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Functional Connectivity during Resting-State
Functional MR Imaging: Study of the
Correspondence between Independent Component
Analysis and Region-of-Interest�Based Methods

C. Rosazza
L. Minati

F. Ghielmetti
M.L. Mandelli

M.G. Bruzzone

BACKGROUND AND PURPOSE: The connectivity across brain regions can be evaluated through fMRI
either by using ICA or by means of correlation analysis of time courses measured in predefined ROIs.
The purpose of this study was to investigate quantitatively the correspondence between the connec-
tivity information provided by the 2 techniques.

MATERIALS AND METHODS: In this study, resting-state fMRI data from 40 healthy participants were
independently analyzed by using spatial ICA and ROI�based analysis. To assess the correspondence
between the results provided by the 2 methods, for all combinations of ROIs, we compared the time
course correlation coefficient with the corresponding “ICA coactivation index.”

RESULTS: A strongly significant correspondence of moderate intensity was found for 20 ICA compo-
nents (r � 0.44, P � .001). Repeating the analysis with 10, 15, 25, 30, 35, and 40 components, we
found that the correlation remained but was weaker (r � 0.35–0.41).

CONCLUSIONS: There is a significant but not complete correspondence between the results provided
by ICA and ROI�based analysis of resting-state data.

ABBREVIATIONS: AAL � Anatomical Automatic Labeling; AD � Alzheimer disease; BOLD � blood
oxygen level–dependent; DMN � default mode network; ICs � independent components; ICA �
independent-component analysis; MDL � minimum description length; PCA � principal compo-
nent analysis; SPM � Statistical Parametric Mapping

Functional connectivity can be defined as the coordination
of activity across brain regions supporting the emergence

of complex behavior. This coherence translates into temporal
correlations of neural activity among anatomically distinct
brain areas.1,2

Functional connectivity can be investigated through fMRI
by means of a range of methods that detect time course coher-
encies in the BOLD signal intensity across brain regions dur-
ing the performance of active tasks and in the resting condi-
tion.3,4 The study of resting-state functional connectivity is
important from 2 perspectives: First, it provides information
on the spontaneous activity that is intrinsically generated
within the brain, which subserves communication across re-
gions; and it provides integration of information, memory
consolidation and introspection, and overall consumes more

energy than stimulus-evoked activity.5 Second, resting-state
fMRI may be the only form of functional imaging viable in
cognitively impaired patients who are unable to perform ac-
tive tasks adequately.

While it is well-established that the observed BOLD signal-
intensity correlations are a consequence of neural activity as
indexed by the local field potentials,6-8 there is also a signifi-
cant component related to systematic physiologic phenom-
ena, the exact entity of which remains difficult to establish.9 In
clinical settings, this approach has enabled researchers to con-
sistently identify differences between various patient groups
and controls. For instance, it has revealed that patients with
AD have reduced connectivity in both hippocampi, which is
associated with decreased cognitive ability10 and also across
the DMN, the most commonly observed resting-state net-
work, which encompasses the posterior cingulate cortex, the
precuneus, and the inferior parietal and medial prefrontal
regions.11

There are 2 distinct methodologic approaches for studying
functional connectivity through fMRI: One is to perform a
completely data-driven analysis, for example, through ICA;
the other is to rely on prior anatomic hypotheses to restrict the
analysis to a predefined set of ROI or to a specific seed region.

ICA is a statistical technique that separates a set of signals
into independent components (ie, it minimizes mutual infor-
mation or maximizes non-Gaussianity). It assumes that the
observed data are a linear combination of statistically inde-
pendent source signals. More specifically, given a set of n tem-
porally discrete signals [x1(t),x2(t) . . . xn(t)] represented by
the data matrix Xi,t , it is assumed that they are generated as a
linear mixture of m independent source signals [s1(t),
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s2(t) . . . sm(t)] such that xi(t) � ai,1s1(t) � ai,2s2

(t) � . . . � ai,msm(t) for i � 1 . . . n. Here, a represents an un-
known mixing matrix, in which each element specifies the
relative contribution of each independent-source signal inten-
sity sj(t) to each mixture xi(t). The goal of ICA is to determine
an unmixing matrix w � a�1 such that sj(t) � wj,1x1(t)
�wj,2x2(t)� . . . �wj,nxn(t), and, thereafter, the source signals
themselves, on the assumption that they are statistically inde-
pendent. The approach adopted in ICA is substantially differ-
ent from that in PCA, which more simply minimizes correla-
tion. ICA is widely preferred over PCA for fMRI because the
latter emphasizes source variance and orthogonality, which do
not lead to easily interpretable activation maps, whereas the
higher order statistics used by ICA enhance solution sparsity,
giving a better separation of artifacts and activity
components.12

When applied to fMRI, ICA allows one to discover the spa-
tiotemporal structure contained in the data by extracting sta-
tistically independent spatial maps and their associated time
courses.12 ICA-based studies have identified components that
appear to correspond to functionally relevant cortical net-
works such as visual and sensory-motor circuits,13,14 as well as
components that reflect physiologic processes, such as cardiac
and respiratory activity, and nonphysiologic noise, such as im-
aging artifacts.15

The alternative approach, ROI�based analysis, is based on
a priori selection of regions, followed by extraction of region-
ally averaged BOLD signal-intensity time courses, which are
fed into a linear correlation analysis. ROI�based and seed-
based analyses are conceptually equivalent in the sense that
they both infer connectivity from the temporal correlation of
regional BOLD time courses, even though they are differenti-
ated by the fact that ROI�based analysis compares regionally
averaged signals over pairs of ROI (eg, Wang et al16), whereas
seed-based analysis compares the regionally averaged signal
intensity from 1 seed ROI with that of all other individual
voxels of the brain (eg, Cordes et al17).

Each method has strengths and weaknesses, as reported by
Fox and Raichle.4 Because the ICA technique is data-driven, 1
advantage is that a temporal model of activation is not needed.
Most important, ICA can automatically isolate sources of
noise; however, it can be difficult to determine whether a com-
ponent represents physiologic noise or a cortical network.
Furthermore, the decomposition results can vary depending
on the choice of the number of components, and the exact
separation pattern may not be repeatable from 1 participant to
another.18 On the other hand, ROI�based analysis does not
introduce interpretative issues, and results are relatively
straightforward. However, it is based on a priori anatomic
hypotheses, and the presence of non-neuronal fluctuations in
the BOLD signal intensity can bias the observed correlations.4

In principle, ICA and ROI�based analysis should lead to
similar inferences because both index the same underlying
connectivity. However, in practice, the 2 methods process the
time-series in very different ways, and there are several reasons
that they may not provide overlapping information. For ex-
ample, let us consider 2 hypothetic ROI having strongly cor-
related BOLD signal-intensity time courses. If their common
time course corresponds to 1 independent component or to
the sum of a small number of independent components, then

the 2 regions will appear coactivated on 1 or more ICA spatial
map. If, however, the common time course is the combination
of a large number of independent components, then it is likely
that the activation of these 2 regions will not reach statistical
significance on any individual ICA spatial map. Evaluating the
degree to which ICA and ROI�based analysis leads to analo-
gous inferences on connectivity appears necessary as a validity
check.

A number of neuroimaging studies have shown that these 2
methods yield converging results19-24: For instance, the studies
by Bluhm et al20 and Long et al21 have indicated that these 2
approaches identify the areas included in the DMN consis-
tently, resulting in connectivity maps that are visually similar.
Van Dijk et al24 have examined the similarities between the 2
methods with a more quantitative analysis, albeit for 1 func-
tional network only, showing that the correlation between
ICA and the seed-based approach is moderate for the DMN
(r � 0.45). However, existing literature is lacking a compre-
hensive quantitative evaluation of the extent to which the re-
sults obtained with the ICA and ROI�based analyses are con-
sistent at the level of a whole dataset rather than a specific
circuit.

In this study, we addressed this issue, assessing quantita-
tively the degree of correspondence between the functional
connectivity information provided by ICA and ROI�based
analysis, in a group of healthy participants in a resting-state
condition. As ancillary hypotheses, we aimed to determine
whether the correspondence 1) was influenced by the number
of components used for ICA, 2) was sensitive to the choice of
the ICA coactivation index formula (see below), or was 3)
specifically driven by a few intensely coactivated regions and
specifically driven by particular combinations of regions. To
this end, we included a large number of regions of interest (38
for hemisphere) because we did not want to limit our analyses
to a predefined set of regions.

Materials and Methods

Participants and Procedure
Forty right-handed healthy volunteers (21 women and 19 men; mean,

40.8 � 9.3 years of age) with no history of neurologic or psychiatric

disease participated in the study. The purpose of the experiment was

explained at enrollment, and all participants, unpaid, provided writ-

ten informed consent on standard institutional forms for research

MR imaging. Participants were instructed to keep their eyes open,

fixate on a cross centered on the screen, and relax, concentrating on

their own breathing.

Data Acquisition
MR imaging was performed on a Magnetom Avanto 1.5T scanner

(Siemens, Erlangen, Germany), by using an 8-channel phased-array

receive-only head coil. Anatomic images were acquired with a mag-

netization-prepared gradient echo volumetric T1-weighted sequence

(magnetization-prepared rapid acquisition of gradient echo, 1-mm3

isotropic voxels, TR � 1640 ms, TE � 2 ms). Two hundred functional

volumes were acquired by means of a gradient-echo echo-planar se-

quence (TR � 1700 ms, TE � 50 ms); twenty-one 5-mm sections

were obtained in interleaved order, aligned parallel to the bicommis-

sural plane. In-plane voxel size was 2 � 2 mm, with a matrix size of
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160 � 256. The duration of the functional sequence was approxi-

mately 5 minutes.

Data Preprocessing
Image preprocessing was performed by using SPM5 software (Well-

come Department of Imaging Neuroscience, London, UK) running

under Matlab 7 (MathWorks, Natick, Massachusetts). After realign-

ment with 6 degrees-of-freedom and section-timing correction, func-

tional images were coregistered with the corresponding anatomic vol-

umes and subsequently transformed into Montreal Neurologic

Institute space. Maximum intrasession head movement was 0.5 � 0.4

mm (range, 0.2–2 mm) across participants. Smoothing was, thereaf-

ter, performed with an 8-mm full width at half maximum isotropic

Gaussian kernel.

ICA
Group ICA was performed by using GIFT software (http://icatb.

sourceforge.net25). As described previously,25,26 the procedure con-

sisted of the following steps: 1) data reduction at the individual level

through PCA, 2) concatenation into a group dataset, 3) further data

reduction with PCA, 4) decomposition into group-independent

components by using the Infomax Algorithm, and 5) regular back-

reconstruction of individual maps and calculation of t-scores. For the

group ICA, the MDL criterion indicated that the optimal number was

20 components. The MDL is an information-theoretic criterion,

which corresponds to choosing the model permitting the most com-

pact encoding of the data and model itself; this criterion is the one

most frequently adopted to determine the optimal number of ICA

components for a given dataset.27 Furthermore, we repeated the ICA,

setting the number of components to 10, 15, 25, 30, 35, and 40, with

the sole purpose of evaluating the effect of the number of components

on the correspondence with the ROI�based analysis. To verify the

general validity of the dataset, we visually assessed the ICA spatial

maps, to confirm the identification of the functional networks con-

sistently described in previous work.13,14,28

Region-of-Interest Analysis (ROI)
The cortical surface included in the section packet was subdivided

into 76 ROIs (38 for each hemisphere) according to the AAL atlas (see

the On-line Table and Fig 1).29

The BOLD signal-intensity percentage change was calculated and

averaged over all voxels in each region of interest. An individual bi-

nary mask produced by SPM was used to remove all nonbrain paren-

chyma voxels.24 The average time course calculated over all brain

voxels was subtracted from the data, because this is the major crite-

rion to remove artifactual inter-regional correlations caused by the

biasing effect of non-neural brain-wide signal-intensity fluctua-

tions.30 Furthermore, low-pass filtering with a second-order Butter-

worth filter having f�3dB � 0.15 Hz was applied to attenuate non-

neuronal noise.

Then, we performed linear regressions to obtain the correlation

coefficient for all possible pairs of regional time courses, resulting in a

76 � 76 symmetric matrix of Pearson r values for each subject, sub-

sequently averaged over all subjects. Since ICA analysis does not em-

bed temporal filtering, we repeated these analyses on unfiltered data

to verify the effect of the chosen filter settings on the observed

correspondence.

Statistical Analysis
To address our primary hypothesis—that is, to evaluate the corre-

spondence between the 2 methods—for each pair of regions of inter-

est (A and B) an “ICA co-activation index” was defined as

c � �
i � 1

m

�ti, A� � �ti,B�,

where �ti,A� and �ti,B� represent the average group-level t-scores in

regions of interest A and B, and i � 1. . . m corresponds to the sum-

mation over all extracted components. As implemented in GIFT, the

group-level t-scores are derived from 1-sample t tests performed over

the individual � coefficients of the general linear models used to gen-

erate the component maps from the time courses extracted by ICA. In

this process, all estimated components were included and no thresh-

olding was applied to the ICA maps. The purpose of this index was to

provide a metric resembling a correlation coefficient (albeit un-

bounded) but calculated on the basis of the ICA spatial maps rather

than the regional BOLD signal-intensity time courses. The first calcu-

lation step (ie, multiplication of the average t-scores of the 2 regions of

interest) ensured that for a given spatial map, the coactivation index

would be positive for regions commonly correlating (or anticorrelat-

ing) within the ICA component map, negative for regions displaying

opposite correlations, and near zero if either or both regions of inter-

est were uncorrelated with the component time-series. The second

calculation step (ie, summation of the products over all ICA compo-

nents) ensured that all component maps contributed to determining

Fig 1. Examples from a representative participant of the subdivision of the cortex into the AAL atlas ROIs used for the connectivity analysis.29 The full list of ROIs is given in the On-line
Table.
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the overall value of the coactivation index for a given pair of regions of

interest.

To further explore the structure of our data, we added a power

parameter k to the above formula, yielding

c � 	i � 1

m ��ti, A��k �
�ti, A�

��ti, A��
� ��ti,B��k �

�ti,B�

��ti,B��
For k � 1, we have the original equation. For k 
 1, the relative weight

of intense coactivation of a small number of regions is increased with

respect to that of less intense coactivation of a larger number of re-

gions. For k �1, we have the converse effect.

Evaluating the correspondence between the 2 techniques, we per-

formed a correlation analysis at group level between the r values from

the ROI analysis and the ICA coactivation indices. This was done by

using both a linear correlation analysis and a nonparametric Spear-

man rank-order test and was repeated for 10, 15, 25, 30, 35, and 40

ICA components. For this test, diagonal entries (corresponding to

each region compared with itself) were removed. Furthermore, to

explore whether the correspondence between the 2 techniques was

driven by specific regions, we performed an ANOVA on the average

rank distance (as calculated during the Spearman rank-order test,

where zero indicates equal and 1, the opposite position on the 2 sorted

lists) by using ROI location as a factor.

We also calculated the mean and SD of the time course r value for

each pair of regions of interest across subjects and following Cohen’s

criteria,31 correlations were considered small (r � 0.3), moderate

(0.3 � r � 0.5), or large (r 
 0.5).

Results

ICA Spatial Maps
Representative sections of the ICA spatial maps obtained by
performing the decomposition with 20 components are
shown in Fig 2. All components extracted by the decomposi-
tion are displayed. Overall, these maps display the connectivity
patterns that have been previously described.13,14,28 For exam-
ple, components 2 and 3 exhibit lateralized activations in the
frontal and parietal regions. Component 5 encompasses the
medial prefrontal cortex, anterior and posterior cingulate,
precuneus, and angular gyrus, which are collectively known as
the DMN. Component 9 includes activations in the pre- and

Fig 2. Coronal, sagittal, and axial views of the ICA spatial maps estimated by GIFT, considering 20 components.
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postcentral gyri and the supplementary motor area, corre-
sponding to the sensory-motor network. Component 14 in-
volves the superior temporal, insular, and postcentral cortices,
which are acknowledged to form an auditory network. Com-
ponent 19 involves the frontal polar, middle frontal, and an-
terior cingulate regions and has been linked to the executive-
control component. By contrast, activation in component 16
closely follows the outline of the ventricles, demonstrating
that it is physiologically determined, namely by cardiac-in-
duced pulsation of the CSF. In addition, component 6 in-
cludes speckles following the brain outline, likely representing
movement-related noise.

Region-of-Interest�Based Analysis
The mean r value was 0.08 � 0.22 (range �0.44 – 0.85), with
59% positive r values; for unfiltered data, 
99% of r values
were positive, yielding an average r value of 0.33 � 0.18 (range,
�0.02– 0.89). According to Cohen criteria, for filtered data the
time course correlation was small (r � 0.3) for 83% of region-
of-interest pairs, moderate (0.3 � r � 0.5) for 10%, and large
(r 
 0.5) for 7%. For each ROI, the relative number of other
ROIs displaying a time course correlation with r 
 0.3 and r 

0.5 is given in the On-line Table. Overall, regions belonging to
the DMN had significantly higher scores than the rest (P �
.004).

Correspondence between ICA and ROI Analysis
For 20 components, the correspondence was moderate, ac-
cording to the linear correlation analysis (r � 0.44, P � .001)
and to the corresponding Spearman rank-order tests (r �
0.39, P � .001). As depicted in Fig 3A, repeating the analysis
with 10, 15, 25, 30, 35, and 40 components, we found that the
correlation remained but was weaker, according to both para-
metric and nonparametric tests. Performing the correspon-
dence analysis on unfiltered data led to lower r values but
otherwise overlapping results: The correlation between the 2
methods was strongest for 20 components with both paramet-
ric and nonparametric tests (r � 0.36, F � 449.7, P � .001 and
r � 0.32, P � .001, respectively) and weaker for all the other
components.

Figure 3B reports the results obtained sweeping the power
parameter k between 0.25 and 4. The correspondence is stron-
gest for k � 1 and decreases for both k 
 1 and k � 1. The effect
is more marked for the parametric test, due to deviation from
normality with increasing power.

Figure 4 shows the time course r values and ICA coactiva-
tion indices, visualized as color-map matrices. The 2 matrices
corresponding to filtered and unfiltered time series display
analogous features; however, the average r value is markedly
lower for filtered signals, due to removal of brain-wide biasing
fluctuations. As expected, along the diagonal, the r values are
unitary, and the ICA indices are largest, corresponding to each

Fig 3. Correlation between the time course r values and corresponding ICA coactivation indices for each pair of ROIs; A, Effect of the number of ICs and temporal filtering and the effect
of B, the power parameter k, for decomposition with 20 ICs).

Fig 4. Color-map matrices representing the time course r values (with and without low-pass filtering and mean time course removal) and corresponding ICA coactivation indices. The x-
and y-axes correspond to the indices of the anatomic region of interest (as defined in the On-line Table and shown in Fig 1). For convenience, the left and right hemisphere regions of
interest have been grouped together, so the upper-right and bottom-left parts of these graphs represent interhemispheric connectivity, whereas the upper-left and bottom-right parts
represent intrahemispheric connectivity. On the time course matrices (left and central), a nonzero pixel level represents significant positive or negative time course correlation, as determined
by linear regression. On the ICA matrix (right), the pixel level represents the value of the ICA coactivation index (as defined in the Materials and Methods section), which measures the
coactivation of 2 ROIs on the ICA component maps. These matrices demonstrate partial overlap between the correlation patterns observed with time course correlation and the
corresponding ICA components. See text for full description of results.
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region correlating with itself. Furthermore, values in the vicin-
ity of the diagonal are relatively large, for both time course
correlations and ICA, in intra- and interhemispheric quad-
rants, representing intense connectivity between each region,
its neighbors, and their contralateral homologues. The ICA-
and ROI�derived matrices, however, also demonstrate a
marked difference. The time course r values tend to be rela-
tively large for regions 20 –35 and 40 –50, corresponding to the
medial frontal, cingulate, and occipital regions, whereas no
such effect is observed for the ICA coactivation indices, for
which the maps show a more diffuse and scattered pattern.

Irrespective of the number of components, the ANOVA on
the average rank distance, though statistically significant (P �
.001) due to the degrees of freedom (75,762-76), yielded a neg-
ligibly small effect size (�p

2 � 0.04), indicating that the corre-
spondence between the ICA coactivation indices and the ROI–
derived time course r values was only very weakly driven by
specific combinations of regions.

Discussion
Our results reveal a correspondence between the time course
correlation r values and the ICA coactivation indices, which is
significant (P � .001) and moderate in intensity (r � 0.44)
according to Cohen criteria. This findings is novel in that
while a number of previous investigations have highlighted a
convergence in the information provided by the 2 meth-
ods,19-24 they have done so mainly on the basis of a qualitative
judgment. To our knowledge, this study is the first to explore
the issue in a quantitative manner on a whole dataset.

The presence of a significant correspondence reassuringly
confirms that, despite differences, the 2 methods successfully
represent the underlying connectivity. This is expected, con-
sidering that they are based on the same information content
(ie, on the presence of coherent time course fluctuations over
spatially distinct regions). The correspondence was, however,
not strong, as also evident on the comparison of the matrices
shown in Fig 4. The main similarity was the presence of rela-
tively large values in the proximity of the diagonal, where cells
generally correspond to a region correlating with its neighbors
or their contralateral homologues (see the On-line Table). The
main difference was the observation of high r values in areas
distant from the diagonal, for which the ICA coactivation in-
dex was, by contrast, relatively low. Even though a graph-the-
ory-based analysis was not conducted, our results appear to
imply that the 2 techniques have a higher correspondence in
the extraction of small-world rather than long-distance con-
nections; this qualitative observation needs to be substantiated
by further work.32

Incomplete correspondence is not unexpected, given the
conceptual differences between the 2 methods (ie, the use of
data-reduction algorithms direct extraction of temporal series
from each region). Furthermore, discrepancies in the results
provided by the 2 methods may also reflect different sensitiv-
ities to physiologically determined systematic fluctuations (eg,
Beckmann et al13). Finally, the relative merits and differences
of the 2 techniques are, in principle, independent of whether
the observed BOLD signal-intensity fluctuations are due to
resting-state activity or related to the performance of an active
task.

The intensity of the correspondence was modulated by the

number of components used for ICA decomposition: The cor-
relation coefficient was 0.44 for 20 components and smaller
(range, 0.35– 0.41) for all other component numbers (10, 15,
25, 30, 35, and 40). In fact, the number indicated by MDL
estimation is 20 components, the value most commonly as-
sumed as optimal throughout the literature.13,20,21,25 This ef-
fect suggests that the representation of the statistical properties
of the dataset by ICA may be dependent on the number of
components chosen, a finding in line with previous work that
reported that the spatial and temporal discriminative ability of
ICA is critically dependent on this parameter.22,33

Indeed, 1 reason for partial correspondence between ICA
and time course correlation analysis is that ICA can produce
“fragmented” networks, whereby given networks of coherent
activity, which would appear together in a single seed-based
map, are scattered across multiple components. It has been
shown that this effect is critically dependent on the choice of
the number of components: As this is increased, the decom-
position becomes less stable and some networks (such as the
visual components) branch into clearly distinct subcompo-
nents, whereas others apparently do not (such as the sensori-
motor network).34 This effect may partly account for the de-
creased correspondence observed when decomposition was
performed with a large number of components.

We chose to define the main formula used for the ICA
coactivation index through the product of the average t-scores
from the 2 ROIs. We extended our main findings by exploring
the consequences of this choice and have inserted an explicit
power parameter, k, and swept its value to determine the effect
on the observed correspondence. The intensity of the corre-
spondence was highest for k � 1 and decreased on either side
of this value. This finding confirmed that the choice of the ICA
coactivation index formula (ie, considering the product of the
2 average t values rather than, for example, the square root of
the product) was appropriate to represent the structure of the
data. Additionally, it indicated that the observed correspon-
dence was not especially driven by a few intense coactivations
(as would be the case if it had increased with k 
 1) or by many
weaker coactivations (k � 1), but it was, instead, representa-
tive of a characteristic of the dataset as a whole.

Furthermore, the observed correlations were not strongly
driven by specific combinations of ROIs; rather, they were a
primarily distributed feature of the data as confirmed by the
ANOVA on rank orders.

ROI�based analyses indicate that in the absence of tempo-
ral filtering, most observed regional correlations are positive.
Removing the average time course and performing low-pass
filtering resulted in a considerably increased number of nega-
tive correlations, a finding already reported in the literature
(eg, Van Dijk et al24); however, the correspondence with ICA
did not change, as seen in Figs 3 and 4.

The present study has a number of limitations. First, the
correspondence was assessed only during resting state. How-
ever, a recent study25 has shown that the components identi-
fied during resting state and an auditory task substantially
overlapped. Second, we used a relatively long TR, leading to
aliasing problems. While this limitation, in common with
most studies in this area (eg, Damoiseaux et al14, Seeley et al19,
Van Dijk et al24, Fox et al35), prevents spectral analysis of the
data, previous studies have suggested that it does not signifi-
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cantly alter the topographic characteristics of the extracted
components (eg, Wang et al16 and De Luca et al36). Third, due
to the previous limitation and to the fact that no physiologic
monitoring was performed, we were unable to identify a ro-
bust objective criterion applicable to both ICA and ROI�
based analysis to reject the signal-intensity fluctuations due to
cardiac and respiratory activity. Fourth, the intersubject vari-
ability in the ROI�based analysis was not characterized.
However, numerous studies have shown that functional con-
nectivity data are strongly reliable across sessions and individ-
uals.14,21,24 Future work should evaluate how variable the cor-
relation between the 2 techniques is at the level of individual
subjects, comparing ICA decompositions and time course
correlations performed in a completely separate way for each
subject.

Conclusions
We have quantified the correspondence between the connec-
tivity information provided by ICA and ROI-based analysis.
We have found a significant correspondence of moderate in-
tensity, which was modulated by the number of components
used for ICA decomposition and was most intense for 20 ICs
(r � 0.44). It was strongest when the product of the ICA map
t-scores was considered (ie, k � 1), and the correspondence
was not driven by specific combination of regions. The 2 tech-
niques, however, do not provide completely overlapping in-
formation, and our data alone are not sufficient to elaborate
guidelines regarding which one to adopt in a given study. A
plausible theoretic criterion would be to adopt a regional time
course correlation analysis whenever clear anatomic a priori
hypotheses are available, and ICA otherwise; however, in prac-
tice the 2 techniques are frequently used jointly. A paradig-
matic example is the application of resting-state studies to
presurgical mapping of the motor areas. A region of interest is
typically used as an initial seed to highlight the sensorimotor
component of spontaneous activity, but this is always supple-
mented by ICA analysis, to remove anatomic assumptions that
may be misleading in the presence of gross lesions and func-
tional reorganization.37 Another example is in the study of
AD: Given that a central involvement of the hippocampus is
expected, a ROI approach is well-motivated.10 However, even
for this application, ICA is frequently used because it reduces
the risk of missing relevant activity also in other areas due to a
priori anatomic assumptions.11 If possible, the 2 approaches
should be applied jointly, to obtain an independent confirma-
tion of the findings and to support further work aimed at
determining the suitability of the 2 approaches for given
applications.
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