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Evaluation of DISORDER: Retrospective Image Motion
Correction for Volumetric Brain MRI in a Pediatric Setting
K. Vecchiato, A. Egloff, O. Carney, A. Siddiqui, E. Hughes, L. Dillon, K. Colford, E. Green, R.P.A.G. Texeira,

A.N. Price, G. Ferrazzi, J.V. Hajnal, D.W. Carmichael, L. Cordero-Grande, and J. O’Muircheartaigh

ABSTRACT

BACKGROUND AND PURPOSE: Head motion causes image degradation in brain MR imaging examinations, negatively impacting
image quality, especially in pediatric populations. Here, we used a retrospective motion correction technique in children and
assessed image quality improvement for 3D MR imaging acquisitions.

MATERIALS AND METHODS:We prospectively acquired brain MR imaging at 3T using 3D sequences, T1-weighted MPRAGE, T2-weighted
TSE, and FLAIR in 32 unsedated children, including 7 with epilepsy (age range, 2–18years). We implemented a novel motion correction technique
through a modification of k-space data acquisition: Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding
Redundancy (DISORDER). For each participant and technique, we obtained 3 reconstructions as acquired (Aq), after DISORDER motion correction
(Di), and Di with additional outlier rejection (DiOut). We analyzed 288 images quantitatively, measuring 2 objective no-reference image quality
metrics: gradient entropy (GE) and MPRAGE white matter (WM) homogeneity. As a qualitative metric, we presented blinded and randomized
images to 2 expert neuroradiologists who scored them for clinical readability.

RESULTS: Both image quality metrics improved after motion correction for all modalities, and improvement correlated with the amount
of intrascan motion. Neuroradiologists also considered the motion corrected images as of higher quality (Wilcoxon z ¼ �3.164 for
MPRAGE; z ¼ �2.066 for TSE; z ¼ �2.645 for FLAIR; all P , .05).

CONCLUSIONS: Retrospective image motion correction with DISORDER increased image quality both from an objective and quali-
tative perspective. In 75% of sessions, at least 1 sequence was improved by this approach, indicating the benefit of this technique
in unsedated children for both clinical and research environments.

ABBREVIATIONS: DISORDER ¼ Distributed and Incoherent Sample Orders for Reconstruction Deblurring by using Encoding Redundancy; Aq ¼ acquired;
Di ¼ after DISORDER motion correction; DiOut ¼ Di with additional outlier rejection; GE ¼ gradient entropy

Head motion is a common cause of image degradation in
brain MR imaging. Motion artifacts negatively impact MR

image quality and therefore radiologists’ capacity to read the
images, ultimately affecting patient clinical care.1 Motion artifacts

are more common in noncompliant patients,2 but even in com-
pliant adults, intrascan movement is reported in at least 10% of
cases.3 For children who require high-resolution MR images,
obtaining optimal image quality can be challenging, owing to the
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requirement to stay still over long durations needed for acquisi-
tion.4 Sedation can be an option, but it carries higher risks, costs,
and preparation and recovery time.5

In conditions such as intractable focal epilepsy, identification
of an epileptogenic lesion is clinically important to guide surgical
treatment. However, these lesions can be visually subtle, particu-
larly in children in whom subtle cortical dysplasias are more
common.6 Dedicated epilepsy MR imaging protocols use high-reso-
lution 3D sequences to allow better cortical definition and free refor-
matting of orientation but involve acquisition times in the order of
minutes, so data collection becomes more sensitive to motion.7

For children in particular, multiple strategies are available for
minimizing motion during MR examinations. Collaboration with
play specialists using mock scanners and training or projecting a
cartoon are good approaches to reduce anxiety.8,9 These tools are
not always available in clinical radiology and, even with these
strategies, motion can still be an issue.10 Different scanning
approaches to correct for intrascan motion have been proposed.
Broadly, prospective methods track head motion in real time and
modify the acquisition directions accordingly.11 These approaches
are applicable to a wide range of sequences but require optical sys-
tems with external tracking markers, sometimes uncomfortable or
impractical, and extra setup can ultimately result in longer exami-
nations. Furthermore, these approaches may also not be robust to
continuous motion.11-13 Retrospective techniques have also been
proposed, in some cases relying on imaging navigators that are not
compatible with all standard sequences or contrasts.12

Here, we use a more general retrospective motion correc-
tion technique: Distributed and Incoherent Sample Orders
for Reconstruction Deblurring by using Encoding Redundancy
(DISORDER). In this method, k-space samples are reordered to ena-
ble retrospective motion correction during image reconstruction.14

Our hypothesis is that DISORDER improves clinical MR imaging
quality and readability. To assess its use for clinical sequences, we
acquired a dedicated epilepsy MR imaging protocol in 32 children
across a wide age range. We used both objective image quality met-
rics and expert neuroradiologist ratings to evaluate the outcome after
motion correction.

MATERIALS AND METHODS
Study Population
We recruited families for a prospective study of pediatric epilepsy
(ethics ref 18/LO/1766). Informed consent was obtained from all
participants or their parents, as appropriate. From June to
November 2019, we recruited 32 participants: 25 healthy control
participants and 7 children with focal epilepsy, ages 2–18 years
(median 11), including 16 females (50%) (Table). Exclusion crite-
ria were age younger than 6months or older than 18 years, major
neurologic conditions unrelated to epilepsy, and contraindica-
tions for 3T MR imaging.

Image Acquisition
Children were scanned without sedation on a 3T Achieva-TX
(Philips Healthcare) using a 32-channel head coil. They were
asked to stay still during scanning while watching a movie. The
protocol was T1-weighted MPRAGE: TR ¼ 7.7ms, TE ¼ 3.6 ms,
flip angle ¼ 8°, TI ¼ 900 ms, echo-train length ¼ 154 and acqui-
sition time ¼ 286 s; T2-weighted: TSE: TR ¼ 2500 ms, TE ¼ 344
ms, echo-train length¼ 133, acquisition time ¼ 342 s; T2-
weighted FLAIR: TR ¼ 5000 ms, TE ¼ 422 ms, TI ¼ 1800 ms,
echo-train length ¼ 182, acquisition time ¼ 510 s. Parallel imag-
ing acceleration (SENSE) of 1.4 was used along both phase-
encoding directions. Field of view was 240 � 188 � 240 mm, and
images were 1mm isotropic. The combined acquisition time was
approximately 22minutes.

All scans were acquired using the DISORDER scheme (Fig 1).
A shot of k-space is defined as a portion of k-space phase-encod-
ing data in the k2k3 plane, acquired within a single acquisition

block. In Fig 1, each shot is represented
by a different color. As demonstrated by
Cordero-Grande et al,14 DISORDER aims
to improve motion tolerance by guaran-
teeing that the acquisition of every shot
contains a series of samples distributed
incoherently throughout k-space. This is
achieved with a modified phase-encoding
sampling order. We adopted the “ran-
dom-checkered” approach illustrated
in Fig 1. Data are acquired in the infe-
rior-superior k1, anteroposterior k2,
and left–right k3 orientations; this way
rotations on the sagittal plane (k1k2)
are sampled faster within each shot,
improving robustness to intrashot

Descriptive demographics of the study population

Characteristics
Healthy Control
Participants

Patients with
Epilepsy Total

Number 25 7 32
Age at scan

(years)
Mean 1 SD 11.32 6 4.8 11.6 6 3.7 11.4 6 4.5
1–5 3 0 3
6–10 9 3 12
11–15 7 3 10
16–18 6 1 7

Sex
Male 13 3 16
Female 12 4 16

FIG 1. The different k-space data acquisitions. On the left side, the standard acquisition that
sequentially acquires adjacent lines in the grid, with an example shot given as bigger dots in blue.
The image on the right represents DISORDER’s “random-checkered” acquisition, in which every
shot acquires distributed information in k-space with a certain degree of randomness.
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motion. In our protocol, the numbers of shots are 120 (dura-
tion, 1200ms each) for MPRAGE, 135 (658ms) for TSE, and
100 (859ms) for FLAIR.

There was not a substantial difference in image quality
between data acquired via standard acquisition and DISORDER
acquisition. This was tested in the pilot phase of the study for all
structural images (MPRAGE, TSE, and FLAIR).

Motion Correction
Motion and reconstruction were estimated jointly using a parallel
k-space model in the presence of rigid motion.14 Starting from a
standard reconstruction assuming no motion, a first approxima-
tion of the motion parameters for each shot is obtained by maxi-
mizing the likelihood of the k-space measures for current
reconstructed volume. Then a new volume is reconstructed with
current motion parameters, and the method alternates between
motion estimation and reconstruction until convergence. Motion
correction is performed as part of the reconstruction stage; an in-
depth description of the reconstruction algorithm has been
described previously.14,15

The time for reconstruction varied from 5 to 40 minutes,
depending on degree of intrascan motion. In the case of high
intrashot motion, the DISORDER framework can further

improve the image quality by dismissing outlier shots. Therefore,
each subject had their images reconstructed in 3 different ways:
as acquired without motion correction (Aq), with DISORDER
reconstruction (Di), and with DISORDER reconstruction includ-
ing outlier shot rejection (DiOut).

Motion estimates from DISORDER correction can also
provide a measure of intrascan motion. To summarize and
quantify this intrascan motion, we averaged the temporal
standard deviations of the 3 rotation parameters (in degrees)
for every scan.

Image Quality Assessment
For all quality assessments, there were 288 images available (32
participants, 3 imaging modalities, and 3 reconstructions). To
objectively compare image quality, we used 2 metrics that do not
rely on reference datasets: gradient entropy (GE) and white mat-
ter (WM) signal homogeneity (MPRAGE only).

The entropy of an image is a measure of sharpness that charac-
terizes its texture based on intensity.16 GE has been previously used
to characterize image definition, smaller when areas of uniform sig-
nal intensity are separated by sharp edges.17 We calculated the nor-
malized GE for Aq, Di, and DiOut. Decreased GE indicates that
image information is concentrated at the edges, a measure of

FIG 2. Estimated motion in relation to age. Older children tended to move less than younger ones. This was statistically significant for MPRAGE
(A) and FLAIR (C) but not for TSE (B).

FIG 3. The reduction in gradient entropy by motion correction (DiOut compared with Aq) relative to the estimated amount of motion for ev-
ery participant in all 3 modalities: MPRAGE (A), TSE (B), and FLAIR (C).
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sharpness. This metric has a high correspondence with visual
assessment of clinical MR imaging.18

WM signal homogeneities of the T1-weighted images were
obtained using an automatic segmentation in FreeSurfer19 (ver-
sion 6; http://surfer.nmr.mgh.harvard.edu). After calculating a
WM mask, the mean and SD of the signal intensity were com-
puted within the mask. The WM signal homogeneity was then
measured as the mean scaled by SD, with higher WM signal ho-
mogeneity associated with higher image quality.

Image quality was further visually inspected by 2 pediatric
neuroradiologists with more than 9 years’ experience each (A.E.
and O.C.). Radiology scoring was explicitly for assessment of
focal epilepsy, which needs very high contrast between gray mat-
ter (GM) and WM. They scored the images with a 4-point Likert
scale: 1, unreadable (not suited for clinical use); 2, poor quality
(main structures identifiable but heavily blurred or artifacts cov-
ering.50% of the image); 3, good quality (good GM–WMdiffer-
entiation, little blurring, or minor artifacts); and 4, excellent
quality (no motion artifacts, good contrast, and perfectly defined
GM–WM boundaries). Sagittal, coronal, and axial views of all
images were presented to the 2 radiologists on the same screen
and room environment in a randomized and blinded fashion.
Each rater looked at all 288 cases in several sessions. The image
viewer was rview (https://biomedia.doc.ic.ac.uk/software/irtk). In
all reported comparisons (quantitative metrics and quality ranks),
Wilcoxon signed-rank tests were used.

RESULTS
Quantitative Metrics
As expected, older children tended to move less than younger
ones. This was a consistent relationship, statistically significant
for MPRAGE and FLAIR (Spearman rho: �0.416, �0.363, both
P, .05) but not for TSE scans (Spearman rho: �0.229, P¼ .21)
(Fig 2).

GE was reduced after motion correction across all modalities:
the Wilcoxon rank test performed on mean scores before and af-
ter motion correction showed a statistically significant difference
(for Di, z ¼ �4.861 MPRAGE, z ¼ �4.769 TSE, z ¼ �4.884
FLAIR; for DiOut, z ¼ �4.937 MPRAGE, z ¼ �4.937 TSE, z ¼
�4.938 FLAIR; all P, .05) (Fig 3).

There was a linear association between GE decrease after
motion correction and degree of intrascan motion. We calculated
the difference in GE before and after motion corrected data and
estimated a linear regression against motion for each technique.
The coefficients of determination (R2) for MPRAGE images
against motion were R2 ¼ 0.24 in Aq-Di and R2 ¼ 0.48 in Aq-
DiOut; for T2-weighted images, they were R2 ¼ 0.63 in Aq-Di
and R2 ¼ 0.69 Aq-DiOut; for FLAIR images, they were R2 ¼ 0.44
in Aq-Di and R2 ¼ 0.51 in Aq-DiOut; all P, .05. The reduction
of GE was larger after outlier rejection (Fig 4).

There was an increase of WM signal homogeneity after

motion correction on the MPRAGE images (R2 ¼ 0.16 for Aq-Di

and R2 ¼ 0.15 for Aq-DiOut; both P , .05). One case was

FIG 4. Differences in gradient entropy before and after motion correction (Di in A and DiOut in B) in relation to intrascan motion for the FLAIR
images. The highlighted outlier datapoint (red circle) is shown on the bottom row. The example images show the reconstruction outcome in the
participant with the highest intrascan motion. In this case, GE decreased after motion correction (more in the DiOut image), which visually relates
to observers’ score that improved from unreadable (1) in the Aq image (C) to good and excellent (3/4) in Di (D) and DiOut (E), respectively.
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excluded from this analysis because of large motion during the

MPRAGE acquisition and the resulting failure of the FreeSurfer

pipeline for the uncorrected reconstruction. Full-brain segmenta-

tion was possible on the motion-corrected version of the images,

and WM signal homogeneity was measured (Fig 5).

Qualitative Metrics
Expert visual inspection showed that image quality generally
improved after motion correction (Fig 6). There was agreement
between observers in raw image scores according to Cohen kappa
coefficient for interrater reliability: kappa. 0.3 for FLAIR and
MPRAGE images, kappa. 0.6 for TSE images, all P, .05. The intra-
class correlation of the score change was used as another measure of
interrater consistency on rating improvement. The intraclass correla-
tion coefficient for absolute agreement in the change in scores after
motion correction of the images was .0.8 for TSE (Di and DiOut);
for FLAIR, it was 0.64 for Di and 0.56 for DiOut images; all P, .05.
The rating increase was less consistent between observers for
MPRAGE images: 0.52 (P , .05) for Di and 0.37 (P ¼ .09) for
DiOut.

Wilcoxon signed-rank tests were conducted to compare
the expert scores before and after image correction: the
improvement of scores was statistically significant both for Di
and DiOut and for both radiologists (for observer 1, z ¼
�3.164 MPRAGE, z ¼ �2.066 TSE, z ¼ �2.645 FLAIR; for
observer 2, z ¼ �3.162 MPRAGE, z ¼ �2.714 TSE, z ¼
�3.419 FLAIR; all P, .05).

The Wilcoxon signed-rank test performed on mean scores
between the 2 types of motion correction (Di and DiOut) did not
show any statistically significant difference except for higher scores
for FLAIR DiOut compared with Di (z ¼ �1.97, P¼ .049) for 1
observer only.

For observer 2, the motion-corrected images (Di and DiOut)
were all scored equally or higher than the Aq ones. Observer 1
gave lower ratings for motion-corrected reconstructions (Di)
compared with acquired in 6/32 cases for FLAIR, 7/32 cases for
MPRAGE, and 4/32 cases for TSE (by a maximum of 1 point).
However, for most scans, the scores increased: 23/32 for FLAIR,
22/32 cases for MPRAGE, and 12/32 cases for TSE. For both
raters, the score tended to remain good and equal in scans with
little or no motion.

As expected, the Spearman rho showed a negative correlation
between the amount of motion and the resulting score of acquired
images in all modalities and for both observers (observer 1: r ¼
�0.558 for MPRAGE, r ¼ �0.496 for T2, both P, .05, r ¼
�0.216 for FLAIR, P¼ .24; observer 2: r ¼ �0.619 for MPRAGE,
r ¼�0.641 for T2, r ¼ �0.544 for FLAIR, all P, .05).

DISCUSSION
Successful neuroimaging in children is important for both clinical
evaluation and research in brain development and disease.
However, obtaining high-quality data in children is challenging
in the highly motion-sensitive MR imaging context.20 In this
work, we demonstrated the benefits of retrospective motion

FIG 5. A, Three individual cases of MPRAGE images before and after motion correction and the corresponding motion trace displaying transla-
tions (Tra) and rotations (Rot) in 3 directions: anteroposterior (AP), left–right (LR), and foot–head (FH). B, High motion. C, Moderate motion. D,
Little to no motion.
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correction on a nonsedated pediatric cohort undertaking brain
MR imaging on a 3T scanner using the DISORDER framework.
We applied this method to a dedicated high-resolution epilepsy
protocol across a wide age range and showed that DISORDER
motion correction increases image quality both quantitatively
and qualitatively.

The 2 neuroradiologist raters broadly agreed on the improved
diagnostic value of motion-corrected images;, on average, ratings

were higher after DISORDER. In 24/32 (75%) participants, at
least 1 technique was improved by DISORDER in a clinically sig-
nificant way—from being considered unreadable or of poor qual-
ity to good or excellent quality. Images acquired in the presence
of no or little motion maintained their high quality after motion
correction.

In a small number of cases, DISORDER reconstructions were
rated lower, though all in the context of very low motion.

FIG 6. Scores before and after motion correction (DiOut) for all modalities. Red and blue correspond to observer 1 and 2’s scores, respectively.
The dot indicates the score before motion correction, and the triangle indicates the score after correction. Motion correction generally
improved the image quality from a radiologic perspective.
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However, an advantage of this retrospective method is that
images both before and after motion correction are always avail-
able for radiologic evaluation. Observed differences between
raters are in line with previous studies21 in which differences in
subjective radiologic judgment are reported.

As expected from practical experience and previous studies,22,23

younger children tended to move more than older ones, which was
observed statistically significant for MPRAGE and FLAIR, though
not for TSE. None of the participants exhibited very high motion
during this acquisition. This was the third sequence acquired in our
protocol; it may be that participants at that time point were simply
more settled or comfortable (engaging with the movie they were
watching or spontaneously falling asleep).

The proposed motion compensation method is particularly
flexible for use, and it is applicable to any volumetrically encoded
sequence. It does require modification of the scanner software to
meet the requirements of data acquisition ordering, but it does
not involve any additional hardware, relevant manipulation of
imaging parameters, or additional operator training. The image
reconstruction is operated with a vendor-independent off-line open-
source code (https://github.com/mriphysics/DISORDER/tree/1.1.0),
so the technique is not restricted to a specific vendor and has been
tested on scanners from several manufacturers.

To comply with the requirements of enough SNR for high
image resolution (1mm) and strong motion tolerance, data
are acquired with moderate acceleration factors (SENSE fac-
tor 1.4 � 1.4). However, the DISORDER encoding does not
increase the sequence acquisition time per se. In practice, it
may reduce the need for repeat scans and the time overhead
would compare favorably with times required for sedation.
The method can also provide motion correction for addi-
tional 3D sequences in which motion correction can be cru-
cial (eg, relaxometry24).

The approach provides clinically useful improvements. In this
study, it is applied to a dedicated epilepsy protocol in which

clinicians aim to identify sometime subtle abnormalities such as
focal changes in cortical thickness, subcortical signal abnormal-
ities, or blurring of the GM–WM junction. In the presence of
motion, DISORDER can be a helpful tool because these image
features can be enhanced as shown in Fig 7.

More broadly, DISORDER could be helpful in a clinical set-
ting to improve identification of other types of lesions not neces-
sarily related to epilepsy including smaller injuries such as
punctate bleeds (in which small motion may blur out the injury)
or more obvious such as a brain mass (in which the extent and
edge of pathologic tissue can be difficult to discern on blurry
images). This method would be beneficial not only for children
but also for patients with high anesthesiologic risk, situations in
which time constrains the possibility to repeat scans, and for
adult patients with intellectual disabilities.

Some limitations are noted. First, the method may require lon-
ger scan times to perform well in cases of very quick, large range, or
continuous motion, and this is not assessed here. Second,
DISORDER sampling increases motion sensitivity, facilitating its
subsequent correction, so some enhancement of artifact levels com-
pared with standard acquisition schemes is likely on the uncor-
rected images. Two further clinical considerations are also not yet
addressed, the impact of reconstruction delay (up to 1 hour) and a
quantification of maximum tolerable degradation before an acquisi-
tion needs to be repeated (how bad an image can be before it needs
to be repeated). However, given the almost global improvement in
data quality for motion-corrupted data, the reconstruction delay is
probably not a large concern and will be addressable with future
software implementations. Certainly, in this case, no DISORDER-
reconstructed sequences were considered radiologically unreadable.

This framework for motion-tolerant structural 3D brain
images improves clinical MR imaging quality both quantitatively
and qualitatively. This might have substantial safety and eco-
nomic implications for health care, reducing the clinical indica-
tion for sedation and repeat scans in children and adults.
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