Alteration of Cerebral Blood Flow in Patients with Bacterial and Viral Meningoencephalitis

Stefan Merkelbach, Martin Müller, Gisela Huber, and Klaus Schimrigk

PURPOSE: Our purpose was to investigate cerebral blood flow disturbances in patients with bacterial and viral meningoencephalitis.

METHODS: Forty-two patients with acute bacterial and viral meningoencephalitis and 14 control subjects were studied using 99mTc-hexamethylpropyleneamine oxime (HMPAO) single-photon emission computed tomography (SPECT). SPECT images were evaluated semiquantitatively. The results were compared with clinical severity of the meningoencephalitis assessed at the time of the SPECT study with the Hunt and Hess scale, with separately recorded focal clinical signs, and with the Glasgow outcome scale (GOS) after 3 weeks.

RESULTS: Count density values were significantly reduced in patients with bacterial meningoencephalitis as compared with the control subjects. Inhomogeneous tracer accumulation assessed by asymmetry indexes was significantly greater in patients than in the control group. With increasing Hunt and Hess scores, the count density values decreased and the asymmetry indexes increased. Patients with a poor outcome (GOS 1 to 3) had significantly higher asymmetry indexes and lower CDV values than did patients with a good outcome.

CONCLUSION: Global and focal alterations of cerebral perfusion are frequent in bacterial and viral meningoencephalitis and correlate with acute clinical state.

The clinical course of bacterial and viral meningoencephalitis can be accompanied by such complications as brain edema; impairment of CSF resorption leading to hydrocephalus; brain abscesses; cerebrovascular alterations, such as stenoses and arterial occlusions; brain infarctions; and dural sinus thrombosis (1, 2). Vascular complications in bacterial meningoencephalitis have been offered as one possible explanation for the high rate of neurologic sequelae among survivors. Several angiographic studies have revealed stenoses or occlusions of the intracranial vessels in these patients (3–5).

Noninvasive imaging techniques, such as transcranial Doppler sonography, have shown highly elevated mean blood velocities in the basal cerebral arteries (6–8). These findings may be interpreted as vasospasm, and inflammatory thickening of the walls of the basal cerebral vessels by vasculitic changes must be considered a further possible cause of reduction in vessel diameter (9, 10). Transcranial Doppler sonographic studies may, however, only depict alterations in the proximal branches of the cerebral arteries (11). One advantage of noninvasive nuclear imaging methods is that they allow the visualization of disturbances of cerebral blood flow (CBF) caused by changes in the microcirculation (12–14). CBF in bacterial and viral meningoencephalitis has been reported to be reduced globally and regionally as a consequence of either an inflammatory process or its complications (15–17).

We report our experience with the use of quantitative region-of-interest (ROI) technology in the evaluation of CBF in patients with bacterial and viral meningoencephalitis and compare our results with the clinical findings in these patients.

Methods

Patients

Forty-two patients (20 men and 22 women; mean age ± SD, 50 ± 16 years) with the clinical diagnosis of bacterial (n = 15) or viral (n = 27) meningoencephalitis were included in the study. Fourteen healthy volunteers (seven men and seven women; mean age ± SD, 53 ± 20 years) were studied as control subjects. The diagnosis of meningoencephalitis was based on clinical signs and symptoms, including severe headache, stiffness of the neck, disturbed levels of consciousness, fever of more than 38.5°C, and appropriate CSF findings. Smears stained with May-Grünwald-Giemsa were used for differential leucocyte count.

Bacterial meningitis was diagnosed when the CSF exhibited a polymorphonuclear pleocytosis of more than 1000 cells/μL, or a bacterial pathogen was identified by CSF cultures (1, 7). The causative bacterial pathogens were Streptococcus pneumoniae in seven patients, Listeria monocytogenes in one patient,
Regional CBF was evaluated by 99mTc-hexamethylpropyl-eneamine oxime (HMPAO) SPECT. SPECT studies were performed within 1 to 14 days (mean ± SD, 4 ± 3 days) after admission. This period was defined as the acute phase of the infectious disease, because clinical cerebral complications as well as hemodynamic disturbances on transcranial Doppler sonograms are common within this period (6 – 8). Informed consent was obtained from the patients or their guardians. The study was approved by the local institutional ethics committee.

For each SPECT study, data acquisition over 20 minutes was started 5 minutes after intravenous injection of about 370 mBq of 99mTc-HMPAO using a single-headed rotating camera. Tracer activity was measured using a becquerel meter (PTW-Curiementor, Freiburg, Germany). Per patient, 3,342 ± 106 counts were collected for CBF measurement at the infratentorial, thalamic, paraventricular, and supraventricular levels to quantify HMPAO uptake in the frontal, temporal, parietal, and occipital lobes, the cerebellar gray matter, and the temporal white matter (Fig 1). Each ROI on the mask was applied automatically by a computerized system and later adjusted manually. The SPECT analysis was performed by an examiner who was blinded to the clinical data.

The count density value (CDV) was measured for each ROI as counts per pixel. Ratios of all cerebral ROIs with cerebellar reference ROIs were calculated by dividing supratentorial CDV values through the cerebellar CDV value, because cerebellar perfusion seems to show small variations under various pathologic conditions (20). Because cerebellar perfusion may be influenced by cerebral lesions of the contralateral hemisphere owing to crossed cerebellar diaschisis, we used ipsilateral cerebellar ROIs as references (21). A mean CDV was calculated for each patient based on all ROIs and for each ROI in all patients.

According to Tranquart and coworkers (22) indexes of asymmetric perfusion were calculated as ratios of tracer accumulation between paired right (r) and left (l) symmetric ROIs (asymmetry index, AI) as follows:

$$AI = \frac{(CDV_{ROI} - CDV_{ROI})(CDV_{ROI} + CDV_{ROI})}{200}$$

A regional disturbance of CBF was identified when the AI of one pair of ROIs was higher than 10%. The AIs were analyzed in two ways. First, in each patient, the individual mean AI was calculated and, in addition, the number of AIs with a deviation of more than 10% was counted (the number of AIs). Second, in all patients, regional asymmetries were studied by calculating the mean AI for each ROI (regional mean AI).

Statistical Analysis

All values are reported as mean ± SD. Using the Kolmogorov-Smirnov test, we distributed the CDV values and the AI values in patients and control subjects showed normal distribution. CDV, cerebellar CDV ratios, individual mean AI, and regional mean AI of patients with bacterial and viral meningencephalitis were compared with those of the control group by using Student’s t-test. Because of the multiple testing proce-
differences, the Bonferoni-correction was applied. Spearman correlation coefficient was used to analyze the relationship between global and focal disturbances of CBF (evaluated as CBF, individual mean AI, and number of AIs) and Hunt and Hess grading at the time of the investigation. The relationship between mean CDV, individual mean AI, and number of AIs and clinical outcome was analyzed using the Mann-Whitney U-test, in which outcome was classified as poor (GOS score of 1 to 3) or good (GOS score of 4 to 5).

The number of AIs and the individual mean AI were compared with respect to patients with focal cerebral signs (symptomatic) and patients without such signs (asymptomatic) using the \(\chi^2 \)-test.

Results

Visual Impression

The number and extent of cortical deficits were greater in patients with meningocerebralitis than in control subjects. Cortical and subcortical perfusion disturbances with inhomogeneous tracer uptake were more common in patients with bacterial meningocerebralitis than in those with viral meningocerebralitis or in control subjects. Because visual inspection is subjective, we restricted further statistical analysis to the objective quantitative data.

Quantitative Analysis

The volunteers showed supratentorial tracer accumulation with pronounced cortical activity and reduced activity in the subcortical white matter (Table 1). Highest values were noticed in the cerebellum. There were no significant differences in tracer uptake between corresponding ROIs in the left and right hemispheres. Similarly, there were no side-to-side differences between the ratio of each ROI and the ipsilateral cerebellar reference. Values for corresponding ROIs of both hemispheres were summed, with resulting mean values of 0.93 ± 1.09 for the number of AIs and 4.41 ± 3.14 for the individual mean AIs (Table 2).

As in control subjects, HMPAO accumulation in patients with bacterial and viral meningocerebralitis had the highest CDV values in the cerebellar ROIs and the lowest values in the temporo-medial ROIs.

CDV Analysis

The mean CDV was significantly reduced in the bacterial subgroup (\(P \leq .003 \)) as compared with that in control subjects, but it was not significantly decreased in the viral subgroup (Table 1). Similar results were obtained in comparisons of regional differences (Table 1). In the bacterial subgroup, significantly reduced CDV values were observed in all ROIs, even after Bonferoni correction, with slight frontotemporal accentuation. In the viral subgroup, no significant differences were observed relative to the control group for any ROI. CDV ratios based on the cerebellar reference ROIs showed no significant difference between control subjects and patients.

AI Analysis

Twenty of 27 patients with viral meningocerebralitis and 12 of 15 patients with bacterial meningocerebralitis had AIs with a deviation of more than 10% in more than one paired ROI. This was also seen in four of 14 control subjects. The mean number of AIs for all patients with bacterial meningocerebralitis was 3.05 ± 1.98 (for control subjects, the mean was 0.93 ± 1.09; \(P < .001 \)). For patients with viral meningocerebralitis, the mean number of AIs was 2.59 ± 2.03 (\(P < .005 \) versus control subjects). The highest frequency of asymmetric ROIs was observed in the temporal lobes, the lowest in the parietal lobes.

TABLE 1: Count Density Values for Each Region of Interest in Patients with Bacterial and Viral Meningocerebralitis and in Healthy Control Subjects

<table>
<thead>
<tr>
<th>ROI</th>
<th>Control Subjects</th>
<th>Patients with Meningocerebralitis</th>
<th>Bacterial</th>
<th>Viral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6949 ± 1098</td>
<td>5722 ± 905 (.0005)</td>
<td>6582 ± 1696 (.238)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6043 ± 890</td>
<td>4982 ± 743 (.0005)</td>
<td>5707 ± 1434 (.193)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5854 ± 911</td>
<td>4790 ± 755 (.0005)</td>
<td>5675 ± 1461 (.516)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5307 ± 927</td>
<td>4536 ± 749 (.0005)</td>
<td>5270 ± 1537 (.784)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5920 ± 952</td>
<td>5088 ± 852 (.001)</td>
<td>5731 ± 1552 (.495)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5961 ± 924</td>
<td>4865 ± 704 (.0005)</td>
<td>5570 ± 1457 (.242)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5750 ± 831</td>
<td>4847 ± 759 (.0005)</td>
<td>5645 ± 1636 (.697)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4782 ± 909</td>
<td>4129 ± 760 (.003)</td>
<td>4731 ± 1550 (.784)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5785 ± 1144</td>
<td>4960 ± 786 (.001)</td>
<td>5709 ± 1498 (.799)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5562 ± 866</td>
<td>4580 ± 849 (.0005)</td>
<td>5251 ± 1393 (.214)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5625 ± 895</td>
<td>4876 ± 800 (.001)</td>
<td>5512 ± 1356 (.650)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5952 ± 940</td>
<td>5094 ± 826 (.005)</td>
<td>5813 ± 1593 (.619)</td>
<td></td>
</tr>
<tr>
<td>Mean CDV</td>
<td>5782 ± 895</td>
<td>4860 ± 671 (.003)</td>
<td>5600 ± 1495 (.062)</td>
<td></td>
</tr>
</tbody>
</table>

Note.—Values are given as mean ± SD; statistical significance was assessed using Student’s t-test; ROI indicates region of interest; CDV, count density value (measured as counts per ROI).

TABLE 2: Mean Asymmetry Index for Each Region of Interest for Patients with Bacterial and Viral Meningocerebralitis and for Healthy Control Subjects

<table>
<thead>
<tr>
<th>ROI</th>
<th>Regional Mean Asymmetry Index ± SD (P Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Subjects</td>
<td>Patients with Meningocerebralitis</td>
</tr>
<tr>
<td>Bacterial</td>
<td>Viral</td>
</tr>
<tr>
<td>1</td>
<td>3.63 ± 3.01</td>
</tr>
<tr>
<td>2</td>
<td>4.22 ± 4.00</td>
</tr>
<tr>
<td>3</td>
<td>4.27 ± 2.71</td>
</tr>
<tr>
<td>4</td>
<td>4.89 ± 2.37</td>
</tr>
<tr>
<td>5</td>
<td>4.11 ± 3.22</td>
</tr>
<tr>
<td>6</td>
<td>3.87 ± 3.17</td>
</tr>
<tr>
<td>7</td>
<td>5.19 ± 3.07</td>
</tr>
<tr>
<td>8</td>
<td>6.49 ± 4.96</td>
</tr>
<tr>
<td>9</td>
<td>4.39 ± 4.04</td>
</tr>
<tr>
<td>10</td>
<td>3.71 ± 2.30</td>
</tr>
<tr>
<td>11</td>
<td>3.80 ± 2.26</td>
</tr>
<tr>
<td>12</td>
<td>4.44 ± 2.61</td>
</tr>
<tr>
<td>IMAI</td>
<td>4.41 ± 3.14</td>
</tr>
</tbody>
</table>

Note.—All values are reported as mean ± SD; P values are from Student’s t-test; the regional mean asymmetry index is for each paired ROI for all patients. ROI indicates region of interest; IMAI, individual mean asymmetry index.
The individual mean AI was significantly higher in the bacterial and viral subgroups than in the control group (P ≤ .001 for both bacterial and viral subgroups) (Table 2). The highest value for regional asymmetries by means of regional mean AI was found in the frontotemporal areas (ROIs 3, 4, 7, 10, 11) (Fig 1 and Table 2).

Comparison with Clinical Parameters

The mean CDV was lower in patients with higher Hunt and Hess scores than in those with lower scores (r = −.2921; P < .025; Spearman coefficient) (Fig 2A). Additionally, the cerebellar CDV decreased with increasing Hunt and Hess scores (r = −.3154; P < .01). In the patients with higher Hunt and Hess scores, individual mean AIs were higher than in patients with lower Hunt and Hess scores (r = .4387; P < .0005) (Fig 2B). Additionally, the number of AIs was significantly higher in patients with higher Hunt and Hess scores than in patients with lower grades (r = .4368; P < .0005) (Fig 2C).

Patients with focal clinical signs (n = 11) had a significantly higher number of AIs (4.0 ± 2.4) than did patients without focal signs (n = 31; 2.3 ± 1.6; P < .025). The individual mean AI in patients with clinical focal signs (7.7 ± 3.2) was not significantly different from that in patients without focal signs (6.2 ± 1.8).
TABLE 3: Correlation Between SPECT Parameters and Clinical Outcome

<table>
<thead>
<tr>
<th></th>
<th>Good Outcome (GOS 4–5; n = 48)</th>
<th>Poor Outcome (GOS 1–3; n = 8)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAI</td>
<td>1.96 ± 1.50</td>
<td>4.13 ± 2.70</td>
<td>.030</td>
</tr>
<tr>
<td>IMAI</td>
<td>5.90 ± 1.95</td>
<td>8.36 ± 3.62</td>
<td>.043</td>
</tr>
<tr>
<td>Mean CDV</td>
<td>5356 ± 828</td>
<td>4523 ± 815</td>
<td>.034</td>
</tr>
</tbody>
</table>

Note.—NAI indicates the number of asymmetric pairs of ROIs per patient; IMAI, individual mean asymmetry index; CDV, count density value. The Mann-Whitney U-test was used for comparison.

Comparison with Time and Outcome

There was no significant correlation between CDVs, individual mean AI, or number of AIs and the time between admission and SPECT examination. Patients with a poor outcome (GOS 1 to 3) had significant higher individual mean AI values and number of AIs and significant lower mean CDVs than did patients with a good outcome (GOS 4 to 5) (Table 3).

Discussion

Technetium-99m HMPAO is a lipophilic tracer that crosses the blood-brain barrier and remains fixed in cerebral tissue (14). Brain uptake of 99mTc-HMPAO shows a rapid kinetic and prolonged retention followed by nearly unchanged distribution of radioactivity for several hours (13, 23, 24). Therefore, 99mTc-HMPAO SPECT provides tomographic images of cerebral perfusion. Extraction across the blood-brain barrier is about 75% (14). Additionally, some amount of back-diffusion of HMPAO from brain to blood or flow-dependent irregularities may affect evaluation of CBF (20, 24). Evaluation and quantification of CBF with 99mTc-HMPAO SPECT require procedures with correcting algorithms, linearization, and comparison with arterial input curves (20, 24–26). The cerebellum is often used as a reference because of its uniform flow (12). However, a contralateral reduction of cerebellar blood flow (so-called crossed cerebellar diaschisis) is seen in patients with hemispheric cortical or subcortical lesions (21). In case of bihemispheric cerebral alterations of CBF (which can be assumed in a global inflammatory process such as meningoencephalitis) both cerebellar hemispheres may show a decreased CBF (7–9, 15). This observation is supported by our findings that the count rates in the cerebellar ROIs decreased with increasing Hunt and Hess scores similar to the mean CDV. Additionally, the vertebrobasilar arterial system may also be affected by the inflammatory process (9, 27, 28). Thus, quantitative measurements using reference regions (eg, cerebellar or the whole brain tracer uptake) should be interpreted carefully when quantifying CBF with SPECT in patients with meningoencephalitis.

Our results demonstrate that focal and global CBF alterations are common in meningoencephalitis. This is consistent with previous studies using HMPAO SPECT or stable enhanced xenon CT for CBF evaluation (15–17, 29). A global reduction of CBF in children with bacterial meningoencephalitis was reported by investigators using stable enhanced xenon CT (16, 29). Our results, which showed a correlation between CBF and clinical severity as assessed by Hunt and Hess scores, may support the assumption that decreased global count rates reflect globally reduced CBF.

Additionally, there are regional alterations, which can be described as focal hyperperfusion or hypoperfusion. Launes and coworkers (17) as well as Duncan et al (30) reported focal tracer hyperaccumulation in frontal and temporal brain regions in patients with herpes simplex viral encephalitis. The presence of hyperperfusion is supported by the angiographic findings of persistent filling of terminal arteries, local blushes, staining of blood vessels, and hypervascularity (31). In experimental conditions, increased CBF due to hyperemia in the initial phase of bacterial meningoencephalitis has been noticed and may be explained by an increased metabolic turnover as a result of the inflammatory processes (9, 32, 33). In case of an impaired blood-brain barrier, the part of HMPAO that crosses the barrier may be artificially enlarged, simulating a region of focal tracer hyperaccumulation (15, 34).

Focal hypoaccumulation of radiotracer occurs more often in patients with bacterial meningitis and has recently been reported to be associated with clinical symptoms (15). Focal hypoaccumulation may be due to vascular changes in the large basal cerebral arteries as well as in the cerebral microvessels (3, 5, 9, 10, 32). Similar cerebral microvascular changes have been described in patients with varicella zoster meningoencephalitis (35). Using transcranial Doppler sonography, some researchers have noted the frequent occurrence of increased blood velocity in the cerebral arteries during the first week of bacterial meningoencephalitis and, to a lesser degree, in viral meningoencephalitis (6–8, 28).

Apart from cerebral ischemia due to arterial narrowing, cortical or subcortical hypoaccumulation of radiotracer may be caused by a decreased metabolic demand in the condition of neuronal loss, as reported in patients with persistent brain damage due to ischemia (36). As an alternative interpretation, hypoaccumulation may also depend on functional neuronal depression due to loss of excitatory impulses, analogous to the phenomenon of diaschisis (21, 37).

In our study, patients with severe meningoencephalitis as assessed by Hunt and Hess scores had lower CDVs, a higher number of AIs, and a higher individual mean AI than did patients with a less severe condition, indicating that decreased and inhomogeneous CBF might be responsible, at least in part, for the actual clinical state and the outcome of the patients. Our results lead to the supposition that patients with more regional asymmetries of CBF (as assessed by mean number of AIs) or higher values of asymmetry (as assessed by individual mean AI) may incur cerebral ischemia more often than would pa-
patients with a low degree of asymmetry. Although we found a significant correlation between outcome and global and regional CBF alterations, there was also a wide overlap between the two outcome groups, indicating that the present SPECT techniques may not allow outcome prediction for an individual patient.

The widely distributed alterations in tracer uptake as assessed by CDV, number of AIs, individual mean AI, and regional mean AI may be interpreted as impairment of CBF, which is pronounced in bacterial meningitis. Also, the induction of various mediators, such as cytokines, arachidonic acid metabolites, reactive oxygen species, platelet activating factor, and nitric oxide, may be more pronounced in bacterial meningitis (9, 10, 38, 39). Additionally, increased intracranial pressure in the initial phase of meningocoealitis may lead to global impairment of cerebral perfusion.

Conclusion

Radiotracer accumulation was significantly reduced in patients with bacterial meningitis relative to that in control subjects. Inhomogeneous tracer accumulation assessed by asymmetry indexes was significantly more frequent in patients with bacterial and viral meningocoealitis than in the volunteers. Regional and global SPECT alterations were more marked with increasing severity of meningocoealitis.

References

