Transovale Cisternal Puncture Technique

The article by Gomori and Rappaport [1] in the January/February 1985 issue of AJNR was called to my attention. The modified fluoroscopically guided technique that the authors describe is not a new technique, but one that has been published previously on at least two separate occasions.

I wrote an article detailing the same procedure in 1978 [2]. Although my colleagues and I evolved the technique independently, we cannot take credit for its origination; the first published report, apparently, is that of Whisler and Hill in 1972 [3].

Ronald I. Apfelbaum
Montefiore Medical Center
Albert Einstein College of Medicine
Bronx, NY 10467

REFERENCES

Reply

Our sincere apologies to Dr. Apfelbaum. We evolved the technique without knowledge of his report. Unfortunately, our literature search failed to reveal either his paper or that of Drs. Whisler and Hill.

John M. Gomori
Hospital of the University of Pennsylvania
Philadelphia, PA 19104

CT after Transsphenoidal Hypophysectomy

The report of contrast enhancement in the article by Dolinskas and Simeone [1] in the January/February 1985 issue of AJNR is not clear. The authors indicated that they noted postoperative sellar and suprasellar computed tomographic (CT) enhancement in 23 of 50 patients. In apparent contradiction, they also stated that in 30 cases, contrast material was not used.

In their figure 2, the authors noted persistence of a large lesion on an enhanced postoperative CT scan, believed to represent residual tumor. We reported similar postoperative CT changes after transsphenoidal hypophysectomy [2]. In our series the postoperative CT scanning was done with contrast enhancement in all cases. A large percentage of our cases showed sellar and suprasellar enhancement in the immediate postoperative period. In some of these cases, delayed (2- to 3-month) follow-up enhanced CT scans documented the disappearance of the sellar enhancement seen on the earlier postoperative scans.

I do not believe the diagnosis of CT enhancement of persistent and/or recurrent pituitary tumors should be considered before 2–3 months after transsphenoidal surgery.

Taher El Gammal
Medical College of Georgia
Augusta, GA 30912

REFERENCES
1. Dolinskas CA, Simeone FA. Transsphenoidal hypophysectomy: postsurgical CT findings. AJNR 1985;6:45–50

Reply

With regard to the number of patients with residual enhancing lesions after transsphenoidal hypophysectomy, 23 of the total sample of 50 patients had this finding on one or more CT examinations. The abnormality was identified by review of the 94 postoperative studies performed on these 50 patients. Of the 94 scans, 30 were obtained without contrast enhancement whereas the remaining 64 were obtained with enhancement, as stated in the Materials and Methods section of our article.

In reply to Dr. El Gammal’s second statement, concerning the disappearance of sellar enhancement on studies obtained 2–3 months after surgery, we did not encounter that phenomenon in our series, despite the fact that 13 of the 23 patients with residual contrast-enhancing lesions had studies at intervals of more than 90 days postoperatively. In addition, five of the 13 patients had initial studies within 1 week after surgery and also were examined after a delay of more than 3 months. In these cases, no change in the appearance of the contrast-enhancing lesion was noted. I cannot provide a satisfactory explanation for the difference between our observations, but offer as speculation the possibility that the initial lesion identified on the studies in Dr. El Gammal’s series was actually a small hemorrhage, which might have been mistaken for a focus of
enhancement if only an enhanced study was obtained or if similar sections were not studied both before and after enhancement.

Carol Dolinskas
Pennsylvania Hospital
Philadelphia, PA 19139

Reconstitution of Obstructed ICA via Collaterals

Recently we encountered an unusual case in which a left internal carotid artery (ICA), occluded at its origin by atherosclerosis, was reconstituted in its cervical position by small anastomotic branches of the ascending pharyngeal artery. An initial angiogram demonstrated apparent occlusion of the left ICA at its origin. However, on later films, there was opacification with antegrade flow of the ICA, 3 cm distal to its origin. On the basis of the angiogram, we concluded that the left ICA was not completely occluded, but minimally patent, a condition described by Gabrielsen et al. [1] as “pseudo-obstruction.”

At surgery, however, the proximal 2 cm of the left ICA proved to be a small fibrotic band without pulsations or blood flow, indicative of a chronic occlusion. Six days later, the patient was again referred for cerebral angiography to evaluate the left external carotid artery for a possible external-ICA bypass. This study demonstrated collateral flow via small branches of the ascending pharyngeal artery to the cervical portion of the ICA 3 cm distal to its occluded origin (fig. 1). The anastomosis probably occurred through hypertrophic branches of the vasa vasorum of the ICA.

Kenneth D. Hopper
Fitzsimons Army Medical Center
Aurora, CO 80045-5001
F. Richard Everhart
Humana Hospital
Aurora, CO 80012
David K. Haas
Nasser Ghaedi
Fitzsimons Army Medical Center
Aurora, CO 80045-5001

REFERENCE


The “Third Pedicle” Sign in Oblique Lumbar Puncture

The technique of fluoroscopically controlled lumbar puncture is well known as a method for introducing contrast material into the subarachnoid space [1-4]. A midline puncture usually is made between the L2 and L3 spinous processes. Occasionally a midline puncture is impossible because of closely spaced spinous processes or postoperative scarring [5]; in these instances a paramedian or oblique lumbar puncture has been advocated [5-7]. The latter approach requires puncturing the skin at a point several millimeters from the midline and angling the needle so that it passes between the laminae and returns to the midline at the proper distance beneath the skin to be within the subarachnoid space. The angle of the needle varies according to the size of the patient and must be precisely chosen so that when the tip reaches the midline it will also be in the proper anteroposterior (AP) plane. The depth of the tip when it is approaching the midline cannot be accurately determined by AP fluoroscopy alone; lateral fluoroscopy or filming usually is necessary. The solution to this problem is to rotate the patient slightly so that by passing the needle in a vertical plane, the lumbar puncture will be made obliquely relative to the spinal column [5-7]. Beginning myelographers sometimes find it difficult to understand the anatomic landmarks fluoroscopically in the rather shallow obliquity required for this technique. We describe a quick and easy way of identifying the proper point at which to introduce the spinal needle when performing an oblique lumbar puncture under fluoroscopic control.

When it has been determined that a midline puncture is not feasible, the patient is asked to flex one knee and the ipsilateral hip slightly while remaining prone. This maneuver produces a slight rotation of the pelvis and lumbar spine. AP fluoroscopy at this time will show that the spinous processes have shifted slightly and the pedicles are slightly asymmetrical (fig. 1A). In addition, a ringlike structure usually can be seen between the spinous process and the larger pedicle. This ring, which itself may resemble a pedicle, represents the space between the two laminae; it is formed by the inferior margin of the superior lamina, the superior margin of the inferior lamina, and the cortical lines of the spinous process and pedicle. When this “third pedicle” can be seen, it serves as a very useful target through which to pass the spinal needle in a plane parallel to the central fluoroscopic ray (fig. 1B). The role of fluoroscopy then is

Fig. 1.—A, Left cervical carotid artery injection, early oblique view. Good filling of external carotid branches, including ascending pharyngeal artery (arrow). No filling of ICA. B, Late film from same injection. Reconstitution of cervical ICA (white arrows) 3 cm from its origin via branches of ascending pharyngeal artery (black arrow).