Venous Congestion: An MR Finding in Dural Arteriovenous Malformations with Cortical Venous Drainage

Robert Willinsky, Karel Terbrugge, Walter Montanera, David Mikulis, and M. Christopher Wallace

PURPOSE: To present the MR findings of intracranial dural arteriovenous malformations with cortical venous drainage, emphasizing the parenchymal changes. METHODS: Conventional MR and x-ray angiograms in 13 patients with dural arteriovenous malformations and cortical venous reflux were reviewed. The site of the shunt, location of the venous reflux, and presence of venous stenosis were assessed on the angiograms. Parenchymal changes, dilated vessels, and venous occlusive disease were assessed on MR. RESULTS: On MR, 10 of the 13 patients (77%) had dilated pial vessels. Two patients had hydrocephalus. Two patients presented with parenchymal bleeds, one with a subdural component, both remote from the nidus. Two patients presented with subarachnoid hemorrhage. One patient had a parenchymal bleed 9 months after presentation. Venous occlusion was evident on MR in 2 patients. Diffuse white matter edema in the cerebellar or cerebral hemispheres was present on MR in 4 patients and correlated with neurologic deficits. In 2 of these 4 patients, gadolinium enhancement was seen in the periphery of the involved hemisphere. CONCLUSIONS: On MR a surplus of pial vessels suggests a dural arteriovenous malformation with cortical venous drainage. The MR finding of white matter edema deep in the cerebral or cerebellar hemispheres is direct evidence of a venous congestion.

Index terms: Arteriovenous malformations, intracranial; Veins, diseases; Brain, diseases; Brain, magnetic resonance

Intracranial dural arteriovenous malformations (AVMs) with cortical or deep venous drainage can cause hemorrhages, seizures, and neurologic deficits (1-5). Their pathophysiologic manifestations may be caused by a venous congestion that in turn may be exacerbated by venoocclusive disease (3, 5-7). We propose the term venous congestive encephalopathy to describe those patients who present with a neurologic deficit caused by venous hypertension. This clinicopathologic entity is analogous to the venous congestive myelopathy of spinal dural arteriovenous fistula (8). The purpose of this report is to present the magnetic resonance (MR) findings in 13 patients with dural AVMs with cortical venous drainage, highlighting those patients with venous congestive myelopathy.

Patients and Methods

We retrospectively reviewed the hospital charts, x-ray angiograms, and MR studies in 62 patients with intracranial dural AVMs. All patients were explored and/or treated at our institution between 1984 and 1993. Twenty-three had cortical or deep venous drainage, and 13 of these had conventional MR. The clinical features of these 13 patients are summarized in the Table. There were 10 men and 3 women ranging in age from 30 to 72 years, with a mean age of 55 years. Hemorrhage (4 patients) and neurologic deficits (4 patients) were the most common presentations. All patients had selective biplane angiography. The following angiographic features were assessed: site of the shunt, location of the venous reflux, and presence of ve-
Thirteen patients with dural arteriovenous malformations and cortical venous drainage

<table>
<thead>
<tr>
<th>Patient/Age/Sex</th>
<th>Clinical</th>
<th>Angiography</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Shunt location</td>
<td>Reflux</td>
</tr>
<tr>
<td>1/42/M</td>
<td>Confusion, ataxia, hemiplegia</td>
<td>SSS</td>
<td>Bilateral cortical</td>
</tr>
<tr>
<td>2/30/M</td>
<td>Vertigo</td>
<td>Tentorial</td>
<td>Subependymal</td>
</tr>
<tr>
<td>3/72/M</td>
<td>Transient ischemic attacks</td>
<td>Vein of Galen</td>
<td>Cortical</td>
</tr>
<tr>
<td>4/50/M</td>
<td>Dementia; ataxia</td>
<td>TS</td>
<td>SSS, IVC, BVR</td>
</tr>
<tr>
<td>5/60/M</td>
<td>Seizure</td>
<td>Anterior cranial fossa</td>
<td>Cortical</td>
</tr>
<tr>
<td>6/58/F</td>
<td>Paraesthesia</td>
<td>Foramen magnum</td>
<td>Pontomesencephalic</td>
</tr>
<tr>
<td>7/60/M</td>
<td>Hemorrhage</td>
<td>TS</td>
<td>Cortical IVC, BVR</td>
</tr>
<tr>
<td>8/30/F</td>
<td>SAH</td>
<td>Vein of Galen</td>
<td>Pontomesencephalic</td>
</tr>
<tr>
<td>9/55/M</td>
<td>Hemorrhage</td>
<td>Foramen magnum</td>
<td>Contralateral sylvian</td>
</tr>
<tr>
<td>10/68/F</td>
<td>Tinnitus; double vision</td>
<td>Cavernous</td>
<td>Pontomesencephalic</td>
</tr>
<tr>
<td>11/48/M</td>
<td>SAH</td>
<td>Tentorial</td>
<td>Cerebellar</td>
</tr>
<tr>
<td>12/67/M</td>
<td>Ataxia</td>
<td>Torcular</td>
<td>Cerebellar</td>
</tr>
<tr>
<td>13/72/M</td>
<td>Ataxia; hemorrhage (9 months later)</td>
<td>Torcular</td>
<td>Cerebellar</td>
</tr>
</tbody>
</table>

Note. — SSS indicates superior sagittal sinus; IVC, internal cerebral vein; BVR, basal vein of Rosenthal; ICH, intracerebral hemorrhage; SAH, subarachnoid hemorrhage; TS, transverse sinus.

Conventional spin-echo MR at 1.5 T was done in the 13 patients. MR included T1-weighted, 600–916/15–28/1–2 (repetition time/echo time/excitations); proton density, 2000–3000/15–29/1; and T2-weighted, 2200–3700/70–90/1 sequences. The matrix size was 238 × 256 in 7 patients, 256 × 256 in 5, and 256 × 128 in 1. Section thickness was either 4 or 5 mm. In 2 patients, flow-sensitive gradient-recalled images, 55–60/22–28/4, 50° flip angle, were done. Eleven patients had at least three sequences in either two or three orthogonal planes. Gadopentetate dimeglumine (0.1 mmol/kg) was given intravenously in 4 patients. On MR the following findings were noted: parenchymal changes, dilated vessels, and venoocclusive disease.

Results

MR and angiographic findings are summarized in the Table. The location of the shunts included transverse sinus (2 patients), torcular (2 patients), foramen magnum (2 patients), vein of Galen (2 patients), tentorial (2 patients), cavernous sinus (1 patient), superior sagittal sinus (1 patient), and anterior cranial fossa (1 patient). Apart from the shunts at the foramen magnum, which refluxed into the pontomesencephalic veins, all had cortical venous reflux.

Four patients with neurologic deficits (patients 1, 4, 12, and 13) had T2 hyperintensity on MR. Two of these patients (patients 1 and 4) had no parenchymal or venous sinus abnormalities on MR at their initial presentation. On follow-up MR, both patients had sinus occlusions, prominent cortical vessels, and T2 hyperintensity in the cerebral white matter (Fig 1). Angiography in these 2 patients revealed venous sinus occlusions, dural AVMs with cortical venous drainage, and delayed cerebral circulation time with venous collaterals (Fig 1). These shunts were in the wall of the occluded sinuses. In patients 12 and 13, MR revealed dilated vessels, T2 hyperintensity, mass effect, and enhancement in the cerebellar hemispheres (Figs...
2 and 3). Angiography in both these patients showed dural AVMs at the torcula with reflux into cerebellar veins (Fig 2).

Four patients presented with hemorrhages; two were subarachnoid and two had parenchymal hematomas. A subdural hematoma accompanied one of the parenchymal hematomas. The parenchymal hematomas were remote from the nidus (Fig 4). One patient (patient 13) died from a massive posterior fossa bleed 9 months after presenting with a neurologic deficit (Fig 3).
Fig 2. Case 12. A, Axial T2-weighted MR shows hyperintensity in the left cerebellar hemisphere with mass effect and a prominent superficial vessel (arrows). Increased signal is also seen in the right cerebellar hemisphere (arrowhead).

B, Axial T1-weighted MR with gadolinium shows enhancement in the periphery of the left cerebellum, the vermis (double arrow), and the right cerebellum (arrowhead).

C, Anteroposterior right vertebral angiogram shows a dural shunt at the torcular (long straight arrow), fed by the artery of the falx cerebelli (small arrows), and draining into the contralateral cerebellar veins (open arrows). This artery was the single feeder to the arteriovenous malformation.

D, Axial T2-weighted MR 5 months after surgery shows complete resolution of the mass effect and less hyperintensity in the left cerebellar hemisphere. The prominent superficial vessels were no longer evident. The patient's signs and symptoms had resolved.

Venous sinus occlusion was evident on MR and arteriography in 2 patients (Fig 1). MR failed to reveal venous stenosis that was seen on angiography in 3 patients (Fig 4). An excess of pial vessels was evident on MR in 10 of our 13 patients (Figs 1–4). Two patients had hydrocephalus.

Discussion

From our series of 23 patients with dural AVMs and cortical venous drainage, 13 had MR, and in 10 a surplus of pial vessels was evident. De Marco et al (6) reviewed the MR findings in 12 patients with dural AVMs and found dilated cortical veins without a parenchymal nidus in 8. In De Marco's series, those with dilated cortical veins had venoocclusive disease that was better shown on x-ray angiograms than on MR. Five of our 13 patients had arteriograms showing venoocclusive disease, and this was evident on MR in only 2. The causal relationship of dural sinus thrombosis and dural AVMs is well established (9, 10).

Four (31%) of our 13 patients presented with neurologic deficits. At angiography, a delayed circulation time and venous collateral pathways were evident in all 4 (Figs 1 and 2). These findings are felt to be caused by a venous hypertension that may be accentuated by a venous stenosis or occlusion as illustrated by Ishii et al (7). Two of our 4 patients with neurologic deficits had venous sinus occlusions.

In our 4 patients with neurologic deficits, MR revealed a T2 hyperintensity in the parenchyma. We believe that this T2 hyperintensity reflects edema resulting from venous hypertension and passive congestion of the brain. This is analogous to the T2 hyperintensity seen within the cord in spinal dural AVMs (11). In the cerebral hemispheres, the deep white matter appears to be most vulnerable to this phenomena (Fig 1). The differential diagnosis of diffuse white matter edema in the cerebral hemispheres would include superior sagittal sinus thrombosis with a venous infarct or venous congestion, demyelination (ie, acute disseminated encephalomyelitis, progressive multifocal leukoencephalopathy), or dysmyelination (ie, the leukodystrophies) (12). In the posterior fossa, the edema was
predominantly deep in one cerebellar hemisphere (Figs 2 and 3). Gadolinium enhancement was peripheral, because of either a passive congestion or a breakdown of the blood-brain barrier (Figs 2 and 3). In 2 patients, the initial computed tomography (CT) interpretation suggested a neoplasm (Figs 2 and 3). MR revealed an excess of pial vessels and a pattern of edema and enhancement, which suggested a vascular malformation.

The parenchymal edema seen on MR in our 4 patients corresponds to the diffuse decrease in white matter density seen on CT, as reported by Chiras et al and Miyasaka et al (13, 14). In De Marco's review of 12 patients, venous infarcts were found in 3 and vasogenic edema in 1 (6). Two of these were illustrated; 1 exhibited a small pontine infarct, and the other had a small cerebellar hematoma with a diffuse T2 hypointensity in the cerebellar hemisphere believed to be related to hemosiderin deposition from chronic passive congestion.

In our 13 patients with dural AVMs and cortical venous drainage, there were initially 4 (31%) hemorrhagic presentations. A fifth patient died from a bleed 9 months after initially presenting with a neurologic deficit (Fig 3). He had refused the proposed surgical treatment. These hemorrhages emphasize the necessity to treat dural AVMs with cortical venous drainage (3, 7). In a series by Castaigne et al, 42% of dural AVMs with cortical venous drainage presented with a hemorrhage (1). In our series, 2 of the hemorrhages were subarachnoid. One of the bleeds was parenchymal and subdural, one parenchymal and subarachnoid, and the other bleed was isolated in the tectum. In a literature review of intracranial dural AVMs by Lasjaunias et al all types of intradural hemorrhages were encountered (3). Lasjaunias emphasized that dural AVMs of the anterior cranial fossa and tentorium almost all have cortical venous drainage and thus have a high frequency of intradural bleeding. In our report, the locations of the dural AVMs that bled were as follows: tentorium, straight sinus, vein of Galen, foramen magnum, and transverse sinus. In the patient with the parenchymal/subdural bleed, the dural AVM...
Fig 4. Case 9. A, Axial noncontrast CT shows a bleed into the tectum (arrow). B, Axial T1-weighted MR shows the recent tectal bleed (open arrow) and dilated vessels around the midbrain (arrows). C, Axial T2-weighted MR shows the bleed (white arrow) and better delineates the dilated vessels (black arrow) surrounding the midbrain. D, Lateral ascending pharyngeal angiogram shows a dural shunt (curved arrow) draining into a tortuous pontomesencephalic vein (open arrow) with venous stenoses (straight arrows) and a venous aneurysm (arrowhead).

was evident only on the external carotid arteriogram. This highlights the need to include selective external carotid arteriograms in the workup of intracranial bleeds. The 2 parenchymal hemorrhages were far from the shunt, suggesting that the bleeds were related to the venous drainage (Fig 4). The remoteness of the bleeds has been stressed in the literature (5, 15, 16). The pathologic changes in the draining veins may be similar to the high-flow arteriopathy described by Pile-Spellman (17).

Raised intracranial pressure and papilledema can occur in dural AVMs with only sinosal drainage (18, 19). This is considered to be secondary to raised pressure in the superior sagittal sinus, resulting in impaired cerebrospinal absorption. Two of our patients had hydrocephalus, one of whom also had pial hemosiderosis. Hydrocephalus may result from decreased cerebrospinal absorption caused by the high pressure in the venous sinus or, in the patient with pial hemosiderosis, from blockage of the arachnoid villae from previous subarachnoid bleeds.

In summary, in patients with neurologic deficits caused by dural AVMs with cortical venous drainage (venous congestive encephalopathy), the correct diagnosis may be suggested on MR, by the presence of dilated pial vessels, and/or by a diffuse edema. Venous occlusion would support this diagnosis. In those patients with neurologic deficits in whom CT suggests a mass, the administration of gadolinium is suggested, because the diffuse enhancement in dural AVMs may differ from the enhancement pattern of many neoplasms. When the MR findings suggest a dural AVM, selective angiography including all dural branches is mandatory. CT is the primary modality in the diagnosis of spontaneous intracranial hemorrhage. In most intracranial hemorrhages, angiography is indicated. However, when a vascular malformation or tumor is suspected to be the cause of a bleed, we suggest an MR, because the finding of a surplus of prominent pial vessels should prompt angiography in a search for a dural AVM.
References

