastoma mulltiforme versus brain metastasis. Isr Med Assoc J 2013;15:103–05 pmid:23516772
    PubMed
  42. 42.↵
    1. Oei MTH,
    2. Meijer FJA,
    3. Mordang JJ, et al
    . Observer variability of reference tissue selection for relative cerebral blood volume measurements in glioma patients. Eur Radiol 2018;28:3902–11 doi:10.1007/s00330-018-5353-y pmid:29572637
    CrossRefPubMed
  43. 43.↵
    1. Usinskiene J,
    2. Ulyte A,
    3. Bjornerud A, et al
    . Optimal differentiation of high- and low-grade glioma and metastasis: a meta-analysis of perfusion, diffusion, and spectroscopy metrics. Neuro-radiology 2016;58:339–50 doi:10.1007/s00234-016-1642-9 pmid:26767528
    CrossRefPubMed
  44. 44.↵
    1. Park MJ,
    2. Kim HS,
    3. Jahng GH, et al
    . Semiquantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol 2009;30:1402–08 doi:10.3174/ajnr.A1593 pmid:19369602
    Abstract/FREE Full Text
  45. 45.↵
    1. Hu LS,
    2. Ning S,
    3. Eschbacher JM, et al
    . Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro Oncol 2017;19:128–37 doi:10.1093/neuonc/now135 pmid:27502248
    CrossRefPubMed
  46. 46.
    1. Nguyen TB,
    2. Cron GO,
    3. Bezzina K, et al
    . Correlation of tumor immunohistochemistry with dynamic contrast-enhanced and DSC-MRI parameters in patients with gliomas. AJNR Am J Neuroradiol 2016;37:2217–23 doi:10.3174/ajnr.A4908 pmid:27585700
    Abstract/FREE Full Text
  47. 47.
    1. Meyer M,
    2. Reimand J,
    3. Lan X, et al
    . Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci USA 2015;112:851–56 doi:10.1073/pnas.1320611111 pmid:25561528
    Abstract/FREE Full Text
  48. 48.↵
    1. Stieber D,
    2. Golebiewska A,
    3. Evers L, et al
    . Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol 2014;127:203–19 doi:10.1007/s00401-013-1196-4 pmid:24154962
    CrossRefPubMed
  49. 49.↵
    1. Jinnouchi T,
    2. Shibata S,
    3. Fukushima M, et al
    . Ultrastructure of capillary permeability in human brain tumor, Part 6: metastatic brain tumor with brain edema [in Japanese]. No Shinkei Geka 1988;16(5 Suppl):563–68 pmid:3399012
    PubMed
  50. 50.↵
    1. Sarkaria JN,
    2. Hu LS,
    3. Parney IF, et al
    . Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 2018;20:184–91 doi:10.1093/neuonc/nox175 pmid:29016900
    CrossRefPubMed
  51. 51.↵
    1. Lai PH,
    2. Chung HW,
    3. Chang HC, et al
    . Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors. Eur J Radiol 2019;117:56–61 doi:10.1016/j.ejrad.2019.05.021 pmid:31307653
    CrossRefPubMed
  52. 52.↵
    1. Fu JH,
    2. Chuang TC,
    3. Chung HW, et al
    . Discriminating pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors by means of susceptibility-weighted imaging. Eur Radiol 2015;25:1413–20 doi:10.1007/s00330-014-3518-x pmid:25465712
    CrossRefPubMed
  53. 53.↵
    1. Pinker K,
    2. Noebauer-Huhmann IM,
    3. Stavrou I, et al
    . High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol 2007;28:1280–86 doi:10.3174/ajnr.A0540 pmid:17698528
    Abstract/FREE Full Text
  54. 54.↵
    1. Park SM,
    2. Kim HS,
    3. Jahng GH, et al
    . Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. Br J Radiol 2010;83:466–75 doi:10.1259/bjr/34304111 pmid:19690076
    Abstract/FREE Full Text
  55. 55.↵
    1. Mouthuy N,
    2. Cosnard G,
    3. Abarca-Quinones J, et al
    . Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases. J Neuroradiol 2012;39:301–07 doi:10.1016/j.neurad.2011.11.002 pmid:22197404
    CrossRefPubMed
  56. 56.↵
    1. Vallée A,
    2. Guillevin C,
    3. Wager M, et al
    . Added value of spectroscopy to perfusion MRI in the differential diagnostic performance of common malignant brain tumors. AJNR Am J Neuroradiol 2018;39:1423–31 doi:10.3174/ajnr.A5725 pmid:30049719
    Abstract/FREE Full Text
  57. 57.↵
    1. Ma JH,
    2. Kim HS,
    3. Rim NJ, et al
    . Differentiation among glioblastoma multiforme, solitary metastatic tumor, and lymphoma using whole-tumor histogram analysis of the normalized cerebral blood volume in enhancing and perienhancing lesions. AJNR Am J Neuroradiol 2010;31:1699–706 doi:10.3174/ajnr.A2161 pmid:20581063
    Abstract/FREE Full Text
  58. 58.↵
    1. Iadecola C,
    2. Nedergaard M
    . Glial regulation of the cerebral microvasculature. Nat Neurosci 2007;10:1369–76 doi:10.1038/nn2003 pmid:17965657
    CrossRefPubMedWeb of Science
  59. 59.↵
    1. Kim T,
    2. Hendrich KS,
    3. Masamoto K, et al
    . Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab 2007;27:1235–47 doi:10.1038/sj.jcbfm.9600429 pmid:17180136
    CrossRefPubMedWeb of Science
  60. 60.↵
    1. Gitiaux C,
    2. Kostallari E,
    3. Lafuste P, et al
    . Whole microvascular unit deletions in dermatomyositis. Ann Rheum Dis 2013;72:445–52 doi:10.1136/annrheumdis-2012-201822 pmid:22962315
    Abstract/FREE Full Text
  61. 61.↵
    1. Shen Z,
    2. Lu Z,
    3. Chhatbar PY, et al
    . An artery-specific fluorescent dye for studying neurovascular coupling. Nat Methods 2012;9:273–76 doi:10.1038/nmeth.1857 pmid:22266543
    CrossRefPubMedWeb of Science
  62. 62.↵
    1. Hansen-Smith F,
    2. Egginton S,
    3. Zhou AL, et al
    . Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. Microvasc Res 2001;62:1–14 doi:10.1006/mvre.2001.2308 pmid:11421656
    CrossRefPubMedWeb of Science
  63. 63.↵
    1. Zhao JM,
    2. Clingman CS,
    3. Narvainen MJ, et al
    . Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 2007;58:592–97 doi:10.1002/mrm.21342 pmid:17763354
    CrossRefPubMedWeb of Science
  64. 64.↵
    1. Vanzetta I,
    2. Hildesheim R,
    3. Grinvald A
    . Compartment-resolved imaging of activity-dependent dynamics of cortical blood volume and oximetry. J Neurosci 2005;25:2233–44 doi:10.1523/JNEUROSCI.3032-04.2005
    Abstract/FREE Full Text
  65. 65.↵
    1. Hillman EM,
    2. Devor A,
    3. Bouchard MB, et al
    . Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 2007;35:89–104 doi:10.1016/j.neuroimage.2006.11.032 pmid:17222567
    CrossRefPubMedWeb of Science
  66. 66.↵
    1. Gunther M,
    2. Bock M,
    3. Schad LR
    . Arterial spin-labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46:974–84 doi:10.1002/mrm.1284 pmid:11675650
    CrossRefPubMed
  67. 67.↵
    1. Warmuth C,
    2. Gunther M,
    3. Zimmer C
    . Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003;228:523–32 doi:10.1148/radiol.2282020409 pmid:12819338
    CrossRefPubMedWeb of Science
  68. 68.↵
    1. Boxerman JL,
    2. Prah DE,
    3. Paulson ES, et al
    . The role of preload and leakage correction in gadolinium-based cerebral blood volume estimation determined by comparison with MION as a criterion standard. AJNR Am J Neuroradiol 2012;33:1081–87 doi:10.3174/ajnr.A2934 pmid:22322605
    Abstract/FREE Full Text
  69. 69.↵
    1. Welker K,
    2. Boxerman J,
    3. Kalnin A, et al
    ; American Society of Functional Neuroradiology MR Perfusion Standards and Practice Subcommittee of the ASFNR Clinical Practice Committee. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015;36:E41–51 doi:10.3174/ajnr.A4341 pmid:25907520
    Abstract/FREE Full Text
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 41 (4)
American Journal of Neuroradiology
Vol. 41, Issue 4
1 Apr 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging
X. Li, D. Wang, S. Liao, L. Guo, X. Xiao, X. Liu, Y. Xu, J. Hua, J.J. Pillai, Y. Wu
American Journal of Neuroradiology Apr 2020, 41 (4) 583-590; DOI: 10.3174/ajnr.A6466

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Discrimination between Glioblastoma and Solitary Brain Metastasis: Comparison of Inflow-Based Vascular-Space-Occupancy and Dynamic Susceptibility Contrast MR Imaging
X. Li, D. Wang, S. Liao, L. Guo, X. Xiao, X. Liu, Y. Xu, J. Hua, J.J. Pillai, Y. Wu
American Journal of Neuroradiology Apr 2020, 41 (4) 583-590; DOI: 10.3174/ajnr.A6466
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Adult Brain

  • Anatomic and Embryologic Analysis of the Dural Branches of the Ophthalmic Artery
  • Automated Cerebral Hemorrhage Detection Using RAPID
  • Analysis of Stroke Detection during the COVID-19 Pandemic Using Natural Language Processing of Radiology Reports
Show more Adult Brain

Functional

  • Time-to-Maximum of the Tissue Residue Function Improves Diagnostic Performance for Detecting Distal Vessel Occlusions on CT Angiography
  • Noninvasive Determination of IDH and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review
  • Effects of Acquisition Parameter Modifications and Field Strength on the Reproducibility of Brain Perfusion Measurements Using Arterial Spin-Labeling
Show more Functional

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire