Successful Treatment of Cerebral Vasospasm by Use of Transdermal Nitroglycerin Ointment (Nitropaste)

Walter S. Lesley, Al Lazo, John C. Chaloupka, and John B. Weigele

Summary: To our knowledge, the use of transdermal nitroglycerin ointment (Nitropaste) in the setting of intracranial vasospasm has not been described in the peer-reviewed literature. Five patients with intracranial vasospasm induced by subarachnoid hemorrhage were evaluated angiographically both before and after application of Nitropaste. All cases exhibited mild to moderate improvement in the degree of vasospasm. We conclude that Nitropaste is a simple noninvasive technique to reduce intracranial vasospasm.

The treatment of intracranial vasospasm secondary to subarachnoid hemorrhage frequently requires endovascular intervention, including balloon angioplasty and intraarterial infusion of nitroglycerin or papaverine (1). Because Nitropaste is known to improve extracranial carotid vasospasm, an investigation of Nitropaste’s effect on intracranial vasospasm was performed (2).

Discussion

Originally used in the treatment of angina pectoris, Nitropaste has gained popularity for its effective use in preventing and relieving catheter-induced vasospasm of the extracranial carotid artery during angiography (2). Nitropaste contains 2% of the active ingredient nitroglycerin, prepared as an ointment. Each inch (2.5 cm) of Nitropaste contains 15 mg of nitroglycerin. For adults, 2–5 inches (5–13 cm) of Nitropaste are measured onto a tongue depressor and then applied to the chest wall, neck, or forehead. In general, the amount applied is determined by patient age and weight, degree of vasospasm, and duration of desired effect. In our experience, we suggest an application of no more than .5 inch for patients younger than 3 years, up to 1 inch for patients 3–8 years old, and 1–2 inches for patients 8–17 years old. For adults, the baseline dose of 2 inches should be increased an additional inch for each of the following: moderate or severe vasospasm, body weight greater than 100 kg, and extended duration of effect (ie, up to 12 hours). The adult dose should not exceed 5 inches.

Within 30 minutes of application, Nitropaste causes relaxation of vascular smooth muscle with resulting dilatation of arteries and veins (3). Shortening the duration of dilatation is achieved by wiping the Nitropaste from the patient with a towel. Repeated use is ineffective because of development of systemic nitrate tolerance. Although transient, mild headache is not an infrequent side effect; symptomatic hypotension and paradoxical bradycardia are uncommon.

In this series, mild to moderate improvement of vasospasm was confirmed by angiography in all patients. Vasospasm was localized to the supraclinoid oc-
occurred to allow passage of the microguidewire and balloon within the narrowed vessels (Fig 1). In another patient whose moderate vasospasm was refractory to intraarterial papaverine infusion, Nitropaste was noted to diminish the degree of vasospasm (Fig 2). Three patients, including a 14-month-old boy with mild vasospasm, required no endovascular intervention after exhibiting angiographic improvement with Nitropaste alone (Fig 3). No patients developed hypotension, arrhythmia, or other cardiovascular symptoms.

Conclusion
The application of Nitropaste is a safe and simple noninvasive technique that can reduce the degree of intracranial vasospasm resulting from subarachnoid hemorrhage. Endovascular surgeons should find Nitropaste useful in this regard.

References
Fig 3. Angiograms acquired in a 55-year-old patient with a ruptured right paraophthalmic ICA aneurysm.

A, Angiogram, frontal-right projection, of the internal carotid artery depicts mild vasospasm of the anterior and middle cerebral vasculature secondary to a ruptured, and subsequently coiled, paraophthalmic aneurysm.

B, Repeat angiogram obtained 27 minutes after application of transdermal Nitropaste reveals improved vasospasm in the anterior cerebral artery and middle cerebral artery territories (arrows).