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COMMENTARY

Toward Improving Fidelity of Computational Fluid Dynamics
Simulations: Boundary Conditions Matter

In their paper entitled “Generalized versus Patient-Specific In-

flow Boundary Conditions in Computational Fluid Dynamics

Simulations of Cerebral Aneurysmal Hemodynamics,” Jansen et

al1 compare results from computational fluid dynamics (CFD)

simulations performed with 2 different kinds of boundary condi-

tions: a spatiotemporal inflow waveform measured with 2D

phase-contrast MR imaging in the individual patient and a gen-

eralized inflow velocity profile previously described in the litera-

ture. In their comparison, Jansen et al focus on wall shear stress

(WSS) and, derived from it, the oscillatory shear index as well as

intra-aneurysmal flow patterns. In agreement with previously

published results,2-5 they report statistically significant differ-

ences for the 2 approaches.

Simulating hemodynamics in cerebral aneurysms with CFD

techniques is a relatively new approach translating a well-estab-

lished engineering technology into clinical research. Essentially, a

computational model as an approximation of the real world is

created and the governing equations for blood flow (Navier

Stokes equations) are numerically solved based on this math-

ematic construct. The output of these simulations includes the

velocity fields and the values of other hemodynamic parameters

such as WSS or pressure.

The fidelity of the results depends on the kinds of approxima-

tions or simplifications made when creating the computational

model. For instance, early simulations using 2D models with sim-

ple geometric approximations were able to demonstrate low WSS

at the aneurysm dome6; however, because of inherent limitations,

these models could not provide any information about the 3D

distribution of the flow or WSS. In many studies to date, 3D

volumetric information derived from medical image data specific

to the individual patient is used, often from 3D digital subtraction

angiography but also from CT angiography or MR angiography.

Boundary conditions are approximated by generalized wave-

forms. These simulations succeed in providing a true 3D descrip-

tion of the spatial and temporal distributions of hemodynamic

parameters. As there are no variations in the inflow boundary

condition, differences in the simulation results between individ-

ual aneurysms originate from the aneurysm geometries alone.

With this approach it was demonstrated that CFD can visualize

and quantify hemodynamic differences between ruptured and

unruptured aneurysms.7-9

As Jansen et al1 demonstrate, simulations may be further re-

fined by incorporating patient-derived flow information into the

model as the exact shape of the inflow waveform may exert signif-

icant effects on at least some of the calculated hemodynamic pa-

rameters. However, physiologic waveforms may also vary. For

instance, intense physical efforts or emotional excitement typi-

cally result in a sudden change in heart rate and blood pressure. A

CFD study investigating the effects of increase in cardiac fre-

quency found significant changes in the overall intra-aneurysmal

flow patterns (eg, vortex formation and translation) and an in-

crease in WSS.10 These effects may also need to be considered for

an accurate assessment of hemodynamics in cerebral aneurysms

with CFD techniques.

CFD simulations are the results of mathematic constructs

and validation of their results is necessary. Validation studies

comparing virtual angiograms (derived from CFD) with acquired

angiograms11-14 and comparing simulated intra-aneurysmal flow

patterns with those measured with 2D phase-contrast MR imag-

ing15-18 or 4D phase-contrast MR imaging19,20 reported generally

good agreement and thereby encourage the continued advance-

ment of CFD. Still, a better understanding of the limitations of

CFD simulations is warranted.21-23

Computational simulations will play an increased role in the

future for enhancing and complementing the information in

medical images. Furthermore, such simulations will not be lim-

ited to studies of hemodynamics in cerebral aneurysms. As an

indicative example, CFD studies have been recently performed for

investigating CSF flow in Chiari malformations.24,25 Further

validation and optimization of CFD techniques as well as stream-

lining the simulation process itself, eg, by using dedicated CFD

simulation and visualization systems,26 may foster further inte-

gration of this exciting technology into clinical research.
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