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Treatment of Brain Tumors in Children Is
Associated with Abnormal MR Spectroscopic

Ratios in Brain Tissue Remote from the
Tumor Site

Sandra M. Waldrop, Patricia C. Davis, Carol A. Padgett, Marla B. Shapiro, and Robin Morris
PURPOSE: Children who have brain tumors are at risk for a variety of treatment-related
sequelae, including neuropsychological and cognitive impairment, neurologic deficits, and
neuroendocrinologic disturbances. We sought to determine the value of proton MR spectros-
copy in assessing brain tissue remote from the tumor site to ascertain the effects of chemo-
therapy and radiation treatment in these patients.

METHODS: Single-voxel proton MR spectra from 70 patients (111 spectra) and 11 healthy
volunteers (11 spectra) were analyzed. NAA/Cr, NAA/Cho, and Cho/Cr ratios based on peak
areas were obtained from nonneoplastic regions of the frontal lobe. The relationship between
MR spectroscopic ratios and treatment was determined.

RESULTS: NAA-containing ratios were decreased in patients as compared with control
subjects. The presence of gadolinium-based contrast material did not cause significant changes
in the ratios as compared with precontrast data. When chemotherapy was a component of a
child’s treatment protocol, we found a significant decline in NAA/Cr ratios. Patients who
underwent both chemotherapy and radiation therapy showed a trend toward lower NAA-
containing ratios if the chemotherapy was administered before the radiation therapy. Patients
receiving whole-brain radiation had a trend toward lower NAA-containing ratios than did those
who had only focal tumor treatment.

CONCLUSION: In children with brain tumors, MR spectroscopy of brain tissue remote from
the tumor reveals treatment-related biochemical changes.
Children who have brain tumors are at risk for a
variety of treatment-related sequelae, including neu-
ropsychological and cognitive impairment, neurologic
deficits, and neuroendocrinologic disturbances (1–4).
These may result from brain injury associated with
the primary tumor itself, from surgical intervention,

Received November 20, 1996; accepted after revision November
28, 1997.

Supported by the Brain Tumor Foundation for Children, Inc,
Atlanta, Ga; the Emory/Egleston Children’s Research Center, At-
lanta, Ga; General Electric Medical Systems, Milwaukee, Wis; and
a Kirk Dornbush Fellowship (M.B.S.).

Presented in part at the annual meeting of the Society of Mag-
netic Resonance, San Francisco, August 1994; the annual meeting
of the American Society of Neuroradiology, Chicago, April 1995;
and the 7th International Symposium on Pediatric Neuro-Oncol-
ogy, Washington, DC, May 1996.

From the Department of Radiology, Emory University School of
Medicine; the Department of Radiology, Egleston Children’s Hos-
pital at Emory University; and the Department of Psychology,
Georgia State University, Atlanta.

Address reprint requests to Sandra M. Waldrop, PhD, Depart-
ment of Radiology, Emory University Hospital, 1364 Clifton Rd,
NE, Atlanta, GA 30322.

© American Society of Neuroradiology
96
or from the effects of radiation therapy and chemo-
therapy on nontumorous brain tissue (5–8). Among
the better-known adverse effects are those of radia-
tion therapy, whether used alone or in combination
with chemotherapy, with resultant leukoencephalop-
athy, vasculopathy, or tissue necrosis (8–15). The
adverse effects of brain tumor treatment tend to
worsen with time, with tumor relapse, and with mul-
tiple or aggressive therapies. Additionally, these ef-
fects are accentuated in children who are very young
at the time of diagnosis (2).

While CT and MR imaging provide excellent ana-
tomic information, there is a need for noninvasive
physiological measurements that can serve as more
sensitive markers for treatment-related effects on
normal tissue. Proton MR spectroscopy provides bio-
chemical information that can potentially affect treat-
ment planning or prompt early intervention to pre-
vent cognitive impairment.

MR spectroscopy uses MR technology to obtain
additional information that is unavailable from ana-
tomic MR imaging (16, 17). The signals typically stud-
ied with MR spectroscopy include moieties contain-
3
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FIG 1. MR images (2000/270) show voxel placement in sagittal (A ) and axial (B ) planes and on proton MR spectrum (C ) (64 transients)
in a healthy 11-year-old volunteer.
ing N-acetyl aspartate (NAA), a neuronal marker;
choline (Cho), a marker of membrane integrity; cre-
atine (Cr), a bioenergetic metabolite; and lactate, a
marker of anaerobic metabolism (16, 17). Although
experience to date is limited, other investigations
have suggested a role for MR spectroscopy in the
noninvasive assessment of tumor type and malig-
nancy, tissue necrosis, ischemia, demyelination, and
the effects of radiation therapy (18–26).

To investigate the role of MR spectroscopy as a
marker for treatment-related effects, we successfully
obtained 111 spectra from uninvolved brain tissue
remote from the primary tumor site in 70 children
with primary brain tumors, and 11 spectra from sim-
ilar positions in 11 healthy pediatric volunteers. MR
spectroscopic ratios (NAA/Cho, NAA/Cr, and Cho/
Cr) were then compared with clinical parameters
based on treatment protocols.

Methods

Subjects
MR spectroscopy was added to the clinically indicated MR

imaging studies of 81 patients being followed up for primary
brain neoplasms, resulting in 164 available spectra. Fifty-three
MR spectroscopic examinations and 11 patients were excluded
from further study owing to variable voxel placement early in
our experience with MR spectroscopy, failure of automated
MR spectroscopic shimming and water suppression, poor MR
signal-to-noise ratio, or insufficient signal-to-noise and peak
resolution for peak area measurements. Therefore, patient
data from 111 MR spectra (70 patients, ages 2 to 22 years;
mean age, 10.9 6 5.0) and control data from 11 spectra (11
healthy volunteers, ages 7 to 15 years; mean age, 10.4 6 2.9) are
included in this report. In addition to these studies, comparison
pre- and postcontrast spectra were obtained from the same
frontal lobe location in 10 patients to establish the effect of
paramagnetic contrast material on MR spectroscopic data.
Informed consent as required by our institutional human in-
vestigation guidelines was obtained for all patients and volun-
teers. Children with braces, dental implants, preexisting neu-
rologic or genetic conditions unrelated to tumor, insufficient
sedation, or lack of cooperation for MR spectroscopic acqui-
sition were excluded from the study.
MR Spectroscopic Data Acquisition and Processing
Spectra were acquired using the standard head coil on a

1.5-T system equipped with an automated program for single-
voxel MR spectroscopic studies (PROBE/SV: GE Medical Sys-
tems; Milwaukee, WI). Single MR spectroscopic voxels (5 to 8
mm3) containing a mixture of white and gray matter were
located within the right or left frontal lobe remote from the
tumor site at the level of the genu of the corpus callosum as
determined from the midline sagittal scout image. Voxels were
located graphically from an axial plane image (Fig 1). Spectra
were acquired using a point-resolved spectroscopic (PRESS)
sequence with parameters of 2000/270 (TR/TE), 64 or 128
acquisitions, 2048 data points, and a total examination time of
5 to 10 minutes per voxel. The gradient order was changed
from the default order of zxy to yxz to compensate for inhomo-
geneities associated with voxel proximity to the paranasal si-
nuses (27). Baseline shimming of the magnet was performed
approximately every 6 months to correct for excess automated
shimming failures. Localized shimming of the voxel was per-
formed before every examination.

Because paramagnetic contrast material was necessary for
the neuroimaging portion of the study, the MR spectroscopic
examinations in patients were completed within 25 minutes
after administration of the contrast agent. Control subjects did
not receive contrast material. Nineteen patients had additional
spectra taken from the contralateral frontal lobe using identical
MR spectroscopic parameters. Four patients had spectra from
only the left frontal lobe owing to abnormalities in the right
frontal lobe. To better determine the effect of paramagnetic
contrast material on MR spectroscopic data, 10 patients had
additional MR spectra taken before contrast administration.

MR spectroscopic data were processed on a workstation
using Sage software (GE Medical Systems, Milwaukee, Wis),
which included an automated sequence for the processing of
PROBE data as described by Webb et al (28). The automated
processing is designed to correct receiver-phase and phase
errors due to eddy currents. The areas of spectral peaks rep-
resenting NAA, Cho, and Cr were determined by digitizing the
processed spectra. A baseline was estimated and the peaks
were traced on a digitizing pad (Jandel Scientific Software,
Chicago) interfaced to a computer running Sigma Scan (Jan-
del). NAA/Cr, NAA/Cho, and Cho/Cr ratios were calculated
from these peak areas.

Because some patients were examined on multiple occasions
during the course of this study, patients with repeat MR spec-
troscopic measurements without a change in treatment score
were represented by an averaged value in the statistical calcu-
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lations (n 5 21 patients). Patients whose treatment score
changed at the time of follow-up MR spectroscopy (n 5 9)
were represented more than one time in the statistical analysis
that follows. Eight patients are represented by two scores each
and one patient by three scores.

Clinical Data and Ratings
Chart review was completed for tumor type, age at diagno-

sis, tumor location, treatment history, clinical course, and MR
imaging findings. Two experienced investigators who were
blinded to the MR spectroscopic results assigned each child a
consensus treatment score for each MR spectroscopic mea-
surement, with points assigned as follows: presence of a tu-
mor 5 1, surgical resection 5 1, radiation therapy 5 1 per
treatment course, and chemotherapy 5 1 per treatment course.
Control subjects received a score of zero. Because the treat-
ment regimens encountered within this study varied consider-
ably in dose and type of radiation therapy or chemotherapy, a
detailed analysis of the effects of individual protocols of radi-
ation therapy or chemotherapy was not attempted. Two items
related to treatment protocol were examined for effects on MR
spectroscopic ratios: the effect of whole-brain radiation versus
focal tumor radiation therapy alone and the effect of order of
administration of chemotherapy and radiation therapy. Che-
motherapeutic agents represented in our patients’ treatment
regimens included vincristine, etoposide (VP-16), cyclo-
phosphamide, cisplatin, ifosfamide, 5-fluorouracil, and carmus-
tine. Radiation therapy courses were recorded by portal loca-
tion as whole-brain and/or focal tumor therapy and by dose
administered. Three children had only whole-brain treatment
(4000 to 5400 cGy; mean, 4813 6 727), 15 had only focal tumor
portals (4500 to 5400 cGy; mean, 5109 6 249) including one
with an unknown dose, and 30 children had both whole-brain
(2600 to 5040 cGy; mean, 3698 6 589 cGy) and focal tumor
(360 to 2400 cGy; mean, 1544 6 494 cGy) therapy with a total
dose of 4100 to 6720 cGy (mean, 5243 6 526). Seven patients
had radiation therapy at other institutions; thus, complete
treatment details were not available.

Statistical Analysis
Statistical analyses were performed using SAS (SAS Insti-

tute, Cary, NC) and SPSS (SPSS, Inc, Chicago) statistical pro-
grams and included t-tests for independent and paired samples,
Levene’s test for equality of variances, one-way ANOVA, and
Tukey analysis. The relationship was determined between MR
spectroscopic ratios (NAA/Cho, NAA/Cr, and Cho/Cr) and the
following: 1) left versus right frontal lobe voxel location; 2)
presence or absence of paramagnetic contrast administration;
3) treatment score; 4) surgical resection, radiation therapy, or
chemotherapy as components of a treatment protocol; 5)
whole-brain radiation therapy (n 5 3 whole brain and n 5 30
whole brain plus focal tumor) versus focal tumor treatment
alone; 6) relative order of chemotherapy and radiation therapy;
and 7) tumor type. Probability levels of .05 were considered
significant. Mean values are reported with standard deviations.

Results

The types of brain tumors found in the children in
this study included primitive neuroectodermal tumor
(PNET, n 5 23), low-grade astrocytoma (n 5 31),
malignant astrocytoma or glioblastoma multiforme
(n 5 3), germ cell or germinoma (n 5 4), craniophar-
yngioma (n 5 2), ependymoma (n 5 5), malignant
melanoma (n 5 1), and hemangiopericytoma (n 5 1).
Left-Right Frontal Lobe MR
Spectroscopic Comparisons

MR spectroscopic measurements were taken from
both the right and left frontal lobe in 27 subjects
(eight control subjects, 19 patients). None of the ra-
tios had significant mean paired differences. The in-
dividual measurements for left versus right in a pair
showed significant correlations for NAA/Cho (P ,
.001) and Cho/Cr (P , .05).

Effect of Contrast Material on MR
Spectroscopic Ratios

A comparison of MR spectroscopic ratios obtained
from matched voxels before and after administration
of paramagnetic contrast agent is shown in Table 1.
The effect of contrast material on the MR spectro-
scopic ratios was not significant.

Relationship between MR Spectroscopy and
Brain Tumor Therapy

Examples of MR spectra for a control subject (rat-
ing of 0) and a patient with a treatment score of 5 are
shown in Figures 1 and 2, respectively. Mean MR
spectroscopic ratios for control subjects and patients
are charted in Table 2. The NAA/Cho and NAA/Cr
ratios are significantly decreased in patients versus
control subjects. Patients subdivided by treatment
score showed no statistically significant differences in
MR spectroscopic ratios among groups; thus, no cu-
mulative effect of multiple treatments was demon-
strated. Treatment groups 1, 5, 6, and 7 were too
small for statistical comparisons. Treatment group 4
was statistically different from the control group in
the NAA/Cr ratio (Table 2).

Because most of the children were being treated
with multiple regimens as part of a protocol, we at-
tempted to dissect the synergistic effects of the com-
bination of therapies (Table 3). MR spectroscopic
ratios were grouped to show the effect of a particular
treatment method within a treatment protocol, the
effect of whole-brain radiation versus irradiation of
only the tumor, and the effect of chemotherapy be-
fore radiation therapy.

Children who received chemotherapy as part of
their overall treatment protocol had significantly
lower NAA/Cr ratios than did patients not receiving
chemotherapy (Table 3). The average age of the chil-
dren receiving chemotherapy and radiation therapy
was close to the average for the study, 10.9 years;
thus, MR spectroscopic changes with age were not
considered as factors in the MR spectroscopic data
analysis (Table 3).

TABLE 1: Comparison of MR spectroscopic values obtained before
and after administration of contrast material in 10 patients

Contrast
Administration

NAA/Cr NAA/Cho Cho/Cr

Before 2.39 6 0.22 1.82 6 0.33 1.34 6 0.25
After 2.60 6 0.45 1.99 6 0.15 1.31 6 0.26
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FIG 2. MR study in 7-year-old boy with pineoblastoma (A ) whose treatment included surgical debulking, chemotherapy, and cranio-
spinal radiation. Five years later, the primary tumor recurred coincident with leptomeningeal dissemination (B ). MR spectroscopy at that
time (C ) revealed the following ratios: NAA/Cho (1.70), NAA/Cr (2.42), and Cho/Cr (1.42). Although the patient responded to additional
chemotherapy, with disappearance of MR evidence of leptomeningeal seeding and reduction in the size of the primary tumor (D and E ),
his MR spectrum (F ) worsened, with a decrease in NAA/Cho (1.56) and NAA/Cr (2.11) ratios.
Children who received chemotherapy before radi-
ation therapy had a trend toward lower NAA/Cr and
NAA/Cho ratios than seen in children receiving radi-
ation therapy only or radiation before chemotherapy
(Table 3). Additionally, NAA/Cr and NAA/Cho ra-
tios in the chemotherapy-first group were significantly
lower (P , .05) than those of the control subjects.

As expected, ratios from children whose therapy
included whole-brain radiation showed a trend to-
ward lower NAA/Cr and NAA/Cho values as com-
pared with children treated with focal tumor radiation
therapy (Table 3). Children having whole-brain radi-
ation therapy also had NAA/Cr and NAA/Cho ratios
significantly lower than those of control subjects (Ta-
ble 3). There was a significant linear relationship
between whole-brain radiation dose and NAA/Cr
(r 5 2.67, P , .05) in the 11 patients who did not
have chemotherapy (Fig 3A). In patients who had
both whole-brain radiation and chemotherapy (n 5
22), there was no such linear trend (r 5 .24) (Fig 3B).
Treatment via surgical resection had no significant
effect on the ratios (Table 3).
Relationship between MR Spectroscopy and
Tumor Type

A comparison of MR spectroscopic values by tu-
mor type showed children with PNET to have
NAA/Cr values significantly lower than those of con-
trol subjects (P , .05). Only the PNET, low-grade
astrocytoma, and ependymoma groups were large
enough for comparison (Table 4).

Discussion
Proton MR spectroscopy has proved helpful for

studying brain tumor metabolism and for distinguish-
ing tumor recurrence from radiation necrosis (21–24).
Our study shows that single-voxel MR spectroscopy
can be used successfully as an adjunct to MR imaging
in the examination of treatment effects on uninvolved
brain in children with primary brain tumors. In this
study, MR spectroscopic ratios were obtained from a
frontal lobe voxel that contained both white and gray
matter. The voxel location was selected to include a
substantial component of white matter, owing to the
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known adverse effects of radiation and chemotherapy
on white matter. Because we were studying a pediat-
ric population, we expected a disproportionate num-
ber of primary tumors to be located in the posterior
fossa. Our expectation was that treatment effects on
nontumorous brain tissue could best be studied by
using a voxel as anatomically distant from the primary
tumor site as possible. Finally, since young children
were included in the study, the larger size of the
frontal lobe and ease of voxel positioning in younger
children were advantageous. To offset the adverse
effects of magnetic susceptibility artifacts from the
paranasal sinuses on frontal lobe MR spectroscopic
data, the gradient order was altered as described by
Ernst and Chang (27).

The variability in left versus right frontal lobe MR
spectroscopic ratios in this study was 20% (SD/
mean 3 100), well within the range of 18% to 38%
variability that has been reported in other clinical MR
spectroscopic studies (23, 37) and less than the frontal
lobe variability recently reported by Jayasundar and
Raghunathan (29). Although multisite automated
single-voxel MR spectroscopic data from healthy
adult volunteers have shown lower variability (10%)
in MR spectroscopic ratios (28), to our knowledge
this has not been achieved in patient studies. Factors
affecting variability may include precision of voxel
placement, magnetic susceptibility artifacts from the
adjacent paranasal sinuses, subject motion, biological
variation, and disease state (for patients). Our study
indicates that owing to the variability of MR spectro-
scopic measurements, MR spectroscopic values are
most useful as markers of treatment-related effects
across a group of patients in whom multiple and
longitudinal MR spectroscopic measurements are
available. Single-patient or individual MR spectro-
scopic measurements should be used only with cau-
tion in conjunction with other clinical and imaging
parameters as markers of treatment-associated ef-
fects in a given patient.

MR spectroscopic acquisitions using a long TE
(270 milliseconds) were selected to maximize depic-
tion of NAA, Cr, Cho, and lactate spectral peaks.

TABLE 2: Mean MR spectroscopic ratios for all control subjects and
treatment scores

No. NAA/Cr NAA/Cho Cho/Cr

Control subjects 11 2.77 6 0.59 2.10 6 0.43 1.34 6 0.26
Patients 80 2.31 6 0.47* 1.80 6 0.37* 1.31 6 0.25
Treatment score

1 5 2.24 6 0.37 1.70 6 0.24 1.33 6 0.26
2 24 2.43 6 0.60 1.80 6 0.36 1.36 6 0.25
3 24 2.36 6 0.48 1.83 6 0.44 1.35 6 0.30
4 18 2.13 6 0.35† 1.75 6 0.30 1.23 6 0.18
5 6 2.28 6 0.24 1.80 6 0.39 1.29 6 0.18
6 2 2.25 6 0.25 2.07 6 0.81 1.06 6 0.20
7 1 2.55 1.88 1.36

* Ratios were significantly lower for all patients than for control
subjects (t-test, P , .05).

† NAA/Cr ratios were significantly lower in these patients than in
control subjects (Tukey analysis, P , .05).
Brain tumor therapy has been associated with tissue
changes resulting from ischemia, ischemic demyelina-
tion, and neuronal loss. Thus, we hoped that these
would be apparent in the MR spectroscopic ratio
changes.

Most studies of MR spectroscopy in tumor assess-
ment use spectral data obtained from the same pa-
tient’s nontumorous brain, contralateral or adjacent
to the tumor site, for the normal comparison. Our
study shows that there are measurable MR spectro-
scopic ratio differences in nontumorous brain tissue
remote from the tumor site, possibly invalidating the
assumption that spectra obtained from nontumorous
brain parenchyma are “normal.” Instead, it is likely
that MR spectroscopic measurements from untreated
brain that are acquired before tumor therapy treat-
ment are more accurate for use as control or baseline
values.

As expected, MR spectroscopic ratios from nontu-
morous brain tissue grouped by primary tumor type
revealed few tumor-specific findings. The small size
of many of the tumor groups prevented us from fur-
ther analysis of this parameter.

Because we identified treatment-specific decreases
in both NAA/Cho and NAA/Cr (Table 3) in the
patient subgroups, our findings suggest that NAA is
the major metabolite detectable by MR spectroscopy
in nontumorous brain tissue affected by brain tumor
therapy. Although NAA is considered to be a strong
neuronal marker, its presence has been confirmed in

TABLE 3: Effect of treatment methods on MR spectroscopic ratios

Treatment
No. of

Patients
NAA/Cr NAA/Cho Cho/Cr

Chemotherapy
No 48 2.42 6 0.51 1.82 6 0.35 1.36 6 0.25
Yes 32 2.16 6 0.35* 1.78 6 0.41 1.25 6 0.24

Chemotherapy only 4 2.12 6 0.32 1.82 6 0.31 1.18 6 0.32
Chemotherapy then

radiation therapy†
18 2.13 6 0.34‡ 1.65 6 0.32‡ 1.33 6 0.25

Focal 2 2.33 6 0.31 1.89 6 0.41 1.24 6 0.11
Whole, whole 1

focal
14 2.07 6 0.32 1.59 6 0.33 1.34 6 0.27

Radiation therapy
then
chemotherapy†

10 2.28 6 0.33 2.01 6 0.44 1.14 6 0.15

Focal 2 2.20 6 0.37 2.19 6 0.24 1.00 6 0.06
Whole, whole 1

focal
7 2.23 6 0.31 1.86 6 0.42 1.20 6 0.15

Radiation therapy
No 26 2.35 6 0.60 1.77 6 0.34 1.33 6 0.28
Yes† 54 2.30 6 0.40 1.82 6 0.39 1.30 6 0.24
Focal 15 2.48 6 0.45 1.98 6 0.36 1.30 6 0.29
Whole brain 33 2.19 6 0.35‡ 1.71 6 0.37‡ 1.31 6 0.23

Surgical resection
No 17 2.27 6 0.41 1.74 6 0.43 1.35 6 0.28
Yes 63 2.33 6 0.49 1.82 6 0.36 1.30 6 0.24

* All averaged treatment scores were significantly different (t-test,
P , .001) when comparing the presence or absence of a treatment
method.

† Details of radiation therapy portal and dose were not available for
all children.

‡ Significantly different from control subjects (Tukey, P , .05).
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FIG 3. Graphs show the relationship between NAA/Cr and whole-brain radiation in patients treated with radiation only (r 5 2.67, P ,
.05, n 5 11 patients) (A ) and in those treated with radiation and chemotherapy (r 5 .24, n 5 22 patients) (B ).
a variety of neural cells, within axons in both central
and peripheral areas, and in nonneuronal as well as
neuronal components in both white and gray matter
(23, 30–32). Tedeschi et al (33) found larger NAA
signals from the centrum semiovale than from cortical
or thalamic gray matter, perhaps because of contri-
butions from other N-acetyl compounds within my-
elinated tissue to the NAA spectral peak. In vitro
identification of NAA was reported by Urenjak et al
(32), with the unexpected finding of large amounts of
NAA in oligodendrocyte type 2 astrocyte progenitor
cells. Their data suggested that individual cell types
showed characteristic patterns detectable by proton
MR spectroscopy and that these patterns could aid in
identifying tumor types.

NAA may play a variety of metabolic roles associ-
ated with neuronal protein synthesis, myelination, or
brain neurotransmitter activity (30). A decrease in
NAA has been linked to loss of neuronal activity in
demyelinating disease that may precede detectable
signal intensity changes on MR images (34). Reduced
NAA has also been described in response to global
hypoxic-ischemic injury that is poorly characterized
by MR imaging in children who have nearly drowned
(16). Thus, the decrease in NAA-containing ratios
identified in our frontal lobe voxels could reflect sub-
tle damage.

TABLE 4: MR spectroscopic ratios for each tumor type

Tumor Type
No. of

Patients
NAA/Cr NAA/Cho Cho/Cr

Control subjects 11 2.77 6 0.59 2.10 6 0.43 1.34 6 0.26
Primitive

neuroectodermal
tumor

28 2.22 6 0.36* 1.80 6 0.44 1.29 6 0.27

Low grade astrocytoma 33 2.43 6 0.55 1.86 6 0.32 1.32 6 0.22
Malignant astrocytoma 3 2.22 6 0.47 1.66 6 0.46 1.38 6 0.37
Ependymoma 8 2.08 6 0.56 1.67 6 0.41 1.24 6 0.29
Germ cell 4 2.41 6 0.32 1.80 6 0.16 1.35 6 0.19
Craniopharyngioma 2 2.50 6 0.28 1.49 6 0.17 1.68 6 0.00
Other 2 2.30 6 0.14 1.86 6 0.25 1.25 6 0.24

* NAA/Cr ratios were significantly lower in these patients than in
control subjects (Tukey analysis, P # .05).
The Cr peaks in a spectrum are composed of cre-
atine and phosphocreatine. Cr is about 20% higher in
concentration in gray matter than in white matter,
whereas in white matter, Cho peaks are only slightly
higher than in gray matter (24, 31). Ross et al (24)
found that the most apparent gray-white matter MR
spectroscopic difference is the higher Cho/Cr ratio in
gray matter, 0.83 versus 0.59 in white matter. Since in
vivo MR spectroscopic studies are limited by use of
relatively large voxels that include both gray and
white matter, more studies may be needed to further
clarify the contribution of Cr and Cho to MR spec-
troscopic ratios. Cr is reported to be diminished in
hypoxia, stroke, tumor, and in young infants, but also
varies in response to a variety of systemic metabolic
states related to hepatic and renal metabolism (24).

The Cho peak that is detectable at MR spectros-
copy is composed of glycerolphosphorylcholine, phos-
phorylcholine, and choline (24). Increases in Cho
have been associated with disease conditions involv-
ing cellular destruction with loss of membrane and/or
myelin integrity (24) and with brain tumors in which
increased membrane synthesis and cellularity are
present (35). Phosphatidylcholine in intact mem-
branes and myelinated tissues probably does not con-
tribute to the Cho MR spectroscopic signal (24).
Elevated Cho and lactate have been described in
areas of active demyelination, although the primary
effect of demyelination is reflected in diminished
NAA related to neuronal and axonal injury (24).
Radiation effects include loss of NAA and increase in
Cho (24).

Lactate is not generally detectable in normal brain
tissue by MR spectroscopy when using a small voxel
size and a minimum number of transients. Lactate
peaks are visible in MR spectra of tumor cysts, ne-
crotic tissues, secondary nonneuronal tumors, and in
a variety of hypoxic events (24). Although it was
anticipated that we would encounter MR spectro-
scopic evidence of lactate, the complete absence of
lactate spectral peaks from nontumorous brain tissue
in this study was not entirely surprising. Lactate clears
rapidly from well-perfused tissue, such as nontumor-
ous brain. Because our voxel position was intention-
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ally selected to avoid proximity to a primary tumor
site, tumor-associated lactate was avoided. None of
the children in this study had clinical or radiologic
evidence of overt or focal radiation necrosis; there-
fore, a lactate spectral peak related to radiation ne-
crosis was not identified. Finally, although increased
lactate has been described in the setting of acute and
subacute cerebral infarction, none of the children
experienced frontal lobe infarction either in associa-
tion with radiation or other vascular disease in the
area of voxel placement (36).

We anticipated at the outset that the primary MR
spectroscopic relationship would reflect tissue isch-
emia and/or demyelination associated with radiation
therapy and/or chemotherapy. Szigety et al (37) re-
ported a comparative study of 31P MR spectroscopy
(13 patients) and proton MR spectroscopy (10 pa-
tients) in radiated nontumorous adult human brain
tissue adjacent to a region of neoplasia and found no
detectable differences in phosphorus in the radiated
tissue. Proton spectroscopy, however, revealed meta-
bolic abnormalities that were most noteworthy in
brain regions that received the highest doses of radi-
ation. Because both Cr/Cho and NAA/Cho ratios
decreased after radiation therapy, these authors pos-
tulated that the primary effect on radiated nontumor-
ous brain tissue was a release of membrane-bound
Cho related to membrane lipid breakdown at a cel-
lular level, although it was recognized that a decrease
in NAA could be contributory to the alterations in the
MR spectroscopic ratio. In another study of radiation
effects on nontumorous brain tissue, Usenius et al
(38) reported quantitative proton MR spectroscopic
findings from tissue adjacent to tumor sites in eight
adults who had undergone radiation therapy. By using
brain water concentration as an internal reference,
these investigators found it apparent that the primary
metabolic abnormality was a decrease in NAA, with
relative stability of Cho and Cr values. Furthermore,
Yousem et al (25) reported a reduction in NAA/Cho
and NAA/Cr in brains of irradiated cats from tissue
that was normal in intensity at MR imaging. The voxel
position in our study was more remote from primary
tumor sites than in the above studies and the brain
tissue evaluated was more normal in intensity at MR
imaging. The fact that the MR spectroscopic findings
of declining NAA-containing ratios were greater for
whole-brain radiation than for irradiation of the tu-
mor only (Table 3) in our study suggests that radia-
tion therapy, although not the sole explanation, may
contribute to the MR spectroscopic ratio changes
found in our population.

We found significantly lower NAA/Cr ratios in chil-
dren who received chemotherapy as part of their
treatment than in those who did not. Although most
of the patients receiving chemotherapy also received
radiation, patients administered chemotherapy be-
fore radiation therapy had a trend toward lower
NAA/Cr and NAA/Cho (in particular), which may
reflect synergistic or sensitizing effects of some che-
motherapeutic agents. Moreover, although the group
is small, those patients receiving only chemotherapy
also had reduced NAA/Cr ratios without the lowering
in NAA/Cho seen with radiation. The modulating
effect of chemotherapy can also be appreciated by
comparing NAA/Cr values with radiation dose. When
chemotherapy was absent, there was a linear decrease
in NAA/Cr with increasing dose (Fig 3A). When
chemotherapy was present, the NAA/Cr values were
decreased without regard to radiation dose (Fig 3B).

In this study, the MR spectroscopic data were ac-
quired after all clinically relevant imaging sequences
were completed. As a result, all patient MR spectro-
scopic data were acquired after administration of a
paramagnetic contrast agent. While we would have
preferred to acquire the MR spectroscopic data be-
fore contrast administration, doing so might have
jeopardized the ability to complete the clinical study
without the use of additional sedation. And although
contrast material might affect MR spectroscopic ra-
tios from tumor sites, our comparison of pre- and
postcontrast patient data did not show a significant
difference in MR spectroscopic ratios from nontu-
morous brain voxels.

For future investigations of associated effects of
tumor treatment, the techniques of short-echo single-
voxel MR spectroscopy and chemical shift imaging
(CSI) appear promising. Short-echo MR spectro-
scopic studies offer a way to map more cerebral me-
tabolites, such as amino acids, that may be more
sensitive markers for the effects of brain tumor ther-
apy. CSI offers a comparative analysis of metabolite
peaks or metabolite mapping across a relatively large
tissue volume (39). CSI techniques thus could be used
to confirm single-voxel findings as treatment-associ-
ated effects. With further experience and larger pa-
tient populations, more subtle effects of individual
treatment regimens and the relationship between
treatment, MR spectroscopic findings, and clinical
and neuropsychological effects could be elucidated.

Conclusions
Our findings indicate that the effects of brain tu-

mor therapy are associated with measurable changes
in NAA/Cho and NAA/Cr ratios from nontumorous
brain tissue in children with primary brain neoplasms
as compared with healthy children. The most consis-
tent finding was a decrease in NAA/Cr. Chemother-
apy as one component of a multitreatment protocol
was associated with significant reduction in the
NAA/Cr ratio. There was a trend for patients treated
with chemotherapy before radiation therapy to have
lower NAA/Cr and NAA/Cho ratios, suggesting that
chemotherapy may alter the subsequent biochemical
effects of radiation therapy. Although we anticipated
a strong relationship between the MR spectroscopic
ratios and the use of radiation therapy, we instead
found a trend toward lower NAA/Cr and NAA/Cho
ratios in children treated with whole-brain radiation
relative to those treated only with focal tumor therapy
and to those not treated with radiation therapy. Al-
though further experience is needed, our study sug-
gests a potential role for MR spectroscopy in moni-
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toring the effects of treatment on nontumorous brain
tissue.
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