Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticlePediatrics

Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach

V. Schmidbauer, G. Dovjak, G. Geisl, M. Weber, M.C. Diogo, M.S. Yildirim, K. Goeral, K. Klebermass-Schrehof, A. Berger, D. Prayer and G. Kasprian
American Journal of Neuroradiology March 2021, 42 (3) 581-589; DOI: https://doi.org/10.3174/ajnr.A6945
V. Schmidbauer
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for V. Schmidbauer
G. Dovjak
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Dovjak
G. Geisl
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Geisl
M. Weber
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Weber
M.C. Diogo
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.C. Diogo
M.S. Yildirim
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.S. Yildirim
K. Goeral
bDivision of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Goeral
K. Klebermass-Schrehof
bDivision of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Klebermass-Schrehof
A. Berger
bDivision of Neonatology, Pediatric Intensive Care and Neuropediatrics (K.G., K.K.-S., A.B.), Comprehensive Center for Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Berger
D. Prayer
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Prayer
G. Kasprian
aDepartment of Biomedical Imaging and Image-Guided Therapy (V.S., G.D., G.G., M.W., M.C.D., M.S.Y., D.P., G.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Kasprian
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. van der Knaap MS,
    2. Valk J
    . Magnetic Resonance of Myelination and Myelin Disorders. 3rd ed. Springer-Verlag; 2005
  2. 2.↵
    1. Flechsig P
    . Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 1901;158:1027–30
    CrossRefPubMed
  3. 3.↵
    1. Kinney HC
    . Human myelination and perinatal white matter disorders. J Neurol Sci 2005;228:190–92 doi:10.1016/j.jns.2004.10.006 pmid:15694202
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Barkovich AJ,
    2. Kjos BO,
    3. Jackson DE, et al
    . Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988;166:173–80 doi:10.1148/radiology.166.1.3336675 pmid:3336675
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. van der Knaap MS,
    2. Valk J
    . MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 1990;31:459–70 doi:10.1007/BF00340123 pmid:2352626
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Schmidbauer V,
    2. Geisl G,
    3. Diogo M, et al
    . SyMRI detects delayed myelination in preterm neonates. Eur Radiol 2019;29:7063–72 doi:10.1007/s00330-019-06325-2 pmid:31286188
    CrossRefPubMed
  7. 7.↵
    1. Ibrahim J,
    2. Mir I,
    3. Chalak L
    . Brain imaging in preterm infants <32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr Res 2018;84:799–806 doi:10.1038/s41390-018-0194-6 pmid:30315272
    CrossRefPubMed
  8. 8.↵
    1. Parikh NA
    . Advanced neuroimaging and its role in predicting neurodevelopmental outcomes in very preterm infants. Semin Perinatol 2016;40:530–41 doi:10.1053/j.semperi.2016.09.005 pmid:27863706
    CrossRefPubMed
  9. 9.↵
    1. Glass HC,
    2. Costarino AT,
    3. Stayer SA, et al
    . Outcomes for extremely premature infants. Anesth Analg 2015;120:1337–51 doi:10.1213/ANE.0000000000000705 pmid:25988638
    CrossRefPubMed
  10. 10.↵
    1. Marlow N,
    2. Wolke D,
    3. Bracewell MA, et al
    . Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 2005;352:9–19 doi:10.1056/NEJMoa041367 pmid:15635108
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Rutherford M,
    2. Pennock J,
    3. Schwieso J, et al
    . Hypoxic-ischaemic encephalopathy: early and late magnetic resonance imaging findings in relation to outcome. Arch Dis Child Fetal Neonatal Ed 1996;75:F145–51 doi:10.1136/fn.75.3.F145 pmid:8976678
    Abstract/FREE Full Text
  12. 12.
    1. Benders MJ,
    2. Kersbergen KJ,
    3. de Vries LS
    . Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage. Clin Perinatol 2014;41:69–82 doi:10.1016/j.clp.2013.09.005 pmid:24524447
    CrossRefPubMed
  13. 13.↵
    1. de Vries LS,
    2. Benders MJ,
    3. Groenendaal F
    . Progress in neonatal neurology with a focus on neuroimaging in the preterm infant. Neuropediatrics 2015;46:234–41 doi:10.1055/s-0035-1554102 pmid:26121069
    CrossRefPubMed
  14. 14.↵
    1. Lee SM,
    2. Choi YH,
    3. You SK, et al
    . Age-related changes in tissue value properties in children: simultaneous quantification of relaxation times and proton density using synthetic magnetic resonance imaging. Invest Radiol 2018;53:236–45 doi:10.1097/RLI.0000000000000435 pmid:29504952
    CrossRefPubMed
  15. 15.↵
    1. Ding XQ,
    2. Kucinski T,
    3. Wittkugel O, et al
    . Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 2004;39:740–46 doi:10.1097/00004424-200412000-00005 pmid:15550835
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Ferrie JC,
    2. Barantin L,
    3. Saliba E, et al
    . MR assessment of the brain maturation during the perinatal period: quantitative T2 MR study in premature newborns. Magn Reson Imaging 1999;17:1275–88 doi:10.1016/S0730-725X(99)00080-6 pmid:10576713
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Deoni SC,
    2. Mercure E,
    3. Blasi A, et al
    . Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 2011;31:784–91 doi:10.1523/JNEUROSCI.2106-10.2011 pmid:21228187
    Abstract/FREE Full Text
  18. 18.↵
    1. McAllister A,
    2. Leach J,
    3. West H, et al
    . Quantitative synthetic MRI in children: normative intracranial tissue segmentation values during development. AJNR Am J Neuroradiol 2017;38:2364–72 doi:10.3174/ajnr.A5398 pmid:28982788
    Abstract/FREE Full Text
  19. 19.
    1. Tanenbaum LN,
    2. Tsiouris AJ,
    3. Johnson AN, et al
    . Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103–10 doi:10.3174/ajnr.A5227 pmid:28450439
    Abstract/FREE Full Text
  20. 20.↵
    1. Warntjes JB,
    2. Leinhard OD,
    3. West J, et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29 doi:10.1002/mrm.21635 pmid:18666127
    CrossRefPubMed
  21. 21.↵
    1. Hagiwara A,
    2. Warntjes M,
    3. Hori M, et al
    . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol 2017;52:647–57 doi:10.1097/RLI.0000000000000365 pmid:28257339
    CrossRefPubMed
  22. 22.
    1. Schmidbauer V,
    2. Geisl G,
    3. Cardoso Diogo M, et al
    . Validity of SyMRI for assessment of the neonatal brain. Clin Neuroradiol 2020 March 11. [Epub ahead of print] doi:10.1007/s00062-020-00894-2 pmid:32161995
    CrossRefPubMed
  23. 23.↵
    1. Vanderhasselt T,
    2. Naeyaert M,
    3. Watte N, et al
    . Synthetic MRI of preterm infants at term-equivalent age: evaluation of diagnostic image quality and automated brain volume segmentation. AJNR Am J Neuroradiol 2020;41:882–88 doi:10.3174/ajnr.A6533 pmid:32299803
    Abstract/FREE Full Text
  24. 24.↵
    1. Kang KM,
    2. Choi SH,
    3. Kim H, et al
    . The effect of varying slice thickness and interslice gap on T1 and T2 measured with the multidynamic multiecho sequence. Magn Reson Med Sci 2019;18:126–33 doi:10.2463/mrms.mp.2018-0010
    CrossRef
  25. 25.↵
    1. Cicchetti D
    . Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 1994;6:284–90 doi:10.1037/1040-3590.6.4.284 pmid:29984783
    CrossRefPubMed
  26. 26.↵
    1. Sari S,
    2. Yavuz A,
    3. Batur A, et al
    . Brain magnetic resonance imaging and magnetic resonance spectroscopy findings of children with kernicterus. Pol J Radiol 2015;80:72–80 doi:10.12659/PJR.892643 pmid:25745520
    CrossRefPubMed
  27. 27.↵
    1. Karabulut B,
    2. Surmeli M,
    3. Bozdag S, et al
    . Effect of hyperbilirubinemia on medial olivocochlear system in newborns. Int Adv Otol 2019;15:272–76 doi:10.5152/iao.2019.5723 pmid:31120424
    CrossRefPubMed
  28. 28.↵
    1. Minkowski A
    1. Yakovlev P,
    2. Lecours A
    . The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, ed. Regional Development of the Brain in Early Life. Blackwell; 1967:3–70
  29. 29.↵
    1. Wang S,
    2. Ledig C,
    3. Hajnal JV, et al
    . Quantitative assessment of myelination patterns in preterm neonates using T2W MRI. Sci Rep 2019;9:12938 doi:10.1038/s41598-019-49350-3 pmid:31506514
    CrossRefPubMed
  30. 30.
    1. Barkovich AJ,
    2. Lyon G,
    3. Evrard P
    . Formation, maturation, and disorders of white matter. AJNR Am J Neuroradiol 1992;13:447–61 pmid:1566710
    FREE Full Text
  31. 31.↵
    1. Dubois J,
    2. Dehaene-Lambertz G,
    3. Kulikova S, et al
    . The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 2014;276:48–71 doi:10.1016/j.neuroscience.2013.12.044 pmid:24378955
    CrossRefPubMedWeb of Science
  32. 32.↵
    1. Martin E,
    2. Krassnitzer S,
    3. Kaelin P, et al
    . MR imaging of the brainstem: normal postnatal development. Neuroradiology 1991;33:391–95 doi:10.1007/BF00598609 pmid:1749466
    CrossRefPubMedWeb of Science
  33. 33.↵
    1. Drayer B,
    2. Burger P,
    3. Darwin R, et al
    . Magnetic resonance imaging of brain iron. AJNR Am J Neuroradiol 1986;7:373–80
    Abstract/FREE Full Text
  34. 34.↵
    1. Mezer A,
    2. Rokem A,
    3. Berman S, et al
    . Evaluating quantitative proton-density-mapping methods. Hum Brain Mapp 2016;37:3623–35 doi:10.1002/hbm.23264 pmid:27273015
    CrossRefPubMed
  35. 35.↵
    1. Laule C,
    2. Vavasour IM,
    3. Moore GR, et al
    . Water content and myelin water fraction in multiple sclerosis. J Neurol 2004;251:284–93 doi:10.1007/s00415-004-0306-6 pmid:15015007
    CrossRefPubMedWeb of Science
  36. 36.↵
    1. Viñals F,
    2. Ruiz P,
    3. Quiroz G, et al
    . Two-dimensional ultrasound evaluation of the fetal cerebral aqueduct: improving the antenatal diagnosis and counseling of aqueductal stenosis. Fetal Diagn Ther 2017;42:278–84 doi:10.1159/000458439 pmid:28433990
    CrossRefPubMed
  37. 37.↵
    1. Wu Y,
    2. Stoodley C,
    3. Brossard-Racine M, et al
    . Altered local cerebellar and brainstem development in preterm infants. Neuroimage 2020;213:116702 doi:10.1016/j.neuroimage.2020.116702 pmid:32147366
    CrossRefPubMed
  38. 38.↵
    1. Jiang ZD,
    2. Wang C,
    3. Ping LL
    . Brainstem auditory pathway function at four months of corrected postnatal age in preterm infants born below 30 week gestation. Brain Dev 2020;42:496–502 doi:10.1016/j.braindev.2020.04.004 pmid:32336484
    CrossRefPubMed
  39. 39.↵
    1. Antinmaa J,
    2. Lapinleimu H,
    3. Salonen J, et al
    . Neonatal brainstem auditory function associates with early receptive language development in preterm children. Acta Paediatr 2020;109:1387–93 doi:10.1111/apa.15136 pmid:31833585
    CrossRefPubMed
  40. 40.↵
    1. Fitzgerald E,
    2. Boardman JP,
    3. Drake AJ
    . Preterm birth and the risk of neurodevelopmental disorders—is there a role for epigenetic dysregulation? Curr Genomics 2018;19:507–21 doi:10.2174/1389202919666171229144807 pmid:30386170
    CrossRefPubMed
  41. 41.↵
    1. Wimberger DM,
    2. Roberts TP,
    3. Barkovich AJ, et al
    . Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 1995;19:28–33 doi:10.1097/00004728-199501000-00005 pmid:7529780
    CrossRefPubMedWeb of Science
  42. 42.↵
    1. Qiu A,
    2. Mori S,
    3. Miller MI
    . Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 2015;66:853–76 doi:10.1146/annurev-psych-010814-015340 pmid:25559117
    CrossRefPubMed
  43. 43.
    1. Deeg KH,
    2. Staudt F,
    3. von Rohden L
    . Classification of intracranial hemorrhage in premature infants. Ultraschall Med 1999;20:165–70 doi:10.1055/s-1999-8898 pmid:10522360
    CrossRefPubMed
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (3)
American Journal of Neuroradiology
Vol. 42, Issue 3
1 Mar 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach
V. Schmidbauer, G. Dovjak, G. Geisl, M. Weber, M.C. Diogo, M.S. Yildirim, K. Goeral, K. Klebermass-Schrehof, A. Berger, D. Prayer, G. Kasprian
American Journal of Neuroradiology Mar 2021, 42 (3) 581-589; DOI: 10.3174/ajnr.A6945

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Impact of Prematurity on the Tissue Properties of the Neonatal Brain Stem: A Quantitative MR Approach
V. Schmidbauer, G. Dovjak, G. Geisl, M. Weber, M.C. Diogo, M.S. Yildirim, K. Goeral, K. Klebermass-Schrehof, A. Berger, D. Prayer, G. Kasprian
American Journal of Neuroradiology Mar 2021, 42 (3) 581-589; DOI: 10.3174/ajnr.A6945
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • Mapping Human Fetal Brain Maturation In Vivo Using Quantitative MRI
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Thalamus L-Sign: A Potential Biomarker of Neonatal Partial, Prolonged Hypoxic-Ischemic Brain Injury or Hypoglycemic Encephalopathy?
  • Stroke Recurrence in Children with Vertebral Artery Dissecting Aneurysm
  • An In-Depth Analysis of Brain and Spine Neuroimaging in Children with Abusive Head Trauma: Beyond the Classic Imaging Findings
Show more PEDIATRICS

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2021 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2022 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire