MR of Pituitary Metastasis in a Patient with Diabetes Insipidus

Yoshio Koshimoto, Masayuki Maeda, Hironobu Naiki, Kazuya Nakakuki, and Yasushi Ishii

Summary: We present a case of acute-onset diabetes insipidus in a 69-year-old man who had been treated for lung cancer. T1-weighted MR images showed a thickened pituitary stalk and absence of the normal high intensity of the posterior pituitary lobe. Dynamic imaging demonstrated poor enhancement in the posterior lobe, whereas the anterior lobe was strongly enhanced. Autopsy revealed that metastatic tumor from lung cancer had infiltrated the posterior lobe as well as the pituitary stalk.

Index terms: Diabetes insipidus; Pituitary gland, neoplasms

Metastasis to the pituitary gland is a recognized event in some forms of systemic cancer, usually discovered incidentally at autopsy. With the advent of magnetic resonance (MR), pituitary metastasis recently has been detected when some patients were investigated for diabetes insipidus (1). We present the MR images in a case of pituitary metastasis from lung cancer, which was subsequently confirmed at autopsy.

Case Report

In a 69-year-old man with a 7-month history of small-cell carcinoma of the lung, polyuria and persistent thirst suddenly developed. Endocrinologic examinations revealed central diabetes insipidus. Computed tomography (CT) scan demonstrated that the thickness of the pituitary stalk had increased compared with a scan obtained 6 months before. No other abnormalities were found by CT. MR was performed focusing on the pituitary lesion. T1-weighted images showed a symmetrically thickened pituitary stalk that was 4.6 mm wide in the sagittal plane and 6.3 mm wide in the coronal plane (Fig 1A, B). The posterior lobe showed absence of the expected high signal intensity and slightly lower signal intensity than the anterior lobe (Fig 1A). The pituitary gland was not enlarged. T2-weighted images did not show any abnormal high signal intensity in the infundibulum or the pituitary gland (Fig 2). Dynamic MR images in the sagittal plane were obtained every 24 seconds after the rapid manual injection of gadopentetate dimeglumine (0.1 mmol/kg) (Fig 3). The first dynamic image at 35 seconds after the injection of gado-

Received April 27, 1993; accepted after revision July 12.
From the Department of Radiology, Matsunami General Hospital, Gifu, Japan (Y.K.), and the Departments of Radiology (Y.K., M.M., Y.I.) and Pathology (H.N., K.N.), Fukui Medical School, Fukui, Japan.
Address reprint requests to Masayuki Maeda, MD, Department of Radiology, Fukui Medical School, 23 Shimoaizuki, Matsuoka-cho, Yoshida-guh, Fukui 910-11, Japan.

AJNR 16:971–974, Apr 1995 0195-6108/95/1604–0971 © American Society of Neuroradiology
The incidence of pituitary metastases varies from 0.14% to 28.1% of all brain metastases and is higher in autopsy series (2). They most frequently originate in lung carcinoma in men and breast carcinoma in women. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. A review of 201 reported cases (2) showed that the frequency of involvement within the pituitary gland was 50.8% in the posterior lobe alone, 33.8% in both lobes, and 15.4% in the anterior lobe alone. The predilection of metastases for the neurohypophysis may reflect the fact that the posterior lobe receives its blood supply directly from the inferior hypophyseal arteries, whereas the anterior lobe is nourished indirectly by portal vessels. This predilection for
posterior lobe involvement may explain why patients with pituitary metastases frequently present with diabetes insipidus clinically.

The source of the high signal intensity in the normal posterior pituitary lobe remains unknown at present, although it has been suggested to be caused by phospholipid (3) or neurosecretory granules (4). In patients with diabetes insipidus, it has been reported that the posterior lobe does not show a high signal intensity on T1-weighted MR images (5–9). However, the absence of the high signal intensity in the posterior lobe is not in itself diagnostic, because the same change is occasionally seen in healthy persons (5). Central diabetes insipidus has a wide variety of causes. Tien et al (6, 7) reported that a symmetrically thickened pituitary stalk as well as the absence of a bright signal was seen in patients with diabetes insipidus attributable to Langerhans cell histiocytosis, tuberculosis, and sarcoidosis. With regard to metastases, it has been reported that MR shows intrasellar and suprasellar dumbbell-shaped masses with a clear indentation at the level of the diaphragma sellae, which may differ morphologically from pituitary adenoma that usually expands the diaphragma (1). In our case, the intrasellar metastasis could have been missed if we had not used gadopentetate dimeglumine. Precontrast T1-weighted image showed slightly low signal intensity in the posterior lobe. However, T2-weighted image did not reveal the high signal intensity of a tumor metastasis. Presumably, the tumor observed in our patient would have grown rapidly and might have become a dumbbell-shaped mass if the patient had survived longer. However, our patient’s tumor appears to have been detected at an early stage when the metastasis was just starting to grow.

Dynamic MR imaging has been used recently to evaluate the normal and pathologic pituitary gland (10–12). Sakamoto et al (12) have reported that dynamic imaging can be used to identify pituitary microadenomas by improving contrast. In our case, this method was very useful for delineating a lesion of the posterior lobe. In addition, there was a good correlation between the postmortem pathologic findings and the antemortem MR findings.
In conclusion, we presented the MR findings of pituitary metastasis from lung cancer in a patient with diabetes insipidus. The lesion was confirmed at autopsy. A thickened pituitary stalk in combination with absence of the normal high signal intensity in the posterior lobe was observed on T1-weighted images. Dynamic imaging proved very useful for identifying tumor infiltration of the posterior pituitary gland.

References