Why Do Ulcerated Atherosclerotic Carotid Artery Plaques Embolize? A Flow Dynamics Study

Steven G. Imbesi and Charles W. Kerber

PURPOSE: We describe and analyze flow dynamics and pressure relationships in an ulcerated atherosclerotic human carotid bulb.

METHODS: Replicas of an ulcerated atherosclerotic human carotid bulb were created using the lost wax technique. The resulting replicas were placed in a circuit of pulsating non-Newtonian fluid and flows were adjusted to replicate human physiological flow profiles. Common carotid artery total flow volumes of 400, 600, and 800 mL/min were studied. Slipstreams were opacified with isobaric dyes. Images were recorded on 35 mm film and on super VHS video. A pressure recording device was calibrated; data were received from needles placed radially and longitudinally in the common carotid artery, narrowed bulb/ulcer, and internal carotid artery. Multiple pressure recordings were obtained in the replicas.

RESULTS: Measurements of the replica showed a 59% diameter stenosis and an 88% area stenosis of the carotid bulb with a shallow 3.3-mm ulcer. Analysis of flow in the common carotid artery showed undisturbed slipstreams, but as these streams entered the narrowed carotid bulb they crowded together and accelerated significantly. This accelerated jet continued for at least two vessel diameters into the more normal portions of the internal carotid artery, where flow remained disturbed peripherally and often assumed a helical pattern but was nonturbulent. As fluid entered the narrowed bulb, radial pressures decreased. Most important, at peak systole, lower radial pressure with a vortex circulation was found at the ulceration.

CONCLUSION: This combination of events (ie, slowly swirling fluid within the ulcer, allowing platelet aggregates to form, and the intermittent Bernoulli effect, pulling the aggregates into the rapidly flowing blood) may help explain how ulcerated carotid plaques lead to embolic stroke.

Flow dynamics in the carotid artery have been described previously (1–8). However, direct pressure measurements in a narrowed carotid arterial system, as well as the flow dynamics and pressure relationships in ulcerated atherosclerotic plaques, have not been studied extensively. Recently, we obtained a fresh cadaveric specimen of an ulcerated, stenotic carotid bulb and made accurate castings and reproductions of that arterial system. We then studied the flow dynamics and pressure relationships in a replica-based model of the system. The results of those experiments are reported herein.

Methods

We created a casting of an ulcerated atherosclerotic carotid bulb from a fresh human cadaver using the lost wax technique. Details of this process have been described previously (9, 10). Multiple clear elastic silicone replicas made from the original casting were placed in a circuit of pulsatile non-Newtonian fluid (11, 12). A blood pump (model 1421 Harvard apparatus, S Natick, Mass) cycling at one pulse per second provided fluid flow. Flows were adjusted with a Square Wave Electromagnetic Flowmeter (Carolina Medical Electronics; King, NC) to replicate human physiological flow profiles, so that the internal carotid artery had 40% diastolic flow while, during diastole, flow in the external carotid artery fell to zero. We studied common carotid artery flow volumes of 400, 600, and 800 mL/min, representing low-, normal-, and high-flow physiological states, respectively. The proximal internal carotid artery stenosis resulted in 50% of the total flow passing into the internal carotid artery and 50% passing into the external carotid artery. The fluid slipstreams were opacified with isobaric dyes, and images were recorded on 35-mm film and on super VHS video at shutter speeds of 1/1000 second. We then calibrated a pressure recording device (Tektronix #414 Dual Pres-
sure Opt. 21; Beaverton, Ore) in the flowing fluid and synchronized it to the blood pump via an electrocardiograph monitor (Tektronix) to show peak systole (Fig 1).

Twenty-three–gauge needles were attached to the pressure recorder and placed both radially and longitudinally to impinge on different flowing slipstreams. The radial pressure is the pressure perpendicular to the long axis of the vessel and the longitudinal pressure is the pressure parallel to the long axis of the vessel. Radial recordings were made at three locations: the common carotid artery, the internal carotid artery, and the atherosclerotic ulcer. Longitudinal recordings were also taken at the stenosis with the needle tip facing into the flowing fluid (known as a dynamic pressure) and again with the needle tip facing in the direction of the flowing fluid (Fig 2).

**Results**

In this description, the internal carotid artery is considered a posterior structure, the external carotid artery an anterior structure. The arterial replicas reproduced the original dimensions of the cadaveric specimen to within 1%.

**Measurements**

Diameters of the vascular cast were measured through two axes at the following locations: the com-
The common carotid artery measured 7.04 × 7.38 mm; the narrowest portion of the carotid bulb, 2.70 × 2.30 mm; and the internal carotid artery, 5.38 × 5.63 mm (Fig 3). The ulcer was shallow, measuring 4.95 mm long, 2.90 mm wide, and 3.30 mm deep. Using the formula for an ellipse, we found that these values equated to a 59% diameter stenosis of the carotid bulb by North American Symptomatic Carotid Endarterectomy Trial (NASCET) criteria, using the internal carotid artery as a reference, and an 88% area stenosis of the carotid bulb using the common carotid artery as a reference.

Flow

Analysis of flow in the common carotid artery showed undisturbed slipstreams parallel to the vessel side wall. These slipstreams were of generally equal velocity. As slipstreams entered the narrowed bulb, they crowded together and accelerated. Beyond the narrowing, a central high-velocity jet continued for a distance of two to three vessel diameters, mostly along the posterior wall. Flow in the immediate poststenotic segment was disturbed around the periphery of the jet, eddying mostly anteriorly. As the dye streams passed distally into the internal carotid artery, they regained a more normal entry zone profile but also often assumed a helical pattern. Some fluid slipstreams entered the distal opening of the ulcer, swirled along the plaque wall opposite the direction of normal flow, and exited via the proximal opening of the ulcer (Figs 4 and 5).

Pressure

Pressure recordings throughout the cardiac cycle synchronized to peak systole at flow volumes of 400, 600, and 800 mL/min yielded the results in Table 1 for radial pressures and those in Table 2 for longitudinal pressures. The radial pressures were obtained at the common carotid artery, the narrowed bulb/ulcerated plaque, and the internal carotid artery. The longitudinal pressures were measured at the stenosis. As fluid entered the narrowing and accelerated, radial pressures fell, especially during peak systole. The same inverse radial pressure-to-velocity relationships continued for at least two vessel diameters downstream beyond the narrowing, although to a lesser degree. Most important, at peak systole, low radial pressure with a sluggish vortex circulation was found at the ulceration. Measurement of longitudinal pressures showed dependency on flow direction. The pressures increased when the needle tip was facing into the flowing fluid as compared with pressures measured at the same point when the needle tip was facing in the direction of flow. These findings were not apparent at the lower flow volume of 400 mL/min.
but their relationships became obvious at the higher flow volumes of 600 and 800 mL/min.

**Discussion**

Hemodynamics is the study of the movement of blood and of the forces concerned therein (13). Although angiography provides superb anatomic detail of normal and stenotic carotid arterial systems, it does not provide physiological data. Duplex Doppler sonography and magnetic resonance angiography do provide some physiological information, but flow of individual slipstreams and the resultant pressure changes cannot be measured by these techniques. The use of clear elastic silicone vascular replicas from human cadaveric sources provides the means for making high-resolution detailed analyses of individual slipstream flow profiles and also enables direct in vitro analysis of corresponding physiological forces, such as pressures. An understanding of these forces gives us insight into the resultant pathologic processes.

While the total pressure in a system containing flowing fluid is constant, the radial and longitudinal pressures change inversely and proportionally depending on the velocity of the fluid as described by the following equations (14, 15).

\[ A_1v_1 = A_2v_2 \] [equation(Eq) 1] where

- \( A = \) cross-sectional area
- \( v = \) fluid velocity

\[ P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2 \] [Eq 2] where

- \( P = \) radial pressure,
- \( \rho = \) fluid viscosity,
- \( v = \) fluid velocity, and

\[ \frac{1}{2} \rho v^2 = \] longitudinal pressure

Therefore, in a Newtonian system, as arterial cross-sectional area decreases, the fluid velocity increases, the longitudinal pressure increases, and subsequently the radial pressure decreases (eg, if \( A_2 < A_1 \), then \( v_2 > v_1 \) [Eq 1] and if \( v_2 > v_1 \), then \( P_2 < P_1 \) [Eq 2]) (Fig 6).

**TABLE 1: Radial pressures: peak systole/peak diastole**

<table>
<thead>
<tr>
<th>Vessel Segment</th>
<th>CCA</th>
<th>Ulcer</th>
<th>ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 400</td>
<td>26/14</td>
<td>21/10</td>
<td>21/11</td>
</tr>
<tr>
<td>600</td>
<td>43/22</td>
<td>27/16</td>
<td>34/17</td>
</tr>
<tr>
<td>800</td>
<td>52/23</td>
<td>39/16</td>
<td>44/22</td>
</tr>
</tbody>
</table>

Note.—Q indicates flow in mL/min; CCA, common carotid artery; Ulcer, ulcerated atherosclerotic bulb; ICA, internal carotid artery; pressures measured in centimeters of water (cm H₂O).
catheter faces into the flowing fluid, the measurement is called dynamic pressure.

Our observations and interpretations of the data follow. In the common carotid artery, fluid slipstreams were characteristic of the entry zone profile found in humans by Doppler sonography; that is, all velocity vectors were nearly the same except for those near the artery wall’s boundary layer (16). At the site of stenosis, the opacified slipstreams crowded together and accelerated. Although the narrowings were moderate to severe, fluid slipstreams in the poststenotic segment, while highly disturbed, remained nonturbulent but often assumed a helical pattern, especially in the regions of vessel curvature. When the radial pressures measured in the common carotid and internal carotid arteries were used as baselines, pressures measured radially in the high-velocity stenotic segment decreased. Specifically, an inverse relationship of marked radial pressure decrease was found at the stenotic, ulcerated bulb during periods of maximal flow velocity (ie, at peak systole). In addition, vortex or reverse swirling flow was noted within the ulceration. This vortex type of flow has also been observed in vessel side-wall aneurysms (C. W. Kerber, V. Graves, unpublished data). These slipstreams entered the ulcer during diastole and were sucked out of the ulcer during peak systole (Fig 7). Theoretically, this combination of events (slowly swirling fluid allowing platelet aggregates and thrombus to form and the Bernoulli effect sucking the slipstreams and concomitantly pulling aggregates into the adjacent rapidly flowing blood) may help explain how human ulcerated atherosclerotic carotid artery plaques lead to embolic stroke.

We also observed differences in longitudinal pressures depending on the relationship between the direction of the needle’s end–hole and the direction of flow. Therefore, when an end-hole catheter is used for pressure measurement, consideration of these factors may also be warranted.

Acknowledgment

We gratefully acknowledge Erika E. Edwards for her invaluable assistance in preparing the manuscript.

References