Demyelinating and Gliotic Cerebellar Lesions in Langerhans Cell Histiocytosis

PURPOSE: To describe the involvement of the cerebellum by a gliotic and demyelinating process in Langerhans cell histiocytosis.

METHODS: A retrospective analysis of all (N = 30) cases of Langerhans cell histiocytosis followed at our institution since 1975 yielded four patients with CT and/or MR evidence of cerebellar abnormalities.

RESULTS: Four patients manifested strikingly similar findings of symmetric nonenhancing hypodensities in the dentate nuclei region of the cerebellum, which were hypointense on short-repetition-time/short-echo-time MR and hyperintense on long-repetition-time/long-echo-time MR. Biopsy in one patient yielded areas of demyelination, cell loss, and gliosis without histiocytic infiltration.

CONCLUSION: Langerhans cell histiocytosis involves the cerebellum in a specific and poorly understood manner. Lesions on imaging may precede clinical findings by years. Lesions may occur in patients who have never experienced radiation therapy and may act as a marker for eventual central nervous system deterioration.

Index terms: Histiocytosis X; Cerebellum, abnormalities and anomalies; Pediatric neuroradiology; Demyelinating disease

Langerhans cell histiocytosis (formerly known as histiocytosis X) is a disease of unknown cause characterized by proliferation of histiocytic granulomas in tissues, the spectrum of which ranges from a solitary lesion of bone to a rapidly fatal multisystem infiltration. Cerebral manifestations, discovered primarily as hypothalamic infiltration causing diabetes insipidus, are a common occurrence in this disease. Cerebellar manifestations, although described in various case reports dating back to the 1930s, are not generally recognized, and some aspects are poorly understood.

Materials and Methods

We retrospectively reviewed all 30 cases of Langerhans cell histiocytosis either diagnosed or followed at our institution since 1975. Three (10%) of these patients had cerebellar signs and symptoms with strikingly similar imaging findings on CT and/or MR within the deep nuclear region and corpus medullare of the cerebellum. One other patient has recently prospectively developed similar imaging abnormalities in the cerebellum on computed tomography (CT) and magnetic resonance (MR). This prompted us to review our records and the literature on this subject.
fractionated in a standard regimen. Review of
and another acquired diabetes insipidus 1 year
One
children received standard doses of prednisone,
later. When treated with chemotherapy, the
ation to dysfunction was 2.4 years.
phamide. Radiation doses, when given, were
function, the average time from initial presenta­
tation of Langerhans cell histiocytosis.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, y</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7½</td>
<td>Diabetes insipidus and eczema. No radiation therapy.</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Intention tremor.</td>
</tr>
</tbody>
</table>
| 11 | 4½ | Dysmetria. Dysdiadochokinesia MR/ CT cerebellar abnormalities in
dentate nuclei regions and white matter. |
| 12 | 7½ | No progression of clinical disease. |
| 2 | 3½ | Orbital mass and eczema. No radiation therapy initially. |
| 4½ | CT: no cerebellar dysfunction. |
| 7½ | Hypodensities |
| 2 | 2½ | Orbital mass. Radiation therapy confined to orbit and frontal bone. |
| 3½ | Clinical cerebellar signs. Normal cerebrospinal fluid; technetium |
| | brain scan; cerebral angiography. |
| 9 | CT scan symmetric hypodensities in
depth nuclei cerebellar regions and |
| | white matter. | |
| 11–present | Progressive cerebral cortical, |
| | brainstem and corticospinal tract |
| 4 | 2½ | Bone lesions and eczema. |
| 7 | Zygomatic mass: Chemotherapy, low- |
| | dose radiation therapy, surgery. |
| 10 | CT/MR: symmetric lesions in |
| | cerebellar white matter. Large |
| | extraaxial granuloma of posterior |
| | fossa. |

Results

The clinical, diagnostic, and imaging findings
are summarized in the Table. The four children
ranged in age from 2.5 to 7.5 years at presenta­
tion of Langerhans cell histiocytosis. Of the
three children who developed cerebellar dys­
function, the average time from initial presenta­
tion to dysfunction was 2.4 years. One child has
not developed cerebellar dysfunction for more
than 6 months after detection of imaging abnor­
malities. Patient 2 did not exhibit clinical cere­
bellar signs for 3 years after CT abnormalities.
One child presented with diabetes insipidus,
and another acquired diabetes insipidus 1 year
later. When treated with chemotherapy, the
children received standard doses of prednisone,
vincristine, or vinblastine and/or cyclophos­
phamide. Radiation doses, when given, were
fractionated in a standard regimen. Review of
radiation ports substantiated little probability of
significant scatter to the cerebellum. Two chil­
dren did not receive radiation therapy before
imaging abnormalities. Brain stem auditory
evoked responses were abnormal in all three
patients in which this was performed. This phys­
iologic aberration was reflected in imaging of
the brain stem in only one of the patients
(patient 1), who had been followed for years
with MR.

At 7½ years of age, auditory evoked re­
sponses in patient 2 revealed bilateral upper
and lower brain stem dysfunction. One month
later, he underwent open cerebellar biopsy.
Grossly this tissue had a rubbery consistency.
Histologically, it revealed demyelination, glios­
is, and loss of Purkinje and granular cells
(see Fig 2). There was no evidence of histo­
cytic infiltration.

In all patients, imaging revealed strikingly
similar abnormalities in the dentate and deep
nuclei regions and corpus medullare of the cer­
ebellum. On CT, these were manifested as non­
enhancing, noncalcified hypodensities (Figs 1C
and D and 2B). On long-repetition-time (TR)/
short-echo-time (TE) and long-TR/long-TE
conventional and fast spin-echo MR sequences
the lesions were hyperintense (Figs 1A and B, 2A, and 3B). None of the lesions studied after
gadopentetate dimeglumine administration en­
hanced. Patient 1 had even more unusual find­
ings: repeat MR of the brain performed at 1.5 T
(Fig 1) at 12 years of age revealed no signifi­
cant changes in her cerebellar abnormalities,
which centered symmetrically in the deep nu­
clei region of the cerebellum and extended into
the adjacent deep white matter (Figs 1A and B),
but she had developed multiple small lesions in
the pons and basal ganglia and internal cap­
sules. These were primarily hyperintense on T2­
weighted images and nonenhancing. Some
lesions were hyperintense on T1-weighted im­
ages (Fig 1E). One year later, some of the les­
sions had improved, and she clinically re­
ained stable without evidence of pyramidal or
extrapyramidal tract dysfunction. Of the two pa­
tients who underwent arteriography, no abnor­
malities were found. Of the two patients who
underwent cerebrospinal fluid analysis, no abnor­
malities were found. The isotopic brain scan
in our third patient was performed before the
advent of CT scanning at our institution, and
findings were normal.
Discussion

The term histiocytosis X was coined by Lichtenstein in 1953 (1) to consolidate infiltrative granulomatous conditions variously called Letterer-Siwe disease, Hand-Schüller-Christian syndrome, and eosinophilic granuloma under one name. In 1987, the Writing Group of the Histiocyte Society proposed that the term Langerhans cell histiocytosis replace histiocytosis X, because the Langerhans-type histiocyte is a unique identifier for this disease (2).

Langerhans cell histiocytosis is a disease of unknown cause created by a proliferation of nonmalignant Langerhans-type histiocytes into various tissues of the body. The cells have specific biochemical and ultrastructural definition, including the electron-microscopic presence of Birbeck granules (3). Clinical manifestations are variable and range from a nonprogressive solitary eosinophilic granuloma of bone to a rapidly progressive and fatal multisystem involvement (previously referred to as Letterer-Siwe disease). Langerhans cell histiocytosis is more common in white children and usually appears in the first decade. Bone lesions are the most common site of the disease, with prognosis relating to age of presentation and the number of organ systems involved (4–7). Specific organ system involvement sometime during the course of this disease may be approximated in descending order of frequency as follows: bone (80%); skin (45%); liver, spleen, and lymphatic (35%); hematopoietic (30%); CNS (10–50%); pulmonary (25%); orbital (25%); otologic

Fig 1. Case 1.
A, Axial and B, coronal MR images (2000/90/1 [TR/TE/excitations]) reveal bilateral symmetric areas of irregular hyperintensity of the dentate nucleus regions and adjacent white matter. Small foci of increased signal are also seen in the pons. C, Precontrast and D, postcontrast CT scans reveal that these lesions are hypodense and nonenhancing (arrows).
E, T1-weighted axial image (600/12/1) at the level of the basal ganglia demonstrating hyperintensities involving the caudate heads, putamina, globi pallidi, and portions of the internal capsules (arrows).
Fig 2. Case 2.

A, Long-TR/long-TE axial MR image (1800/110/1) reveals bilateral symmetric areas of irregular hyperintensity of the dentate nucleus regions, including the corpus medullare (arrow).

B, Axial CT scan with symmetric hypodensities in the corpus medullare (arrow).

C, Photomicrograph comparing a biopsy specimen in patient 2 (left) to normal cerebellar cortex (right). The granular cell layer (GR) is much thinner and more sparsely populated in our patient. There is a conspicuous absence of Purkinje cells compared with normal (arrow). (Micrographs taken at different magnifications to demonstrate a large area of granular and Purkinje cell loss: right magnification, ×110; left, ×270.) W indicates white matter; M, molecular layer.

D, Photomicrograph of a biopsy specimen in patient 2 stained for myelin and counterstained with hematoxylin and eosin. There is gross demyelination with minimal myelin staining in the white matter (long arrow). There is near-complete absence of Purkinje cells, which should be seen just superficial to the granular cell layer (short arrows) (Luxol fast blue and hematoxylin and eosin stains, low power).

(20%); and dental (20%) (5, 6, 8–13). CNS manifestations occur most frequently with multisystem disease; only rarely do they present initially or solely in the CNS (14, 15). When present, these granulomas are most commonly in the subarachnoid space. Infiltration into the hypothalamus or posterior pituitary, creating diabetes insipidus, is overwhelmingly the most commonly identified premortem CNS focus of disease (4). In the brain, the granulomas are believed to begin as periadventitial infiltrations around small vessels (4). These CNS granulomas are composed of Langerhans histiocytes, microglial cells, fibrillary astrocytes, and other inflammatory cells, such as plasma cells, leukocytes, and fibroblasts (4, 16, 17).

There have been several reports in the last 25 years in which patients with various manifestations of histiocytosis X exhibited signs and symptoms of cerebellar dysfunction (14, 17–
In most of these cases pathologic correlations were not made. In 1979, Adornato et al (20) published clinical follow-up and the CT scans of four patients previously described by Braunstein et al (21). All four had abnormal cerebellar function. Two patients had calcification in the region of the cerebellar dentate nuclei. One patient had bilateral hypodense areas in the medial portions of both cerebellar hemispheres. In the fourth patient, the fourth ventricle and posterior fossa cisterns were prominent, and there was a "suggestion" of decreased absorption in the right cerebellar hemisphere.

Kristenssen (25) described a 3-year-old boy presenting with cerebellar ataxia and multiple skull and other bone lesions. He was treated with irradiation (specifics not given), with regression of the bone lesions. He deteriorated neurologically over the next 2 years, progressing to spastic tetraplegia. The patient died at age 6 of a respiratory infection. Autopsy revealed lesions most marked in the cerebellum. Histologically, demyelination, gliosis, and Purkinje cell loss were found similar to the pathologic results in our patient 2. No histiocytic infiltration was seen in the CNS, although there was granulomatous infiltration in several other organs. Elian et al (18), Braunstein et al (21), and Yamaguchi et al (23) reviewed the literature and found reports of a total of 27 patients with clinically evident cerebellar signs and pathologic findings at autopsy. Twenty-five of these cases were reported before 1960. There is no mention of any possible cranial irradiation in these cases. It is difficult to be certain that all these early descriptions of posterior fossa involvement are attributable to the same disease, because Langerhans cell histiocytosis is only one type of infiltrating granulomatous disorder that might be described as a reticuloendotheliosis (23, 27).

Considering pathologic information from the reports we have summarized, combined with information from Elian et al's (18), Braunstein et al's (21), and Yamaguchi et al's (23) reviews of autopsy cases before 1960, several forms of pathologic involvement of the cerebellum and brain stem emerge. Cases have been reported of leptomeningeal infiltration, meningeal-based nodules, parenchymal infiltrates of histiocytes and inflammatory cells, focal areas of demyelination with gliosis, dentate nucleus degeneration with or without calcification, loss of cells in the granular and Purkinje and layers of the cerebellar cortex, and granulomatous infiltration of cranial nerve sheaths. Autopsy reports indicate the most common pathologic site of infiltration in the brain is in the leptomeninges. These might be clinically and radiographically undetected if not large enough to create symptoms. We present four patients who have CT and/or MR lesions that are striking in their similarity and may be attributable to demyelination, cell loss, and gliosis (Figs 1A, 2A, and 3B). Pathologic substantiation was made in one of our cases at open biopsy. These findings have been described in the pathology literature but are rare. This process is manifested as low attenuation on CT (Figs 1C and 2B) and hyperintensity on long-TR/long-TE MR in the deep nuclei regions and deep white matter of the cerebellum symmetrically. They are not apparently associated with long-term blood-brain-barrier breakdown, because they do not enhance. Although it might be argued that demyelination or gliosis in the cerebellum could be a consequence of ther-
apeutic irradiation, we believe that this is not the situation. Our patients received 1000 cG or less of external-beam radiation therapy before cerebellar dysfunction or imaging abnormalities. In the more recently reported cases in which this information is available in prior reports (19, 20, 25), most patients received less than 1000 cG, usually to the anterior calvarium or orbit. This amount of radiation seems unlikely to routinely create the clinical signs orpathologic findings that have been reported (20, 28–30). Two of our patients did not receive cranial irradiation before imaging abnormalities developed. Our third patient received multiple small doses of external-beam radiation to the anterior cranium and orbit over years. The radiation ports were felt to be too anterior to allow significant scatter to the cerebellum. Our fourth patient received small doses to the face. Specifically, as a “model” to refute the idea that changes found in our patients can be attributable to radiation damage, there is a large group of children with acute lymphoblastic leukemia who have received even larger doses of whole-brain irradiation (up to 2400 cG) who have been followed for years without development of the specific symptom and imaging complex we describe (29–33).

There is little evidence that Langerhans cell histiocytosis is a true neoplasm (3). Despite this fact, traditional therapy has included the use of chemosuppressive agents. None of the chemotherapeutic agents administered to our patients have been reported to cause the clinical signs or imaging abnormalities described. The agents used to treat Langerhans cell histiocytosis as recommended by the Children’s Cancer Study Group (prednisone, vinblastine, G-mercaptopurine, and intravenous methotrexate) are widely used to treat childhood neoplasms. The cerebellar deterioration and imaging abnormalities are not recognized by the literature of the Children’s Cancer Study Group or the Pediatric Oncology Group to be attributable to these chemotherapeutic drugs (32–34). The recent understanding that dysfunction of the immune system has an important role in the pathophysiology of this disease has opened a new avenue of therapeutic research (3, 28) and may explain the curious pathologic findings of cerebellar degeneration and demyelination without granulomas that were found in one of our patients and in Kristensson’s case (25). Theoretically, the cerebellar degeneration and demyelination could be created by an autoimmune “paraneoplastic syndrome,” by more direct phagocytosis of myelin by Langerhans histiocytes, which then reenter the circulation or die and escape detection, or by an unknown neuropathologic toxin or other released humoral factor. These are all theories that have been postulated at one time or another to explain cerebellar dysfunction in patients with cancer. Pathologists do not have a compelling explanation for this process (4, 25), and unfortunately, we cannot offer any more solid evidence of its cause. Serum antineuronal and anti-Purkinje cell antibodies have been discovered in patients with various cancers, including small-cell lung and ovarian carcinoma. These antibodies are felt to be associated with subacute cerebellar degeneration, but the exact relationship to the syndrome is unclear, because many patients circulate these antibodies without expressing dysfunction. Although sensory neuropathies felt to be secondary to circulating autoantibodies unassociated with malignant neoplasms are well described, apparently only a few patients without malignant neoplasms with similar antibodies and cerebellar degeneration have been previously reported (35).

It is curious that our first patient later developed imaging abnormalities in the basal ganglia and internal capsules without neurologic dysfunction referable to these areas. Some of these lesions were transitory, further suggesting an “autoimmune” process. Some of the lesions were slightly hyperintense on T1-weighted images. We do not know what accounts for these hyperintense signals on T1-weighted images. They may represent an uncommon manifestation of calcification (36) or demyelination/remyelination of axonal sheaths, as have been described with multiple sclerosis (37, 38) and central pontine myelinolysis (39). A CT study was not performed to look for calcifications in this patient; however, a CT scan taken 1 year previously did not reveal calcifications. We were struck by the large number of scattered small lesions that were not creating symptoms. Two other patients eventually developed “more global” dysfunction, including corticospinal tract involvement. It is possible that the lesions within the corpus medullare and deep nuclei of the cerebellum may serve as a marker for progressive CNS abnormalities.

Some patients with Langerhans cell histiocytosis may have incidental posterior fossa find-
ings on autopsy. Despite abnormalities in the cerebellum on CT and MR, cerebellar signs did not develop in our second patient for more than 3 years. When patients present with clinical abnormalities referable to the cerebellum and brain stem, they are likely to have at least one of the described manifestations demonstrable on CT and/or MR. Dentate nucleus degeneration on MR because of high contrast resolution and lack of bone-generated artifacts. However, if a patient presents with a cerebellar mass or signal abnormality as the initial or sole finding, differential diagnostic confusion is to be expected and may require a biopsy for resolution.

In autopsy reports, posterior fossa disease in Langerhans cell histiocytosis is not an uncommon finding. Nevertheless, this pathologic site is not widely publicized and is poorly described in the radiologic literature. Kepes (4) has stated that the cerebellum is the second most common site of disease in the CNS. Yet a review of the radiology literature yields numerous cases of parenchymal eosinophilic granulomas reported almost everywhere except the cerebellum. This discrepancy in reporting is difficult to understand but may be related to the fact that imaging findings may precede the clinical findings by several years; that cerebellar dysfunction is a later manifestation of multifocal disease, such that complications of therapy and primary disease may have confused the issue; and that most cerebellar disease reported in the autopsy literature is leptomeningeal in nature, which may go clinically and radiographically undetected if small. Our four patients probably represent a specific subset of patients with CNS disease. It is important not only to be aware of the cerebellum as a focus of disease but to realize that demyelination, gliosis, and cellular loss may all contribute to the abnormalities we have described in our patients, leading to a similar pattern of symmetric hypodensities on CT and hyperintensities on long-TR/long-TE MR in the dentate nuclei regions and adjacent white matter. We believe that the specific cerebellar findings are related to the primary disease process and are not iatrogenic. Greater experience is needed to draw more certain conclusions about its pathophysiology and relationship to the clinical cerebellar dysfunction.

Acknowledgment
We thank Maria Pembrook for her dedicated transcription of the text.

References
24. Hayward J, Packer R, Finlay J. Central nervous system and
25. Kristensson K. Generalized histiocytic reticulo-endotheliosis and
leukoencephalopathy in childhood. *Acta Pediatr Scand* 1966;55:
321–328
central nervous system: clinical and pathological report of a case
with predominant cerebellar involvement. *Childs Brain* 1979;5:
116–130
27. Groopman JE, Golde DW. Histiocytic disorders: a pathophysi-
28. Kun LE. The brain and spinal cord. In: Moss WT, Cox JD, eds.
29. Kun LE. Childhood Cancers. In: Moss WT, Cox JD, eds. *Radia-
30. Blatt J, Copeland DR, Bleyer WA. Late effects of childhood cancer
Practice of Pediatric Oncology*. Philadelphia: JB Lippincott, 1993:
1091–1108
In: *Pediatric Radiation Oncology*. New York: Raven Press, 1989:
11–37
DG, eds. *Principles & Practice of Pediatric Oncology*. Philadel-
33. McCormack JJ, Johns DG. Purine and purine nucleoside antime-
tabolites. In: Chabner BA, Collins JM, eds. *Cancer Chemotherapy:
252
34. Bender RA, Hamel E, Honde KR. Plant alkaloids. In: Chabner BA,
Collins JM, eds. *Cancer Chemotherapy: Principles and Practice*
purkinje cells and dorsal root ganglia neurons in sensory neu-
36. Henkelman RM, Watts JF, Kucharczyk W. High signal intensity in
206
histopathologic and MR and/or CT correlation in 37 cases at
biopsy and three cases at autopsy. *Radiology* 1991;180:467–474
white matter appears bright in MRI. *Magn Reson Med* 1990;14:
482–495
39. Ho VB, Fitz CR, Yoder CC, et al. Resolving MR features in osmo-
tic myelinolysis (central pontine and extrapontine myelinolysis).