Lingual Hamartoma in an Infant: CT and MR Imaging

SUMMARY: Lingual hamartoma is a rare tongue mass, primarily diagnosed in childhood. In most cases in the literature, the masses were surgically removed without preoperative imaging. There are only 3 cases reported in the clinical literature that describe preoperative imaging findings. We report the clinical and imaging findings in an infant with lingual hamartoma and review the literature.

Lingual hamartoma is a rare benign tumorlike malformation of the tongue composed of tissue indigenous to the area in which it is found, but abnormally arranged. These malformations may occur as isolated lesions or in association with syndromes such as oral-facial-digital syndrome. Although one might expect that they would occur in Cowden syndrome (multiple hamartoma syndrome), the classic lesion of the tongue in these patients is a scrotal tongue rather than a focal lingual hamartoma.1 In the clinical literature, the imaging characteristics (in 2 children and 1 adult) have been reported as hypointense on T1-weighted images, hyperintense on T2-weighted images, and intermediate attenuation on CT. We report the clinical, CT, and MR imaging findings in an infant with an asymptomatic lingual hamartoma.

Case Report

A 5-month-old male infant presented with a posterior tongue mass visible initially by his mother, only when he laughed with his mouth wide open (Fig 1). Subsequent evaluation by the otolaryngologist demonstrated a smooth yellowish mass arising near the foramen cecum, thought to be potentially a lingual thyroid. The mass did not interfere with deglutition or respiration. The family history was unremarkable and the child was otherwise healthy.

Imaging was requested to characterize the lesion better, evaluate the extent of deep tongue involvement, and aid in preoperative planning to determine whether surgery would be via an intraoral approach or an open procedure through the neck. CT scans revealed a round intermediate-attenuation soft-tissue mass arising from the midline posterior tongue. There was only minimal heterogeneous contrast enhancement (Fig 2). A homogeneously enhancing bilobed normal-appearing thyroid gland was present in the lower neck (image not shown). MR imaging showed a well-defined mass at the surface of the posterior tongue, mildly hypointense on T1-weighted images and having mixed signal intensity on T2-weighted images, with a hyperintense irregular center and a hypointense periphery (Fig 3).

At surgery, the smooth and slightly lobulated mass measured 2.3 × 2 × 1.2 cm and arose near the foramen cecum. It was noted to have a short 5-mm-thick stalk, which was amputated by using electrocautery. Surrounding mucosa and a thin layer of tongue muscle were removed without complication. Histology confirmed a hamartoma composed mainly of smooth muscle with components of squamous epithelium and mucous glands.

Discussion

Hamartoma is a benign tumorlike overgrowth in which normal tissue components of the organ of origin are abnormally
arranged, most commonly located in the liver, spleen, kidney, lung, skin, and pancreas. Lingual hamartoma was first described in 1945 by Stamm and Tauber and may occur in isolation or in association with syndromes such as oral-facial-digital syndrome (originally described by Gorlin and Psaume as orodigifacial dysostosis). Lingual hamartomas presenting as an isolated anomaly are extremely rare, with only 15 previously reported patients, 13 of whom were children. Isolated lingual hamartomas occur as solitary lesions on the dorsum of the tongue, usually posterior and midline in the area of the foramen cecum. Most lingual hamartomas are polypoid and more common in females, with a female-to-male ratio of almost 2:1. Multiple hamartomas in the tongue have been reported, but such occurrence has been limited to an association with other syndromes, such as oral-facial-digital syndrome, incomplete cleft palate, and tuberous sclerosis. Cowden syndrome (multiple hamartoma syndrome) is known to feature multiple hamartomas throughout the body, including the mucous membrane of the oral cavity. However, the classic lesion of the tongue in Cowden syndrome is a scrotal tongue, not a lingual hamartoma.

Differential diagnosis of congenital tongue lesions in children includes lingual thyroid, thyroglossal duct cyst, vascular malformation, and duplication cyst. Pediatric tongue neoplasms include teratoma and sarcoma. Of these lesions, lingual hamartoma was first described in 1945 by Stamm and Tauber and may occur in isolation or in association with syndromes such as oral-facial-digital syndrome (originally described by Gorlin and Psaume as orodigifacial dysostosis). Lingual hamartomas presenting as an isolated anomaly are extremely rare, with only 15 previously reported patients, 13 of whom were children. Isolated lingual hamartomas occur as solitary lesions on the dorsum of the tongue, usually posterior and midline in the area of the foramen cecum. Most lingual hamartomas are polypoid and more common in females, with a female-to-male ratio of almost 2:1. Multiple hamartomas in the tongue have been reported, but such occurrence has been limited to an association with other syndromes, such as oral-facial-digital syndrome, incomplete cleft palate, and tuberous sclerosis. Cowden syndrome (multiple hamartoma syndrome) is known to feature multiple hamartomas throughout the body, including the mucous membrane of the oral cavity. However, the classic lesion of the tongue in Cowden syndrome is a scrotal tongue, not a lingual hamartoma.

To our knowledge, imaging findings are discussed in only 3 clinical reports in the English literature. Halfpenny et al reported a 4-year-old girl with a left posterior tongue mass, with MR imaging showing a predominately cystic nonenhancing lesion, hypointense on T1-weighted images and hyperintense on T2-weighted images. Takimoto et al reported a 6-year-old girl with a left-of-midline posterior tongue mass, hyperintense on T1-weighted images and moderately hyperintense on T2-weighted images. Wallace et al reported a 41-year-old woman with tuberous sclerosis and a large base-of-tongue mass, intermediate in attenuation on postcontrast CT. In our patient, the lesion was mildly hypointense on T1-weighted images and heterogeneous on T2-weighted images, with only minimal postcontrast enhancement on CT.

Conclusion
Lingual hamartoma is a rare cause of tongue base mass, with only 15 previously reported cases occurring without associated syndromes. To our knowledge, there are only 3 reports in the clinical literature that describe the imaging findings of lingual hamartomas. Imaging features are nonspecific. However, the differential diagnosis of a posterior midline tongue mass, in the region of the foramen cecum in a child, should include lingual hamartoma.

References

Fig 3. A, Sagittal T1-weighted image demonstrates a mildly hypointense well-defined mass arising from the posterior aspect of the tongue abutting the inferior surface of the uvula. B, T2-weighted image demonstrates a central area of hyperintensity with irregular margins and hypointense periphery.