MR Imaging of Normal Perivascular Space Expansion at Midbrain

Naokatsu Saeki, Motoki Sato, Motoo Kubota, Yoshio Uchino, Hisayuki Murai, Yuichiro Nagai, Hiroshi Ishikura, Seitaro Nomura, Iichiro Matsuura, and Akira Yamaura

BACKGROUND AND PURPOSE: A previous investigation of the MR imaging findings in the midbrain reported expanded perivascular (PV) spaces in only the ponto-mesencephalic junction (PMJ) in 20% of healthy subjects, whereas pathologically expanding PV spaces have been reported at the mesencephalo-diencephalic junction (MDJ) as multi-lobulated, cystic lesions with signal intensity compatible with that of CSF that cause aqueductal stenosis. To clarify the anatomical distinctions between normally expanded and pathologically expanding PV spaces, we defined their distribution in the normal midbrain by using high-spatial-resolution MR imaging.

METHODS: Heavily T2-weighted MR imaging was performed in 115 adult subjects with neurologic complaints without cerebral disease. Histologic studies were performed from two normal midbrain blocks.

RESULTS: Expanded PV spaces were visible at the PMJ in 87% of subjects and at the MDJ in 63% of subjects. On axial images, ovoid or linear lesions with signal intensity compatible to CSF were present behind the cerebral peduncle at both the PMJ and MDJ. These areas varied from less than 1 mm to 5 mm (maximum diameter on coronal sections). Histologic studies confirmed the distribution of expanded PV spaces, as noted on MR images.

CONCLUSION: This study, by using high-spatial-resolution MR imaging, revealed that expanded PV spaces were visible at the PMJ and MDJ. Our finding of expanded PV spaces normally present at the MDJ may be related to pathologically expanding PV spaces, which should be kept in mind as a differential diagnosis for intraparenchymal cystic lesions in the midbrain with signal intensity compatible to CSF.

The advent of high-spatial-resolution MR imaging makes it possible to observe expanded perivascular (PV) spaces in the brain. Clinically, these spaces are noteworthy as a differential diagnosis for lacunar infarcts (1–5). They are commonly found in the following locations: the lower third of the basal ganglia adjacent to the anterior commissure, the corona radiata and centrum semiovale, the hippocampus, the insula, and the midbrain (1–6). MR imaging observations of PV spaces in the midbrain of normal subjects were first reported by Elster and Richardson (2) in 1991. They reported PV spaces in 20% of healthy subjects at the ponto-mesencephalic junction (PMJ) but found no clinical correlate to these findings. Recently, pathologic studies from autopsy specimens (7) and MR imaging data (8–13) from several cases with aqueductal stenosis caused by multilobular CSF-filled expanding spaces at the mesencephalo-diencephalic junction (MDJ) have reported large cavities with a similar distribution to asymptomatic expanded PV spaces in the midbrain (Fig 1). Therefore, it is hypothesized that normal PV spaces undergoing expansion may contribute to mass effect (8–10). However, since symptomatic cases had lesions at the MDJ (Fig 1) (12), while normal PV spaces are located at the PMJ, further neuroanatomical studies are needed to establish the relationship between normal and pathologically expanded PV spaces.

T2-weighted MR imaging is known to detail fine structures in and around the CSF spaces and is considered a sensitive method for depicting PV spaces (14). To clarify the anatomical distinctions between normally expanded and pathologically expanding PV spaces, we defined their distribution in the normal midbrain by using high-spatial-resolution MR imaging.
This study consisted of 115 adult subjects with ophthalmological complaints such as retro-orbital pain, double vision, and visual field defect without related pathologic findings at MR imaging. They underwent T2-weighted MR imaging in the past 4 years. The study population consisted of 65 men and 50 women, with a mean age of 45.6 years (range 16–74 years).

The frequency and location of cystic lesions in the midbrain with signal intensity compatible to CSF were assessed on coronal, axial, and sagittal images. When present, the total number of high-signal-intensity spots and the maximum diameter of the largest one was graded on coronal images as follows: grade 0, less than 1 mm; grade 1, 1 mm or more and less than 2 mm; grade 2, 2 mm or more and less than 3 mm; grade 3, 3 mm or more and less than 4 mm; and grade 4, more than 4 mm and less than 5 mm. The diameters of the CSF hyperintensity were measured with calipers on the films and then graded by three of the authors (N.S., M.S., and Y.U.), and final decisions were made by consensus. The measurement in millimeters was obtained from the 1-mm reference scale found on each image.

Statistical Analysis
To explore the relationship between age and detectability of expanded PV spaces, subjects were classified into groups in increments of 20 years and detectability of PV spaces was assessed for each subgroup by the χ^2 test. A P value less than .05 was considered to be statistically significant.

Results

MR Imaging Study
In the lower midbrain, ovoid or linear spots with signal intensity compatible with CSF were present in 100 (87%) of 115 subjects (Table). Spots were most common between the cerebral peduncle and substantia nigra and occurred less frequently in the cerebral peduncle on axial sections (Figs 2 and 3). They were consistently located at the PMJ on coronal section. The number of spots per patient ranged from one to seven, with a mean of 2.3. Of the total number of the largest spots, 52% were assigned grade 0, 38% were assigned grade 1, 7% were assigned grade 2, 2% were assigned grade 3, and 1% were assigned grade 4 (Fig 2).

In the upper midbrain, round or ovoid CSF signal intensities were visible in 73 (63%) of 115 subjects (Table). They were distributed in the region of the MDJ. The number of spots per patient ranged from

Methods

Subjects
This study consisted of 115 adult subjects with ophthalmological complaints such as retro-orbital pain, double vision, and visual field defect without related pathologic findings at MR imaging. They underwent T2-weighted MR imaging in the past 4 years. The study population consisted of 65 men and 50 women, with a mean age of 45.6 years (range 16–74 years).

The frequency and location of cystic lesions in the midbrain with signal intensity compatible to CSF were assessed on coronal, axial, and sagittal images. When present, the total number of high-signal-intensity spots and the maximum diameter of the largest one was graded on coronal images as follows: grade 0, less than 1 mm; grade 1, 1 mm or more and less than 2 mm; grade 2, 2 mm or more and less than 3 mm; grade 3, 3 mm or more and less than 4 mm; and grade 4, more than 4 mm and less than 5 mm. The diameters of the CSF hyperintensity were measured with calipers on the films and then graded by three of the authors (N.S., M.S., and Y.U.), and final decisions were made by consensus. The measurement in millimeters was obtained from the 1-mm reference scale found on each image.

Histologic Studies
To evaluate expanded PV spaces histologically, two midbrain blocks from cadavers of 79- and 84-year-old women who died of non-neurologic causes were used. After fixation with 70% ethanol solution for 4 months, the midbrain was sectioned coronally for one specimen and axially for the other, into 3 mm-thick tissue blocks and embedded in paraffin. Sections (4 μm) were stained with hematoxylin and eosin and the Klüver-Barrera technique. The sections were viewed with low-powered light microscopy at magnifications of up to 50 \times.

MR Imaging
MR imaging was performed using a 1.5T system (Gyroscan ACS-NT; Philips, Best, the Netherlands) with a standard head coil. All images were obtained by a T2-weighted turbo spin-echo sequence with the following parameters: TR, 5800 ms; TE, 140 ms; FOV, 200 mm; section thickness, 3 mm; intersection gap, 0.5 mm; matrix, 256 \times 512; echo train length, 23; and NEX, 4. To differentiate expanded PV spaces from lacunar infarcts, all subjects underwent T1-weighted MR imaging and proton density–weighted or fluid attenuated inversion recovery imaging. We counted only signal intensities compatible with those of CSF and a clear margin.
one to 4, with a mean of 1.2. A total of 73% were grade 0, 23% were grade 1, 3% were grade 2, and 1% were grade 3. In both lower and upper midbrain sections, signal intensity abnormalities were located off the midline. In this study, the presence of PV spaces was not related to age for either lower ($P > .25$) or upper ($P > .1$) midbrain (Table).

Since our study was not prospectively designed and since complete images of the whole brain were not routinely obtained because of patients with ophthalmological complaints and signs, we did not attempt to correlate the presence of the midbrain PV spaces with those elsewhere in the brain. However, expanded PV spaces around the anterior commissure and basal ganglia were seen in association with those at the midbrain in several subjects; conversely several subjects had the midbrain lesions as an isolated finding.

Histologic Studies

Spaces lined with a pial layer and with an artery were revealed dorsal to the cerebral peduncle on axial and coronal sections at both the PMJ and MDJ (Fig 4). The presence of expanded PV spaces was confirmed histologically (1–6).
Discussion

In 1991, Elster and Richardson (2) demonstrated PV spaces at the PMJ in 20% of normal subjects on MR imaging and histologic studies. Our findings, using heavily T2-weighted MR imaging, reveal that the incidence is as high as 87% at the PMJ. This higher rate of detection may be due to the MR imaging protocol, which is more sensitive for localizing CSF signal intensity (14). More importantly, expanded PV spaces are present in 63% of subjects at the MDJ at MR imaging and in two specimens studied histologically.

The MR imaging features of expanded PV spaces in the midbrain in the present study are similar to those reported by Elster and Richardson (2). At the PMJ, spaces are mainly located between the cerebral peduncle and substantia nigra in the axial plane and correspond to the level of the tentorial margin as seen in coronal sections. At the MDJ, although smaller and less conspicuous than those at the PMJ, they are located behind the cerebral peduncle on axial sections. To define PV spaces on MR images, their distribution needs to conform to the path of penetrating arteries (1–6). In the lower midbrain, enlarged PV spaces at the PMJ are routinely supplied by penetrating branches of the collicular and accessory collicular arteries (2, 15). In the upper midbrain, where the enlarged PV spaces are visible at the MDJ, they are supplied by the posterior (interpeduncular) thalamo-perforating artery or the paramedian mesencephalo-thalamic artery and short and long circumferential arteries originating from the upper basilar artery or proximal posterior cerebral artery (15, 16).

Expanded PV spaces in the midbrain have been reported in isolated cases. One case, reported by Romi (17), presented with Parkinsonism and the CSF signal intensity lesions were located at the PMJ. Kannamalla and colleagues (9) reported a case of mild ventricular enlargement and cavernous expansion of midbrain PV spaces. Follow-up MR imaging studies revealed no progression of enlargement in those cases. Such previously reported lesions may be similar to patients in our study who had PV spaces as large as 5 mm at the maximum and were free of clinical signs. Since high-spatial-resolution MR imaging studies may reveal such incidental findings, interpretation of the MR images needs to be judicious in relation to symptoms.

Clinical interest in expanded PV spaces at the midbrain originated when Poirier et al (7), in 1983, reported autopsy findings in hydrocephalus from aqueductal stenosis caused by expansive lacunae. The so-called “expansive lacunae” is equivalent to extremely expanded PV spaces, as they were pathologically lined by a single stratum of epithelium-like flat cells and contained a small artery or arteriole (7). They were situated at the MDJ in the territory of the paramedian mesencephalo-thalamic artery.

On reviewing clinical reports, seven cases can be found that required neurosurgical intervention owing to intraparenchymal mass lesions, which were interpreted as expanding lacunae in the midbrain on the
it is hypothesized that nontraumatic obstruction of the CSF pathways in the spinal subarachnoid space results in cord enlargement with parenchymal T2 prolongation (20). These explanations on the change of brain and spinal cord are based on the speculation that the PV spaces are the outward route of interstitial fluid to and the inward route of the CSF from the subarachnoid space (8, 10). Either hypothesis is based on a pathologic modification of normal processes associated with PV spaces. We speculate this study supports the hypothesis that normal PV spaces at the MDJ undergo pathologic modifications and expand. The pathologic processes that affect PV spaces await future confirmation.

Clinically, expanding PV spaces with cystic components in the midbrain need to be differentiated from intraparenchymal lesions such as gliomas with cystic components, parasite infections, and other non-neoplastic intracranial cysts (ependymal, neuroepithelial, and arachnoid cysts) (10, 21). Those lesions may be differentiated on the basis of CT and MR imaging findings such as the presence of calcification, multilocular or monoclonal shape, and signal intensity of cyst contents compatible with CSF (10). Since the therapeutic strategies depend upon the specific disease, precise diagnoses are important. Expanding PV spaces should be kept in mind as a differential diagnosis for intraparenchymal cystic lesions in the midbrain with signal intensity compatible with that of CSF.

Conclusion

This study revealed that expanded PV spaces were visible at the PMJ and MDJ. Our finding of expanded PV spaces normally present at the MDJ may be related to pathologically expanding PV spaces, which should be kept in mind as a differential diagnosis for intraparenchymal cystic lesions in the midbrain with signal intensity compatible with CSF.

References