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The Parenchymal CT Myelogram: 
In Vivo Imaging of the Gray Matter of the 
Spinal Cord 
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Past attempts to visualize the internal structure of the spinal cord in vivo have been 
hampered by many factors, including the small size of the cord, the dense bony 
investiture of the spine, and the similarities of tissue densities from one region to another 
within the cord. Delayed CT is the imaging technique currently being used at our 
institution as an adjunct to iopamidol myelography to visualize the deep gray matter of 
the cord. This visualization is achieved by a poorly understood differential gray /white
matter enhancement, possibly due to either a shielding effect of the white matter as it 
envelops the gray matter, a differential absorption rate between gray and white matter, 
or a greater rate of reabsorption of contrast by the more highly vascularized gray matter. 

This method is not being advocated as a primary diagnostic technique due to the lack 
of reliability in providing successful results from section to section, from patient to 
patient, and from one time period of delay to the next. Instead, it is an initial attempt to 
image the basic, intrinsic structure of the spinal cord in vivo, which may herald a valuable 
advance in imaging methodology. 

CT of cerebral structures has achieved a remarkable level of success, and the 
images continue to improve progressively in detail and clarity . However, the in vivo 
radiologic demonstration of substructures of the spinal cord has been less suc
cessful. Contrast and spatial resolution limitations have thus far thwarted attempts 
to visualize such basic structures as the major gray- and white-matter divisions of 
the cord . Possibly , newer imaging techniques will eventually yield anatomic infor
mation, but thus far the results have not been gratifying . 

This article discusses the potential of aqueous intrathecal contrast agents, in 
combination with CT, to reveal the simple gray/white-matter substructure of the 
spinal cord in normal and diseased states. The normal spinal gray matter is known 
to have a characteristic variation in size and shape with the spinal cord level [1- 3] . 
PathologiC states alter both the shape and measurements of the cord as well as 
the configuration of the gray matter itself. Generalized cord atrophy, nonspecific 
focal insult , syringomyelia, and late ischemic injury all demonstrate characteristic 
changes, comparing well with known histologiC correlates . 

Materials and Methods 

Thirty-five patients were scanned with CT at varying times from 1- 10 hr after conventional 
complete iopamidol myelography. Five- and 10-mm sections were used depending on the 
clinical situation and indication. The total intrathecal contrast administration was 3 g I in every 
subject (10 ml of 300 mg/ml I iopamidol). CT filming was done at broad and narrow window 
widths to illustrate both normal and pathologiC conditions of the spinal cord. No adverse 
reaction due to the administered intrathecal contrast agent was encountered in any of the 
patients. 
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Results 

This retrospective study yielded successful images of the 
deep gray matter in approximately 10% of the total sections 
obtained. Factors that correlated with visualization included 
an optimum delay of between 6-8 hr and a 5-mm rather than 
1 O-mm section thickness. A factor that led to a failure of gray
matter visualization was any image degradation, however 
subtle, including minor patient motion or sectioning through 
areas commonly fraught with artifact, such as the cervico
thoracic junction. 

This technique allows the anatomic mapping of the config
uration of the gray matter and the correlation of this informa
tion with the vertebral segment level. This explicit clinicoana
tomic relationship is too often overlooked. The changing 
morphology of the gray matter at different segmental levels 
is quite graphically illustrated in various patients (Figs. 1-3). 

Additionally, in certain instances, valid observations can be 
made in various pathologic conditions of the spinal cord . 

.. 

Changes in the configuration of the gray matter are apparent 
in generalized cord atrophy (Fig . 4), focal idiopathic cord insult 
(Fig . 5), and syrinx formation (Fig . 6). Remarkably, clinically 
suspected subacute cord infarction in one patient with trans
verse myelopathy revealed a reversal in the usual picture, 
with contrast preferentially collecting in the apparently ne
crotic deep gray matter (Fig . 7). 

Discussion 

Aqueous intrathecal contrast penetrance of the CNS has 
been pOinted out and analyzed by many authors [4-24]. Most 
of the work has been done on the brain . However, how the 
spinal cord appears with , and is affected by, these contrast 
agents is not clear. 

The correlation of spinal cord anatomy and the physiologic 
disappearance of substances from the subarachnoid space 
into the cord substance is being continually clarified [14, 15, 

I 

Fig. 1.-Parenchymal CT myelogram at C3 
vertebral segment illustrates plump configura
tion of gray matter excellently outlining the an
terior and posterior horns. (8 hr delay; L = 110, 
W = 20.) 

Fig. 2.-Parenchymal CT myelogram at no 
vertebral segment (L 1 spinal cord level), shows 
normal configuration of thoracic cord gray matter 
at this level. (7 hr delay; L = 140, W = 35.) 

Fig. 3.-Parenchymal CT myelogram at n2 
vertebral segment (Sl spinal cord level), dem
onstrates large proportion of gray to white matter 
at this level in normal subjects. (6 hr delay; L = 
100, W = 30.) 

A B 

Fig. 4.-38-year-old man with craniocervical Ar
nold-Chiari malformation. 

A, Wide window image at C4 vertebral level 
demonstrates mildly atrophic cord. (L = 220, W = 
300.) 

B, Parenchymal CT myelogram at 8 hr illustrates 
a "consolidated" appearance of deep gray matter 
with little accompanying surrounding white matter. 
This indicates marked white-matter (tract) atrophy 
as compared with relatively normal volume of gray 
matter at this level. (L = 90, W = 40.) 



AJNR :8, November/December 1987 CT MYELOGRAPHY OF THE SPINAL CORD 981 

A 8 

Fig. 5.-21-year-old man with Behcet's disease, 
generalized long-tract signs, and prominently de· 
creased sensation on left side of trunk caudally. 
Parenchymal CT myelogram at 6 hr depicts trun
cation of posterior horn on left (arrow) correlating 
with the degree of severity of clinical symptoms 
corresponding to this level. (L = 160, W = 20.) 

Fig. 6.-25-year-old man with subacute onset of paraparesis, associated rapid progression, and 
clinical craniad extension. 

A, Delayed image at 10 hr after myelogram at Tl0 vertebral level illustrates syrinx formation 
centrally. (L = 110, W = 50.) 

B, Narrow window technique demonstrates central derangement of deep gray matter, the four 
horns being displaced outwardly by expanded syrinx cavity (arrows). (L = 80, W = 20.) 

Fig. 7.-25-year-old man with progressive sub- ~ 
acute (4 weeks) transverse myelopathy. 

A, Immediate postmyelographic CT shows nor
mal-size cord at Tll vertebral segment, but a 
somewhat irregular cord surface. (L = 200, W = 
100.) 

B, Parenchymal CT myelogram after 8-hr delay 
illustrates complete reversal in typical appear
ance, with deep gray matter preferentially concen
trating contrast material. This suggests an evolv-
ing insult, such as infarction, accounting for the 
progressive myelopathy, with contrast material 
collecting in the necrotic deep gray matter. (L = 
140, W = 30.) 

A 

25-31]. That the intrathecally enhanced differentiation of gray 
from white matter might occur should not be surprising. In 
the brain the white matter is deep to gray matter, but in the 
cord the gray matter is in the reverse position; it is "covered" 
by white matter. Quite possibly, therefore, the means of 
physiologic penetration and the end result is at least modified, 
if not totally different. The opposite structural orientation and 
enhancement pattern of the gray-white matter in the spinal 
cord as compared with the brain is illustrated by the intense 
cerebral cortical gray matter enhancement after water-soluble 
myelography with less relative enhancement of the deep white 
matter. 

The images obtained in this study of the spine, on the other 
hand, demonstrate that the iopamidol penetrates and opaci
fies the overlying white matter, while the normal gray matter 
stands out in negative relief. The possible reasons for this 

~ 
8 

differential contrast uptake are severalfold: (1) the previously 
mentioned anatomic condition of white matter virtually envel
oping the gray matter and thus receiving more contact with 
higher concentrations of contrast material ; (2) microstructural 
differences in spatial orientation of the gray matter, which is 
reticulate in its geometric design vs the white matter, which 
is formed of densely packed parallel tracts; (3) the higher 
degree of vascularization of the gray matter allowing for more 
rapid clearance of the contrast agent; and (4) a basic differ
ence in the physiologic interaction of gray and white matter 
of the spinal cord with non ionic contrast materials. 

From this initial attempt to image the substructure of the 
spinal cord , several conclusions can be drawn: (1) the deep 
gray matter of the cord can be imaged in normal and patho
logic states; (2) the spatial resolution of advanced CT imaging 
instruments is adequate; (3) contrast resolution is only pos-
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sible at present with contrast resolution amplification by 
means of intrathecal aqueous contrast medium enhancement 
and delayed imaging; and (4) the ratio of gray matter images 
obtained to CT sections performed is currently low (::::10%). 
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