Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
    • COVID-19 Content and Resources
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticlePediatrics
Open Access

Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord

S. Shahrampour, B. De Leener, M. Alizadeh, D. Middleton, L. Krisa, A.E. Flanders, S.H. Faro, J. Cohen-Adad and F.B. Mohamed
American Journal of Neuroradiology September 2021, 42 (9) 1727-1734; DOI: https://doi.org/10.3174/ajnr.A7221
S. Shahrampour
aFrom the Departments of Radiology (S.S., M.A., D.M., F.B.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Shahrampour
B. De Leener
dDepartment of Computer Engineering and Software Engineering (B.D.L.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for B. De Leener
M. Alizadeh
aFrom the Departments of Radiology (S.S., M.A., D.M., F.B.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Alizadeh
D. Middleton
aFrom the Departments of Radiology (S.S., M.A., D.M., F.B.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Middleton
L. Krisa
bOccupational Therapy (L.K.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Krisa
A.E. Flanders
cRadiology (A.E.F., S.H.F.), Thomas Jefferson University, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.E. Flanders
S.H. Faro
cRadiology (A.E.F., S.H.F.), Thomas Jefferson University, Philadelphia, Pennsylvania
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S.H. Faro
J. Cohen-Adad
eNeuroPoly Lab (J.C.-A.), Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
fFunctional Neuroimaging Unit (J.C.-A.), Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montreal, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Cohen-Adad
F.B. Mohamed
aFrom the Departments of Radiology (S.S., M.A., D.M., F.B.M.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for F.B. Mohamed
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Basser PJ
    . Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995;8:333–44 doi:10.1002/nbm.1940080707 pmid:8739270
    CrossRefPubMedWeb of Science
  2. 2.↵
    1. Rossi C,
    2. Boss A,
    3. Steidle G, et al
    . Water diffusion anisotropy in white and gray matter of the human spinal cord. J Magn Reson Imaging 2008;27:476–82 doi:10.1002/jmri.21252 pmid:18224672
    CrossRefPubMed
  3. 3.↵
    1. Wheeler-Kingshott CA,
    2. Hickman SJ,
    3. Parker GJ, et al
    . Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 2002;16:93–102 doi:10.1006/nimg.2001.1022 pmid:11969321
    CrossRefPubMedWeb of Science
  4. 4.↵
    1. Reynolds BB,
    2. By S,
    3. Weinberg QR, et al
    . Quantification of DTI in the pediatric spinal cord: application to clinical evaluation in a healthy patient population. AJNR Am J Neuroradiol 2019;40:1236–41 doi:10.3174/ajnr.A6104 pmid:31196859
    Abstract/FREE Full Text
  5. 5.↵
    1. Saksena S,
    2. Middleton DM,
    3. Krisa L, et al
    . Diffusion tensor imaging of the normal cervical and thoracic pediatric spinal cord. AJNR Am J Neuroradiol 2016;37:2150–57 doi:10.3174/ajnr.A4883 pmid:27418470
    Abstract/FREE Full Text
  6. 6.↵
    1. De Leener B,
    2. Fonov VS,
    3. Collins DL, et al
    . PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 2018;165:170–79 doi:10.1016/j.neuroimage.2017.10.041 pmid:29061527
    CrossRefPubMed
  7. 7.↵
    1. Finsterbusch J
    . Improving the performance of diffusion-weighted inner field-of-view echo-planar imaging based on 2D-selective radiofrequency excitations by tilting the excitation plane. J Magn Reson Imaging 2012;35:984–92 doi:10.1002/jmri.23522 pmid:22170770
    CrossRefPubMed
  8. 8.↵
    1. De Leener B,
    2. Lévy S,
    3. Dupont SM, et al
    . SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 2017;145:24–43 doi:10.1016/j.neuroimage.2016.10.009 pmid:27720818
    CrossRefPubMed
  9. 9.↵
    1. De Leener B,
    2. Kadoury S,
    3. Cohen-Adad J
    . Robust, accurate and fast automatic segmentation of the spinal cord. Neuroimage 2014;98:528–36 doi:10.1016/j.neuroimage.2014.04.051 pmid:24780696
    CrossRefPubMed
  10. 10.↵
    1. Ullmann E,
    2. Pelletier Paquette JF,
    3. Thong WE, et al
    . Automatic labeling of vertebral levels using a robust template-based approach. Int J Biomed Imaging 2014;2014:719520 doi:10.1155/2014/719520 pmid:25132843
    CrossRefPubMed
  11. 11.↵
    1. Lévy S,
    2. Benhamou M,
    3. Naaman C, et al
    . White matter atlas of the human spinal cord with estimation of partial volume effect. Neuroimage 2015;119:262–71 doi:10.1016/j.neuroimage.2015.06.040 pmid:26099457
    CrossRefPubMed
  12. 12.↵
    1. Standring S
    . Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 40th ed. Elsevier Churchill Livingstone; 2008
  13. 13.↵
    1. Fradet L,
    2. Arnoux PJ,
    3. Ranjeva JP, et al
    . Morphometrics of the entire human spinal cord and spinal canal measured from in vivo high-resolution anatomical magnetic resonance imaging. Spine (Phila Pa 1976) 2014;39:E262–69 doi:10.1097/brs.0000000000000125 pmid:24253776
    CrossRefPubMed
  14. 14.↵
    1. Tustison NJ,
    2. Avants BB
    . Explicit B-spline regularization in diffeomorphic image registration. Front Neuroinform 2013;7:39 doi:10.3389/fninf.2013.00039 pmid:24409140
    CrossRefPubMed
  15. 15.↵
    1. Cohen-Adad J,
    2. Descoteaux M,
    3. Rossignol S, et al
    . Detection of multiple pathways in the spinal cord using q-ball imaging. Neuroimage 2008;42:739–49 doi:10.1016/j.neuroimage.2008.04.243 pmid:18562214
    CrossRefPubMed
  16. 16.↵
    1. By S,
    2. Xu J,
    3. Box BA, et al
    . Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients. Neuroimage Clin 2017;15:333–42 doi:10.1016/j.nicl.2017.05.010 pmid:8560158
    CrossRefPubMed
  17. 17.↵
    1. Prados F,
    2. Cardoso MJ,
    3. Yiannakas MC, et al
    . Fully automated grey and white matter spinal cord segmentation. Sci Rep 2016;6:36151 doi:10.1038/srep36151 pmid:27786306
    CrossRefPubMed
  18. 18.↵
    1. Losseff NA,
    2. Webb SL,
    3. O’Riordan JI, et al
    . Spinal cord atrophy and disability in multiple sclerosis. a new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996;119(Pt 3):701–08 doi:10.1093/brain/119.3.701 pmid:8673483
    CrossRefPubMed
  19. 19.↵
    1. Stevenson VL,
    2. Leary SM,
    3. Losseff NA, et al
    . Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 1998;51:234–38 doi:10.1212/WNL.51.1.234 pmid:9674808
    Abstract/FREE Full Text
  20. 20.↵
    1. Assaf Y,
    2. Blumenfeld-Katzir T,
    3. Yovel Y, et al
    . AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008;59:1347–54 doi:10.1002/mrm.21577 pmid:18506799
    CrossRefPubMedWeb of Science
  21. 21.↵
    1. Alizadeh M,
    2. Fisher J,
    3. Saksena S, et al
    . Age-related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord. Neuroimage Clin 2018;18:784–92 doi:10.1016/j.nicl.2018.03.014 pmid:29876264
    CrossRefPubMed
  22. 22.↵
    1. Brody BA,
    2. Kinney HC,
    3. Kloman AS, et al
    . Sequence of central nervous system myelination in human infancy, I: an autopsy study of myelination. J Neuropathol Exp Neurol 1987;46:283–301 doi:10.1097/00005072-198705000-00005 pmid:3559630
    CrossRefPubMed
  23. 23.↵
    1. Coll G,
    2. de Schlichting E,
    3. Sakka L, et al
    . Assessment of maturational changes in white matter anisotropy and volume in children: a DTI study. AJNR Am J Neuroradiol 2020;41:1726–32 doi:10.3174/ajnr.a6709 pmid:3281676]1
    Abstract/FREE Full Text
  24. 24.↵
    1. Duval T,
    2. McNab JA,
    3. Setsompop K, et al
    . In vivo mapping of human spinal cord microstructure at 300mT/m. Neuroimage 2015;118:494–507 doi:10.1016/j.neuroimage.2015.06.038 pmid:26095093
    CrossRefPubMed
  25. 25.↵
    1. Saliani A,
    2. Perraud B,
    3. Duval T, et al
    . Axon and myelin morphology in animal and human spinal cord. Front Neuroanat 2017;11:1 29 doi:10.3389/fnana.2017.00129 pmid:29311857
    CrossRefPubMed
  26. 26.↵
    1. Ohnishi A,
    2. O’Brien PC,
    3. Okazaki H, et al
    . Morphometry of myelinated fibers of fasciculus gracilis of man. J Neurol Sci 1976;27:163–72 doi:10.1016/0022-510X(76)90058-7 pmid:1249584
    CrossRefPubMedWeb of Science
  27. 27.↵
    1. Terao S,
    2. Sobue G,
    3. Hashizume Y, et al
    . Age-related changes of the myelinated fibers in the human corticospinal tract: a quantitative analysis. Acta Neuropathol 1994;88:137–42 doi:10.1007/BF00294506 pmid:7985494
    CrossRefPubMed
  28. 28.↵
    1. Nieuwenhuys R,
    2. Voogd J,
    3. van Huijzen C
    . The Human Central Nervous System: A Synopsis and Atlas. 4th ed. Springer; 2007
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (9)
American Journal of Neuroradiology
Vol. 42, Issue 9
1 Sep 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord
S. Shahrampour, B. De Leener, M. Alizadeh, D. Middleton, L. Krisa, A.E. Flanders, S.H. Faro, J. Cohen-Adad, F.B. Mohamed
American Journal of Neuroradiology Sep 2021, 42 (9) 1727-1734; DOI: 10.3174/ajnr.A7221

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord
S. Shahrampour, B. De Leener, M. Alizadeh, D. Middleton, L. Krisa, A.E. Flanders, S.H. Faro, J. Cohen-Adad, F.B. Mohamed
American Journal of Neuroradiology Sep 2021, 42 (9) 1727-1734; DOI: 10.3174/ajnr.A7221
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

Pediatrics

  • Common Neuroimaging Findings in Bosch-Boonstra-Schaaf Optic Atrophy Syndrome
  • Longitudinal MRI Evaluation of Brain Development in Fetuses with Congenital Diaphragmatic Hernia around the Time of Fetal Endotracheal Occlusion
  • Early Fetal Corpus Callosum: Demonstrating Normal Growth and Detecting Pathologies in Early Pregnancy
Show more Pediatrics

Functional

  • Diagnostic Accuracy of Arterial Spin-Labeling, Dynamic Contrast-Enhanced, and DSC Perfusion Imaging in the Diagnosis of Recurrent High-Grade Gliomas: A Prospective Study
  • Connectomic Basis for Tremor Control in Stereotactic Radiosurgical Thalamotomy
  • Fully Automatic Method for Reliable Spinal Cord Compartment Segmentation in Multiple Sclerosis
Show more Functional

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2022 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2023 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire