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Whole-brain Functional MR Imaging Activation from a
Finger-tapping Task Examined with Independent

Component Analysis

Chad H. Moritz, Victor M. Haughton, Dietmar Cordes, Michelle Quigley, and M. Elizabeth Meyerand

BACKGROUND AND PURPOSE: Independent component analysis (ICA), unlike other meth-
ods for processing functional MR (fMR) imaging data, requires no a priori assumptions about
the hemodynamic response to the task. The purpose of this study was to analyze the temporal
characteristics and the spatial mapping of the independent components identified by ICA when
the subject performs a finger-tapping task.

METHODS: Ten healthy subjects performed variations of the finger-tapping task conven-
tionally used to map the sensorimotor cortex. The scan data were processed with ICA, and the
temporal configuration of the components and their spatial localizations were studied. The
locations with activation were tabulated and compared with locations known to be involved in
the organization of motor functions in the brain.

RESULTS: Components were identified that correlated to varying degrees with the conven-
tional boxcar reference function. One or more of these components mapped to the sensorimotor
cortex, supplementary motor area (SMA), putamen, and thalamus. By means of ICA compo-
nents, sensorimotor cortex, supplementary motor area, and superior cerebellar activation were
identified bilaterally in 100% of the subjects; thalamus activation was contralateral to the active
hand in 80%; and putamen activation was contralateral to the active hand in 60%.

CONCLUSION: ICA processing of multislice fMR imaging data acquired during finger tap-
ping identifies the sensorimotor cortex, SMA, cerebellar, putamen, and thalamic activation.
ICA appears to be a method that provides information on both the temporal and spatial
characteristics of activation. Multiple task-related components can be identified by ICA, and
specific activation maps can be derived from each separate component.

Functional MR (fMR) imaging activation is iden-
tified regularly within the sensorimotor cortex and
supplementary motor area (SMA) by means of fin-
ger-tapping paradigms that employ repeated on-off
task cycles (1–3). Analysis is conventionally per-
formed by cross-correlation to a boxcar reference
function that represents the expected hemodynamic
response (4). The boxcar function is typically con-
figured such that it has a unit magnitude throughout
the performance of the task and zero amplitude
during the periods of rest. The sensorimotor cortex
is consistently identified when the reference func-
tion models a hemodynamic response sustained
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throughout the task. Other areas in the brain known
to participate in motor functions can be identified
when the reference function is modified. For ex-
ample, activation can be identified in the putamen
when the reference function models a hemodynam-
ic response of short duration (5). The amount and
location of activation detected by means of con-
ventional cross-correlation methods depends sig-
nificantly on the reference function chosen.

Independent component analysis (ICA) is a blind
source–separation method applied recently to fMR
imaging data (6–8). The method derives statistical-
ly independent components that collectively esti-
mate the observed changes of signal intensities
within the data set. It does not require a reference
function. In principle, it identifies the hemodynam-
ic responses within the data, regardless of their in-
terval, duration, or magnitude. Therefore, we at-
tempted to apply ICA to whole-brain fMR imaging
data sets acquired during the performance of finger
tapping, and to compare the activation patterns
identified by ICA with those observed convention-
ally by correlation with reference functions.
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FIG 1. fMR imaging map processed with
ICA in one subject who performed bilateral
finger tapping. Activation is shown in the left
sensorimotor cortex, SMA, thalamus, puta-
men, superior sylvian region, and right su-
perior cerebellum. The component illustrat-
ed correlated temporally with a reference
function for right-hand finger tapping (Note:
all figures are radiologic orientation).

FIG 2. fMR imaging spatial map pro-
cessed with ICA, in the same subject as in
Figure 1, illustrating another component.
Activation is shown in the right sensori-
motor cortex, SMA, thalamus, putamen,
superior sylvian region, and left superior
cerebellum. This component had a high
correlation coefficient with a reference
function for left-hand finger tapping.

Methods
Ten right-handed volunteers with no history of neurologic

disease were recruited, and informed consent was obtained.
Functional imaging was performed on a 1.5-T Signa Horizon
scanner (GE, Milwaukee, WI) equipped with fast gradients for
multislice echo-planar imaging sequences. A prototype, high-
resolution quadrature radio-frequency head coil was used.
Standard spin-echo and gradient-echo 3D volume anatomic im-
ages were acquired. For fMR imaging data, 18 slices were
obtained in the coronal plane with the following technical pa-
rameters: single-shot echo-planar pulse sequence (2000/40
[TR/TE]); 64 3 64 matrix; 24 cm field of view; flip angle,
908; and 7-mm slice thickness with 2-mm gap. Prior to the
fMR scan, shimming was optimized with an automated gra-

dient–shim sequence on a manually selected 3D brain-volume
region of interest.

Eight of the volunteers performed an alternating hand- and
finger-tapping task, of four regular 20-second cycles, which
has been described previously (5). The other two volunteers
performed an alternating hand- and finger-tapping task with
asymmetrically timed cycles of finger tapping for right, left,
both hands, and rest periods. During this version of the task,
the duration of finger tapping epochs within each cycle was
randomly varied between 16 to 24 seconds (8–12 TRs), with
four cycles each of either right-, left-, or both-hand(s) activa-
tion. This asymmetrical task paradigm was implemented as a
test of the derivative sensitivity of ICA to varying task
components.
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FIG 3. Relative signal-versus-time plots for sample ICA components from the data sets of subjects who performed cycles of rest, right-,
and left-hand finger tapping. Lower dashed lines indicate task timing. One component labeled ‘‘right hand’’ has greatest relative signal
during the right-hand task performance One component, labeled ‘‘left hand,’’ shows maximal increase during left-hand finger tapping
and a reduced increase during right-hand finger tapping. Note the components plateau about 5 seconds after the initiation of the task.

Echo-planar imaging raw data were filtered in the spatial
frequency domain by use of a Hamming low-pass filter to in-
crease the signal-to-noise ratio (9), then reconstructed into in-
dividual slice-location time courses. For the fMR images, sig-
nal intensity was plotted as a function of time for each voxel
and a three-point Hanning filter was applied for temporal
smoothing of the signal. Signal intensities in each image were
time corrected by a shift of the smoothing filter corresponding
to the temporal offset within the 2-second TR. A minimum
signal threshold was applied to exclude voxels outside the
brain. To minimize pulsation effects from CSF, all voxels with
signal intensities exceeding the average of brain tissue by 2
standard deviations in the first image of the echo-planar series
were excluded from further analysis. A signal-to-noise map
was obtained of the remaining voxels, and voxels with a sig-
nal-to noise ratio 2 standard deviations below average were
excluded to eliminate large blood vessels. Each of the resulting
matrices from the multislice data sets had dimensions of 130
(or 176 for the asymmetrical task paradigm) 3 (approximately)
9000.

ICA, as formulated by Comon (10), was used. Blind source
separation algorithms of Bell and Sejnowski (11) were used to
separate the data into independent components. The compo-
nents were converted to z-scores, and all components were
ranked according to their cumulative content above a threshold
of z 5 4. Components were selected based upon agreement of
spatial and temporal patterns to the expected patterns of acti-
vation for a motor task, and specifically those patterns ob-
served with a conventional reference function representing a
sustained hemodynamic response and a reference function
modified to represent a transient hemodynamic response (5).
The spatial mapping of each component was overlaid on cor-

egistered 3D-volume anatomic datasets, and inspected at a
threshold of P , .05 (z 5 2.4). Standard parcellation methods
were used to identify the structures in which activation was
observed (12). Specifically, the activation in the sensorimotor
cortex, SMA, thalamus, putamen, and cerebellum was
tabulated.

For each of the components identified by ICA, the correla-
tion coefficient to a boxcar reference function was calculated.
The boxcar reference function had plateaus corresponding tem-
porally to the task cycles. The function incorporated a 6-second
delay, representing the expected latency in the blood oxygen-
ation level–dependent hemodynamic response.

Results
For all subjects, task activation maps of good

technical quality were obtained with ICA (Fig 1
and 2). Activation was identified in the sensori-
motor cortex, SMA, superior sylvian region, cere-
bellum, thalamus, or putamen in all subjects.

ICA identified in each case a component that, in
its temporal characteristics, resembled the timing of
the right- and left-finger tapping tasks. These com-
ponents mapped regularly to the contralateral sen-
sorimotor cortex, SMA, and ipsilateral superior cer-
ebellum. They also mapped regularly to the
contralateral superior sylvian region. These com-
ponents mapped variably to the contralateral thal-
amus or putamen. The shapes of each temporal
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FIG 4. ICA components in subjects performing the left- and right-finger tapping task, with unequal lengths of epochs. Rest and finger-
tapping cycles varied in length from 16 to 24 seconds. Lower dashed lines indicate task timing. The components correlate closely with
the expected hemodynamic response for each hand task.

component identified with either hand task were
asymmetrical, with either one or both time courses
sharing an elevated plateau of signal intensity that
corresponded to the timing of the opposite hand
task (Fig 3). These plateaus varied between indi-
vidual subjects. In the two subjects who performed
unequally timed epochs of finger tapping and rest,
ICA identified temporal components with plateaus
synchronized to the right- and left-hand finger tap-
ping (Fig 4). Activation maps derived from this
asymmetrical task performance were consistent
with those from the regularly timed task paradigm.
ICA did not identify a separate component related
to the task cycles when both hands were simulta-
neously finger tapping.

In all of the subjects, a component was identified
that had temporally short signal peaks synchronized
with the auditory cues for initiation of each task
cycle, including rest (Fig 5). This component
mapped specifically to the bilateral auditory corti-
ces in all subjects. In three of the 10 subjects, an
additional component that mapped specifically to
the anterior bilateral putamen was identified (Fig
6A). The short signal plateaus in this temporal
component correlated with the early initiation of
finger-tapping task cycles (Fig 6B).

The Table lists the regions in which activation
was identified for each of the subjects. ICA com-
ponents, temporally correlated to each hand task,
identified activation in the contralateral sensori-
motor cortex, SMA, superior sylvian region, and
ipsilateral superior cerebellum in 100% of the sub-
jects. With these components, the ipsilateral infe-
rior right cerebellum showed activation in five sub-
jects, and left cerebellum activation in three.
Contralateral thalamus activation was identified in
three subjects by the right-hand task component
and in eight subjects by the left. Contralateral pu-
tamen activation was identified in six subjects by
the right-hand task component, and in four subjects
by the left-hand task component. In three subjects,
a separate component was identified, specific to bi-

lateral putamen activation. Each of these three sub-
jects showed contralateral putamen activation with
one of the individual hand task components.

More than 100 components with z scores above
threshold were identified in the data set for each
subject. These multiple components are produced
automatically by the ICA deconvolution algorithm,
with the matrix number of fMR scan time points
determining maximal number of output compo-
nents. For those components with higher z scores
and temporal characteristics suggesting the refer-
ence function, cross-correlation coefficients to box-
car reference functions were calculated. These av-
eraged 0.59 (for the components correlated to the
right-hand movement) and 0.70 (for components
correlated to left-hand movement).

Discussion
This study showed that ICA of multislice fMR

data effectively identified multiple temporal pat-
terns of hemodynamic response to finger tapping,
and permitted cortical and subcortical structures in-
volved in the tasks to be mapped. It demonstrated
more regions of activation than does conventional
correlation analysis for similar tasks (1–3). It dem-
onstrates all of the regions of activation identified
when multiple reference functions modeling vari-
able hemodynamic responses are used (5).

The relatively low threshold values (P , .05)
employed in this study for inspection of ICA-de-
rived activation maps were offset by the specificity
of the component maps to positively activated re-
gions. Task-related component maps exhibited ro-
bust localization to known cortical areas involved
in the motor performance, with very sparsely scat-
tered nonactivated voxels passing threshold. This
pattern of robust specificity also applied to the
ICA-derived components for auditory activation
and bilateral putamen activation. Application of
higher thresholds (P , .01) to the right- and left-
hand task-related component maps demonstrated
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FIG 5. A, Another ICA component that was identified in the data set of subjects performing the alternating finger-tapping task. This
component correlates temporally with the delivery of auditory instructions to the subject to initiate or terminate a task. Such a component
was found in each of the subjects.

B, The component is superimposed on the components correlating with right- and left-hand finger movement. Lower dashed lines
indicate task timing. Note that the fluctuations in the component correspond to the initiation and termination of the motor tasks.

C, fMR image of the independent component illustrates activation localized to the auditory cortices.

less sensitivity to subcortical areas of thalamus and
basal ganglia activation.

This study was a preliminary assessment of ICA
efficacy to fMR imaging–revealed motor activa-
tion. ICA has not been optimized for fMR studies.
The effects of data matrix size, filtering, and task
paradigm on the sensitivity and specificity of ICA
are unknown. This current configuration of ICA
demonstrates multiple components, only a few of
which are specific to the task performed. Others
may represent artifacts associated with motion, for

example. Many of the components resemble each
other, either temporally or spatially. One of the
weaknesses of ICA is that the trends in the data
may be fragmented into multiple components, each
with a highly related time course. The investigators
selected ICA components for this study by analyz-
ing both their spatial and temporal features.

ICA extracts the intrinsic structure of the data
without an a priori knowledge or prediction of it.
It uses an iterative training process to find the spa-
tially independent components in the data set (8).
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FIG 6. A, Representative three-axis map
of an ICA component specific to bilateral
putamen. Similar component maps were
identified in three subjects. Spatial locali-
zation is specific to the anterior putamen
bilaterally and to no other regions.

B, Signal-versus-time plots of this ICA
component overlaid on the components for
left- and right-hand finger tapping. Note
that the component increases as the sub-
ject initiates the left- or right-hand tasks.
Lower dashed lines indicate task timing.

Percentage of subjects with activation in cortical and subcortical
regions of activation identified by ICA secondary to finger tapping

R-hand Task
Component

L-hand Task
Component Other

Contralateral sensorimotor cortex 100 100 —
Contralateral SMA 100 100 —
Ipsilateral superior cerebellum 100 100 —
Ipsilateral inferior cerebellum 50 30 —
Contralateral thalamus 30 80 —
Contralateral putamen 60 40 30
Ipsilateral putamen — — 30

Some components identified by ICA have temporal
characteristics suggesting a relationship to the task.
Activations that are not anticipated, such as he-
modynamic changes that are transiently related to
the task, may more likely be uncovered by ICA
than by hypothesis-driven methods. With this cur-
rent version of ICA, they can be identified by spa-

tial characteristics specific to a region of brain
known to be active in the task, and by confirming
the relationship of temporal characteristics to the
task timing.

Hypothesis-driven methods, such as subtraction,
correlation and time frequency analyses, or analysis
of variance, identify trends that correlate with the
known or assumed hemodynamic response. These
methods may be useful to distinguish physiological
and artifactual fluctuations, although they do not
distinguish artifact that has a time course similar to
that of activation. They have the drawback that the
hemodynamic response must be known or as-
sumed. Hybrid methods that have the advantages
of both hypothesis- and data-driven methods have
been described (13). These methods, when applied
to fMR imaging data, may facilitate the classifica-
tion of the components in ICA.

The multiplicity of components revealed by ICA
may have advantages for clinical and experimental



AJNR: 21, October 2000 WHOLE-BRAIN ACTIVATION 1635

fMR imaging. For example, one component was
identified from the finger-tapping task data that cor-
responded temporally and spatially to the process-
ing of the auditory cues given to the subject to
initiate and terminate finger movements. This com-
ponent of short duration would not ordinarily be
detected by a reference function modeling a sus-
tained hemodynamic response. The short duration
of each of the auditory cortical responses also in-
dicates the sensitivity of ICA to event-related he-
modynamics. Multiple task-related events can be
detected, and their spatial localizations specified.
These factors are important considerations in the
analysis of higher-order cognitive and complex mo-
tor tasks, especially when task performance can in-
volve aggregate functions. ICA may also be espe-
cially effective in the analysis of fMR imaging
tasks in which the temporal characteristics of the
response are unknown. Examples of such data may
include complex cognitive tasks, tasks in which the
subject or patient fails to perform exactly according
to instruction, and tasks in which learning, habit-
uation, or fatigue impact results.

Conclusion
The significance of this study is that ICA, with-

out a prescribed reference function, identifies sites
of activation secondary to the motor task em-
ployed. It characterizes the hemodynamic task re-
sponse temporally and spatially. In this whole-brain
study, the identified ICA components included cor-
tical and subcortical activation mapping. ICA may
also reveal variations in an individual subject’s per-
formance of the task. Multiple task-related com-
ponents were separately identified, even with this
relatively simple task paradigm. With further ap-

plication to more complex tasks, ICA will likely
reveal areas of activation not identified with con-
ventional postprocessing methods.
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