We stand at the dawn of an exhilarating era of extraordinary promise in our diagnostic and therapeutic approach to cerebrovascular disorders. Correspondingly, there has emerged a new "language" of cerebral ischemia, encompassing novel concepts with which we must now become conversant. The following is an attempt to set forth certain key rubrics of this glossary and to place them in pathophysiological perspective.

Threshold Phenomena in Cerebral Ischemic Injury

The recognition that crucial events in the pathogenesis of ischemic brain injury are set into motion at critical thresholds of reduced cerebral blood flow (CBF) constitutes a seminal conceptual advance with broad ramifications (see Hossman [1] for a recent review). In patients undergoing carotid endarterectomy, it was first observed that CBF reductions to approximately one third of normal (from about 0.5 to 0.16 or 0.17 mL/g per minute) led to electroencephalographic flattening (2, 3). Studies in baboons with acute middle cerebral artery (MCA) occlusion substantiated that cortical somatosensory evoked potentials ceased when CBF fell to 0.15 to 0.20 mL/g per minute (4). Microelectrode measurements, however, revealed that this suppression of evoked responses was not caused by altered extracellular \([K^+]\) or \([H^+]\) levels, because massive elevations of extracellular \([K^+]\) were observed only at much lower CBF (approximately 0.06 to 0.10 mL/g per minute) (4). Microelectrode measurements, however, revealed that this suppression of evoked responses was not caused by altered extracellular \([K^+]\) or \([H^+]\) levels, because massive elevations of extracellular \([K^+]\) were observed only at much lower CBF (approximately 0.06 to 0.10 mL/g per minute) (4). These findings thus pointed toward dual thresholds in ischemia: the higher one (approximately 35% of normal CBF) for functional suppression (ie, failure of synaptic transmission), and the lower one (at approximately 15% to 20% of normal CBF) for major cationic dyshomeostasis (ie, failure of energy-requiring ion pump mechanisms) (1, 5).

To the concept of CBF thresholds was added the notion of time dependence (6). By correlating microelectrode measurements of local cortical CBF within foci of MCA occlusion with subsequent histologic analysis in cats, these workers established a curvilinear relationship between intensity and duration of CBF decrements that predicted neuronal injury. Near-total reductions of CBF (as would occur in cardiac arrest with resuscitation) gave rise to neuronal damage after only a few minutes, while somewhat lesser decrements (as would typically occur in thromboembolic ischemic stroke [in which some collateral circulation is commonly present]) could be sustained for longer periods without permanent injury.

The Ischemic Penumbra

Without doubt, the ischemic penumbra has emerged as a concept of central import in our current understanding of focal ischemic lesions in the brain (7, 8). Named by analogy to the half-shaded zone surrounding a solar eclipse (5), the penumbra lies just peripheral to the core zone of a focal ischemic lesion. Ion-selective microelectrode studies of the cortex during experimental MCA occlusion have yielded the most rigorous characterization of the penumbra. In the neocortical region of the ischemic core (having CBF at or below approximately 20% of normal), extracellular \([K^+]\) undergoes rapid steady-state elevations after MCA occlusion, denoting anoxic depolarization—a sign of impending irreversible injury. In contrast, cortical sites peripheral to the core, in which CBF is somewhat higher (approximately 20% to 40% of normal), are electrically silent but do not develop steady-state elevations of \([K^+]\) (7–9).
Thus, the penumbra lies below the CBF threshold for electrocortical silence but above that for massive ionic dyshomeostasis (10).

The various attributes of the ischemic penumbra bear close scrutiny because they are pivotal for grasping the essence of a focal ischemic lesion. They include the following:

1. **The size of the early ischemic penumbra is substantial.** In our experimental studies, in which affected tissue volumes were precisely computed by autoradiographic image-processing strategies (11, 12), the penumbra initially subsumed one half or more of the entire ischemic lesion (Fig 1A).

2. **The penumbra can be defined by its level of CBF,** which lies within a rather narrow range (as noted above, approximately 20% to 40% of normal [9, 11, 13, 14])—just slightly above that of the ischemic core (Fig 1A, D). Because cerebral autoregulation is not maintained in ischemic tissue, CBF and, hence, neural function in the penumbra are precariously dependent on small changes in perfusion pressure (8). As a result, the **penumbra is inherently unstable** and at potential risk of irreversible deterioration.

3. **The penumbra is electrophysiologically dynamic** in that it is the site of recurrent ischemic depolarizations, detectable as transient negative shifts of the cortical direct current (DC) potential (Fig 2) or as transient elevations of $[K^+]_o$ levels. Ischemic depolarizations have, by now, been convincingly documented in ex-
experimental studies (reviewed by Hossmann [15]). Unlike spreading depression, which these waves superficially resemble, ischemic depolarizations arise within cortical zones in which CBF is critically reduced and, hence, unable to increase in response to electrophysiological stimuli. Thus, tissue Po2 (which characteristically increases during spreading depression in the normal brain) declines during ischemic depolarizations (16) (Fig 2). That ischemic depolarizations are deleterious to penumbral tissue has been proved by several studies showing reductions in infarct volume in response to glutamate antagonism at either N-methyl-D-aspartate (NMDA) (17) or non-NMDA (18) receptors, or in response to hypothermia (19), all of which reduce ischemic depolarizations. Conversely, when the number of ischemic DC shifts is doubled by inducing additional depolarizations after MCA occlusion, the total volume of ischemic injury increases (20) (Fig 3).

4. The ischemic penumbra is thus metabolically unstable. Measurements of penumbral tissue high-energy metabolites “freeze-trapped” in relation to ischemic depolarizations after MCA occlusion reveal approximately 50% reduction of cortical adenosine triphosphate (ATP) and phosphocreatine (PCr) levels during reversible waves of depolarization, and complete depletion of these metabolites on terminal anoxic depolarization (21).

5. The ischemic penumbra is the site of severe metabolic stress. This is evident from our studies in which we have applied three-dimensional autoradiographic image-averaging strategies (22, 23) to co-map local brain blood flow (ICBF), local glucose use (ICMRgl), and the “coupling ratio” (ICMRgl/ICBF) in matched series of rats studied in the first hour after MCA occlusion (Fig 1) (11, 12). Despite reduced ICBF, the early penumbra shows a normal or focally elevated glucose metabolic rate. As a consequence, the ICM Rgl/ICBF ratio is severely elevated, denoting heightened glycolytic turnover (likely, anaerobic), markedly in excess of available perfusion. This inappropriate metabolic activity is likely being driven by
the need to synthesize ATP to restore the ionic dy-
shomeostasis induced by penumbral ischemic depo-
larizations (discussed above).

6. The lifespan of the penumbra is therefore limited. In
our laboratory (12), ICMRgl and ICBF measurements
made just 1 hour after a 2-hour period of transient
MCA occlusion reveal already greatly suppressed
ICMRgl and loss of the ICMRgl/ICBF uncoupling ear-
lier observed—observations denoting devitalized tis-
sue. In permanent MCA occlusion, cytoskeletal pro-
teolysis is already advanced in the ischemic core by
2 hours, and in the penumbra by 3 to 4 hours (24). In
sequential positron emission tomographic (PET)
studies of cat MCA occlusion, elevated oxygen ex-
traction fraction (denoting uncoupling of local oxy-
gen metabolism and blood flow), present during the
first 4 hours of MCA occlusion, has disappeared by
18 to 24 hours (25).

7. Thus, the therapeutic window for reperfusion in isch-
emic stroke is quite narrow (26, 27). In awake pri-
mates with local CBF monitoring, MCA occlusion
leads to irreversible damage in loci in which CBF has
fallen below 0.10 to 0.12 mL/g per minute during 2-
to 3-hour MCA occlusion, or below 0.17 to 0.18 mL/g
per minute in permanent MCA occlusion (28). Studies
in cats (6) and rats (29, 30) yield a rather consis-
tent picture: that MCA occlusion of 3 to 4 hours
gives rise to maximal infarction, comparable to that
seen with permanent occlusion (Fig 4). The consen-
sus of these studies would predict that there is a
window of opportunity of at most 3 to 4 hours within
which reperfusion therapy would need to be initiated
to be successful. The results of the recently com-
pleted National Institute of Neurologic Disorders and
Stroke multicenter trial of thrombolysis for hyper-
acute ischemic stroke are consistent with this view:
patients treated within 3 hours with alteplase were
improved on neurologic and outcome measures at 3
months (31). By contrast, a large European trial of
thrombolysis in which most patients were treated
within a 4- to 6-hour interval failed overall to show a
positive effect (32).

In apparent conflict with the results of the
above reports, serial PET studies of patients
with ischemic stroke have suggested in at least
some instances that there are substantial vol-
umes of tissue as late as 17 hours after stroke
onset in which CBF and oxygen extraction frac-
tion are in the penumbral range and which have
cerebral metabolic rate for oxygen (CMRO$_2$)
values above the assumed viability threshold;
chronic-stage PET studies reveal subsequent
metabolic deterioration of these foci (33). Still
other studies have suggested that potentially
metabolically viable tissue in the border area of
ischemia might exist as late as 48 hours after
stroke onset (34). Notwithstanding the therapeu-
tic optimism generated by these individual
observations, these authors’ own data (35) can
be used to show that increased oxygen extrac-
tion fraction observed on PET scans in the 7- to
18-hour period after stroke onset does not, in
fact, predict consistent tissue viability (36). Un-
fortunately, sequential quantitative multitracer
PET studies are logistically extremely difficult to
carry out during the crucial first 4 to 6 hours
after stroke onset, and virtually no large patient
series have been reported to date or are likely to
be in the future. In this author’s opinion, in de-
signing clinical trials of putative neuroprotective
agents, one would be gravely mistaken to as-
sume that consistent metabolically viable tissue
amenable to therapeutic intervention still exists
after 4 to 6 hours.

Brain Temperature: A Key Modulator of
Ischemic Injury

Although experimental studies of cerebral ischemia in animals conducted before 1987
generally monitored and regulated rectal tem-
perature, virtually all of these studies failed to
appreciate that brain temperature can vary in-
dependently of core body temperature during
ischemia, and that even small degrees of brain
temperature alterations crucially affect the out-
come of ischemic insults. These points have
now been clearly established. For example, in
global forebrain ischemic insults typically last-
ing 5 to 20 minutes, the expected extensive
destruction of vulnerable neuronal populations

Fig 4. Data derived from rats subjected to 2-hour proximal
MCA occlusion by insertion of an intraluminal filament. A is a
computer-derived frequency map illustrating the distribution of
histopathologic infarction on hematoxylin-eosin–stained sections
of perfusion-fixed brains after 3-day survival. A consistent con-
fluent zone of cortical and subcortical infarction is apparent. B
is an averaged ICBF autoradiogram obtained at the end of a 2-hour
period of MCA occlusion in this model, thresholded to illustrate
flow in the ischemic core and penumbra. The core plus penumbral
ICBF lesion at 2 hours precisely predicts the eventual distribution
of histopathology (A) (data derived from Ginsberg et al [12]).
in the CA1 sector of hippocampus and in the caudoputamen is markedly reduced (by 75% or more) by just a 2° to 3°C lowering of intraschemic brain temperature (37–39). In focal cerebral ischemia, particularly if temporary (eg, 90- to 120-minute middle cerebral artery occlusion), small degrees of temperature reduction are capable of diminishing the volume of infarction by 50% or more, indeed up to 70% to 80% (40–44), depending on the delay in initiating hypothermia, its duration, and its extent (26). Even mild degrees of intraschemic hypothermia completely suppress the massive release of glutamate into the brain’s extracellular space. Hypothermia also modifies a variety of intracellular processes potentially germane to cerebroprotection.

Interestingly, moderate postischemic hypothermia, initiated quickly after a global insult, appears to protect neurons when only short survival periods are permitted before neuropathologic examination (45), but in contrast to the situation with intraschemic hypothermia of similar degree, this protection is lost when 2-month survival is permitted (46). Nonetheless, by markedly delaying the process of cell death, postischemic hypothermia appears to widen the window of therapeutic opportunity so as to provide the opportunity for synergistic neuroprotection when delayed therapy with an NMDA antagonist (47) or a free-radical spin trap agent (MY-T. Globus, W. D. Dietrich, I. Valdes, S. Kraydieh, M. D. Ginsberg, R. Busto, “The Combination of Postischemic Hypothermia and Delayed PBN Treatment Leads to Chronic Neuropathological Protection after Global Ischemia,” Society of Neuroscience Abstracts 1996;22(part 1):1427) is instituted.

A by-product of the above studies is the realization that even small degrees of brain temperature elevation are markedly deleterious in the setting of brain ischemia or traumatic injury. Thus, raising brain temperature during global ischemia from 37°C to just 39°C has the effect of (a) strikingly augmenting the extent of ischemic injury and extending it to zones not ordinarily vulnerable, (b) accelerating the evolution of pathologic alterations, and (c) producing a marked multifocal breakdown of the blood-brain barrier (48–50). In models of MCA occlusion, mild hyperthermia markedly enlarges infarct volume. Indeed, even when a 3-hour period of moderate hyperthermia is imposed 1 day after a temporary period of focal (51) or global (52) ischemia, the resulting damage becomes far more extensive.

These experimental observations have stimulated the development of clinical protocols to measure brain temperature directly in brain-injured patients (53) and to initiate controlled multicenter clinical trials of moderate hypothermia for the treatment of acute traumatic brain injury. Although a randomized clinical trial of hypothermia in ischemic stroke has yet to be organized, clinicians are now broadly aware of the necessity to avoid temperature elevations assiduously in the acute period after ischemic or traumatic brain injury. Interestingly, the prospect of measuring regional brain temperature noninvasively by diffusion-weighted magnetic resonance (MR) imaging now exists.

The Molecular Biology of Cerebral Ischemia

A particularly exciting dimension of cerebral ischemia research in the 1990s is the growing contribution of molecular biology, to both our understanding of the pathophysiology of ischemic injury and the construction of novel therapeutic approaches. Space constraints permit only representative work to be cited.

Recent observations have confirmed that cerebral ischemia gives rise to widespread alterations of gene regulation and expression. For example, ischemia leads to the rapid expression of immediate-early genes of the c-fos and c-jun families, whose gene products interact to form fos-jun heterodimers that function as the so-called AP-1 transcription factor, regulating the expression of other genes. Focal ischemia triggers the prompt expression of c-fos and c-jun mRNA (54, 55), which peaks during early reperfusion, with 4- to 6-fold increases in AP-1 binding activity (54) (Fig 5). The latter may be suppressed in vivo by the intracerebroventricular administration of antisense c-fos oligodeoxynucleotides (56).

Cerebral ischemia and trauma also induce the expression of heat shock genes—so-called stress genes—in the brain (57). In focal cerebral ischemia, hsp70 mRNA is induced within 4 hours and persists for at least 24 hours. Interestingly, the hsp70 message is only patchily induced within the ischemic core but is markedly induced in neurons of the penumbra at 4 to 24 hours. Correspondingly, the strong expression of hsp70 protein in neurons of the penum-
bra at 24 hours allows it to serve as a reliable anatomic marker of that zone (58).

The study of ischemic mechanisms has been vastly abetted by the use of transgenic and knockout mouse mutants. The challenges imposed by physiological monitoring, blood sampling, and implementation of ischemia models in these tiny animals have been largely surmounted (59). There are several elegant examples of the use of transgenic and knockout mutant mice to establish the relevance of specific stroke mechanisms. For example, studies in transgenic mice with threefold overexpression of the enzyme CuZn superoxide dismutase have convincingly established the role of oxygen radical scavenging in diminishing neural injury after transient focal ischemia (60). In other studies of mutant (knockout) mice that fail to express the neuronal isoform of nitric oxide synthase (NOS), smaller infarcts develop and the mice have less severe neurologic deficits than normal mice (61). In contrast, knockout mice deficient in the endothelial form of NOS have larger infarcts than normal (62). Studies such as these have provided definitive answers to challenging mechanistic questions.

Mechanisms of Cell Death: Apoptosis versus Necrosis

The traditional view is that neurons succumb to ischemia, whether focal or global, by a process of necrosis triggered by oxygen and glucose-substrate depletion. A large and rapidly accruing body of evidence suggests, however, that at least under some circumstances, ischemic neurons might also undergo apoptosis—an active, genetically regulated process of “programmed cell death” resembling that occurring during normal embryonic development and involutorial atrophic processes, and in the course of immune-mediated cell killing (reviewed by Bredesen [66]). (The classic method of inducing apoptosis in cell culture is to withdraw neurotrophic factors.) Morphological hallmarks of apoptosis include early blebbing of the plasma membrane; margination of nuclear chromatin leading to “apoptotic bodies”; and internucleosomal fragmentation of DNA, giving rise to oligonucleosomal DNA fragments of approximately 180 base pairs visible as “ladder-
ing" on electrophoretic gels, and to DNA strand breaks demonstrable by in situ DNA nick-end labeling procedures (67). Mitochondria are structurally normal and inflammatory changes are absent (66).

After 2 hours of reversible focal ischemia (by MCA occlusion) in rats, DNA fragmentation is evident within ½ hour, peaks at 24 to 48 hours, and persists up to 4 weeks, with apoptotic changes evident chiefly at the inner boundary zone of the infarct (68, 69). After permanent MCA occlusion, DNA fragmentation is initially present in the infarct core and later expands in a radial fashion (70). Selective neuronal death exhibits apoptotic features, not only in global and focal ischemia, but also in cerebral trauma, epileptic brain damage, and injury induced by the human immunodeficiency virus–1 envelope protein GP120 (69, 71). These observations carry intriguing therapeutic implications as apoptosis requires active genetic programs and depends on protein synthesis. Exhaustive genetic studies in the nematode C elegans have revealed a panoply of genes, each regulating specific steps of the cell-death program. Homologs of these genes exist in mammalian systems and include bcl-2 (a suppressor), the interleukin 1β-converting enzyme (ICE) family (promotors), and cell-cycle genes such as p53.

The extent to which apoptotic processes are truly important in ischemic neuronal death has yet to be definitively established. For example, apoptotic features often coexist within or near foci of necrosis, and there is contradictory morphological evidence in global ischemia as to whether delayed death of hippocampal CA1 neurons is predominantly necrotic or apoptotic. The apparently rapid disappearance of apoptotic cells from tissue confounds efforts to quantify the extent of their contribution. However, successes in reducing the size of focal cortical infarcts with the protein-synthesis inhibitor cyclohexamide (72) or by viral vector-induced bcl-2 overexpression (73) would argue that apoptosis is indeed important in contributing to ischemic injury. In cell culture, exposure of cortical neurons to short durations or low concentrations of the excitotoxin NMDA or to substances generating low levels of the toxic anion peroxynitrite induces delayed neurotoxicity with predominantly apoptotic features (74). On the basis of such evidence, one can speculate that apoptotic death might be important in less severe or more chronic contexts—for example, in the ischemic penumbra, after short periods of ischemia, in brains chronically deprived of collateral circulation (eg, by multivessel atheromatous occlusive disease), or under conditions of mild but prolonged hypoxia/oligemia.

Imaging of Human Stroke Pathophysiology

The experimental advances reviewed above have been paralleled in recent years by the technological development of astonishing methods of depicting zones of cerebral ischemia at their earliest stages in the human brain by diffusion-weighted and hemodynamically weighted MR imaging. Diffusion-weighted methods are sensitive to the net movement of water, for which diffusion barriers exist in tissue by virtue of its structural constituents and the chemical interactions between water and macromolecules (75). Localizing hyperintensities appear on diffusion-weighted MR images within minutes of the onset of cerebral ischemia, with diffusion declining by 40% to 50% (76, 77). This rapidly appearing diffusion-weighted hyperintensity and the decrease in the apparent diffusion coefficient (ADC) correspond to the time course of decline of tissue high-energy compounds and the consequent failure of the energy-requiring K⁺, Na⁺-ATPase pumps. The latter is the key event that initiates cytotoxic edema (ie, the movement of water and Na⁺ ion from the interstitial to the intracellular compartment).

From a pathophysiologic perspective, the heightened interest in diffusion-weighted imaging stems from the fact that ischemia-induced alterations of water diffusion appear to be a necessary (although not sufficient) antecedent of later-occurring structural changes that signify completed infarction. Thus, the regression of diffusion-weighted hyperintensity can safely be interpreted as evidence of reversibility of an ischemic lesion. Conversely, those factors that contribute to the evolution of an ischemic focus are reflected in diffusion-weighted abnormalities. Notably, ischemic depolarizations (which, as reviewed above, promote the growth of an ischemic infarct) are accompanied by transient increases in hyperintensity on diffusion-weighted images (78). Transient ADC changes propagating bidirectionally have been described within minutes of MCA occlusion in rats (79, 80), consistent with spreading depolarizations.
Promising strategies for metabolic neuroprotection in cerebral ischemia

| Antagonism of excitatory amino acids (84) |
| N-methyl-D-aspartate (NMDA) antagonists (85) |
| Competitive (87) |
| Glycine-site (88) |
| Non-NMDA (AMPA) antagonists (89, 90) |
| Agents affecting non-glutamatergic neurotransmission |
| Adenosine agonists (91) |
| Therapeutic hypothermia (92) |
| Calcium-channel antagonism |
| Voltage-sensitive calcium channel antagonists (93) |
| N-channel blockers (94) |
| Sodium-channel antagonism/blockade of glutamate release (95, 96) |
| Antagonism of free radicals (97) |
| Superoxide dismutase, catalase (98) |
| 21-aminosteroids (99) |
| Spin-trap agents (100) |
| Agents affecting nitric oxide (101) |
| Inhibition of cytoskeletal (spectrin) proteolysis (102) |
| Antagonism of neutrophil activation or binding |
| Anti-CD11b or -CD18 monoclonal antibody (103) |
| Immunosuppressive agents (104) |
| Cytokine receptor antagonists (105) |
| Neurotrophic factors |
| Basis fibroblast growth factor (106) |
| Combinations of neuroproteactants (107) |

* Literature citations are to representative, positive experimental studies or review articles.

The Multiplicity of Ischemia Mechanisms: A Cause for Therapeutic Optimism

That there are multiple potential avenues of neuroprotection in cerebral ischemia should come as no surprise in view of an extensive and ever-widening body of experimental literature that convincingly establishes that ischemic injury can be reduced by targeting several diverse but mutually interactive mechanisms which contribute to its genesis. The Table, which summarizes many of these avenues, is intended merely to provide representative examples of adequately controlled recent studies (largely, of focal cerebral ischemia) from the experimental literature that support therapeutic efficacy.

As is evident from the scientific program of this year’s International Joint Conference on Stroke and Cerebral Circulation (Anaheim, Calif, February 1997) and from a recent review (81), clinical trials are currently in progress for each of the following pharmaceutical classes: anticoagulants (warfarin, heparinoids), thrombolytic agents (urokinase, alteplase), fibrinogen-depleting agents (Ancrod), antiplatelet agents (aspirin, clopidogrel), glutamate receptor or channel blockers (eg, CNS 1102, rema-

cemide), glycine-site antagonists (eg, ACEA 1021), calcium channel blocker (very early use of nimodipine), voltage-gated channel blockers (eg, lubeluzole, riluzole, fosphenytoin), oxygen radical scavengers (high-dose tirilazad), blockers of neutrophil adhesion (anti-ICAM-1), neurotrophic factors (basic fibroblast growth factor), and phospholipid precursor (citicoline).

Adding to the sense of optimism generated by this plethora of experimental and clinical activity in the field of ischemic neuroprotection is the growing realization that there is a commonality of injury mechanisms shared by cerebral ischemia, neural trauma, and even degenerative neurologic disorders. Hence, therapies efficacious for ischemia could ameliorate traumatic brain injury as well (82).

The recognition that ischemic stroke is amenable to therapy if rapidly instituted has given rise to a national “brain attack” initiative, designed to heighten the awareness of physicians, paramedical personnel, and patients alike that acute ischemic stroke must be regarded as a medical emergency requiring very rapid implementation of diagnostic and therapeutic measures (83). Within the next several years, it is expected that positive outcomes will emerge from some of the clinical trials currently in progress; additional therapies will be established for routine clinical application in acute ischemic stroke, and the morbidity of this common condition, once regarded as hopeless, will steadily recede.

References

7. Back T, Nedergaard M, Ginsberg MD. The ischemic penumbra: pathophysiology and relevance of spreading depression-like phenomena. In: Ginsberg MD, Bougousslavsky J, eds. Cerebro-
vascular Disease: Pathophysiology, Diagnosis and Treatment. Cambridge, Mass: Blackwell Scientific (in press)
22. Zhao W, Young TY, Ginsberg MD. Registration and three-dimensional reconstruction of autoradiographic images by the disparity analysis method. IEEE Trans Med Imag 1993;12:782–791
42. Zhang R-L, Chopp M, Chen H, Garcia JH, Zhang ZG. Postischemic (1 hour) hypothermia significantly reduces ischemic cell
damage in rats subjected to 2 hours of middle cerebral artery occlusion. *Stroke* 1993;24:1235–1240

73. Lawrence MS, Ho DY, Sun GH, Steinberg GK, Saposky RM. Overexpression of bcl-2 with herpes simplex virus vectors protects CNS neurons against neurological insults in vitro and in vivo. *J Neurosci* 1996;16:486–496

91. Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB. Neuro-
90. Xue D, Huang Z-G, Barnes K, Lesiuk HJ, Smith KE, Buchan AM.
93. Auer R. Calcium channel antagonists in cerebral ischemia: a
81. Koroshetz WJ, Moskowitz MA. Emerging treatments for stroke in
84. Lipton SA, Rosenberg PA. Excitatory amino acids as a final
83. Camarata PJ, Heros RC, Latchaw RE. ‘Brain attack’: the ratio-
82. McIntosh TK. Novel pharmacologic therapies in the treatment of
89. Gill R. The pharmacology of alpha-amino-3-hydroxy-5-methyl-
87. Perez-Pinzon MA, Maier CM, Yoon EJ, Sun G-H, Giffard RG,
85. Buchan AM. Do NMDA antagonists protect against cerebral isch-
88. Von Lubitz DKJE, Lin RC-S, McKenzie RJ, Devlin TM, McCabe
68. Steinberg GK. Correlation of CGS 19755 neuroprotection against
65. Sharkey J, Butcher SP. Immunophilins mediate the neuropro-
64. Fisher M, Meadows M-E, Do T, et al. Delayed treatment with
63. Zhang ZG, Chopp M, Tang WX, Jiang N, Zhang RL. Postischemic
62. Steinberg GK. Correlation of CGS 19755 neuroprotection against
61. Von Lubitz DKJE, Lin RC-S, McKenzie RJ, Devlin TM, McCabe
60. Von Lubitz DKJE, Lin RC-S, McKenzie RJ, Devlin TM, McCabe
59. Lipton SA, Rosenberg PA. Excitatory amino acids as a final
58. Lipton SA, Rosenberg PA. Excitatory amino acids as a final
57. McIntosh TK. Novel pharmacologic therapies in the treatment of
56. Bo¨r¨oth J, deCrespigny AJ, D’Arceuil H, Moseley ME. MR detec-
55. Ro¨ther J, deCrespigny AJ, D’Arceuil H, Moseley ME. MR detec-
54. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
52. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
51. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
50. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
49. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
48. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
47. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
46. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
45. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
44. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
43. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
42. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
41. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
40. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
39. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
38. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
37. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
36. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
35. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
34. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
33. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
32. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
31. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
30. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
29. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
28. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
27. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
26. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
25. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
24. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
23. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
22. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
21. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
20. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
19. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
18. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
17. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
16. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
15. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
14. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
13. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
12. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
11. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
10. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
9. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
8. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
7. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
6. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
5. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
4. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
3. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
2. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-
1. Buchan AM, Gertler SZ, Li H, et al. A selective N-type Ca²⁺-