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ORIGINAL RESEARCH
BRAIN

Iterative Probabilistic Voxel Labeling: Automated
Segmentation for Analysis of The Cancer Imaging Archive

Glioblastoma Images
X T.C. Steed, J.M. Treiber, K.S. Patel, X Z. Taich, N.S. White, M.L. Treiber, N. Farid, B.S. Carter, A.M. Dale, and C.C. Chen

ABSTRACT

BACKGROUND AND PURPOSE: Robust, automated segmentation algorithms are required for quantitative analysis of large imaging
datasets. We developed an automated method that identifies and labels brain tumor–associated pathology by using an iterative proba-
bilistic voxel labeling using k-nearest neighbor and Gaussian mixture model classification. Our purpose was to develop a segmentation
method which could be applied to a variety of imaging from The Cancer Imaging Archive.

MATERIALS AND METHODS: Images from 2 sets of 15 randomly selected subjects with glioblastoma from The Cancer Imaging Archive
were processed by using the automated algorithm. The algorithm-defined tumor volumes were compared with those segmented by
trained operators by using the Dice similarity coefficient.

RESULTS: Compared with operator volumes, algorithm-generated segmentations yielded mean Dice similarities of 0.92 � 0.03 for
contrast-enhancing volumes and 0.84 � 0.09 for FLAIR hyperintensity volumes. These values compared favorably with the means of Dice
similarity coefficients between the operator-defined segmentations: 0.92 � 0.03 for contrast-enhancing volumes and 0.92 � 0.05 for
FLAIR hyperintensity volumes. Robust segmentations can be achieved when only postcontrast T1WI and FLAIR images are available.

CONCLUSIONS: Iterative probabilistic voxel labeling defined tumor volumes that were highly consistent with operator-defined volumes.
Application of this algorithm could facilitate quantitative assessment of neuroimaging from patients with glioblastoma for both research and
clinical indications.

ABBREVIATIONS: BV � blood vessel; CEV � contrast-enhancing volume; DICE � Dice similarity coefficient; FHV � FLAIR hyperintensity volume; GMM � Gaussian
mixture modeling; IPVL � iterative probabilistic voxel labeling; KNN � k-nearest neighbor; T1wCE � T1WI with contrast enhancement; TCIA � The Cancer Imaging
Archive; TCGA � The Cancer Genome Atlas

Glioblastoma is the most common primary brain tumor and

remains one of the deadliest human cancers.1 During the past

50 years, improvement with regard to patient outcomes has been

marginal.2 A major barrier in therapeutic development is attribut-

able to the misconception that glioblastoma constitutes a single dis-

ease. Molecular profiling has revealed that glioblastoma comprises

multiple subtypes characterized by distinct molecular pathways.3 To

improve the clinical outcome of patients with glioblastoma, technol-

ogies must be developed to distinguish these subtypes.

There are compelling reasons that MR imaging may serve as a tool

for dissecting the variability of glioblastoma. First, radiographic data

are available for every patient because the clinical management of

glioblastoma tumors is largely driven by the interpretation of MR

images. Second, available data suggest that the radiographic ap-

pearance of glioblastoma is related to its physiologic state.4,5 To

better define this relationship, imaging archives with correspond-

ing genomic profiling, such as The Cancer Imaging Archive

(TCIA), have been launched (http://cancerimagingarchive.net/).

Much of the early work correlating MR imaging appearances of

glioblastoma tumors with genomic profiling was performed by us-

ing manually delineated tumor volumes or qualitative assessments

provided by trained clinicians.4,5 These approaches are limited by

the inherent variability of subjective interpretation, and significant
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interrater discrepancies have been reported.6,7 Additionally, manual

segmentation is time-consuming for large datasets. This limitation is

particularly apparent when multiple radiographic features require

segmentation. To address these deficiencies, effort has been devoted

to developing automated algorithms for segmenting tumor vol-

umes.8-12 These algorithms include clustering,13,14 discriminative

strategies,15 and generative approaches.11,16,17 The success of these

methods has been limited by widely differing MR imaging protocols

for image acquisition and quality18 and the significant overlap be-

tween the radiographic appearance of glioblastoma tumors and nor-

mal cerebrum on MR imaging. Although many of these methods can

generate high-quality volumes from a training set, segmentation al-

gorithms may fail when applied to images acquired by using different

protocols.

We hypothesized that a probabilistic approach by using subject-

specific classifiers would reliably discriminate glioblastoma from the

surrounding cerebrum. In this algorithm, termed iterative probabi-

listic voxel labeling (IPVL), sparse, high-specificity, preliminary vol-

umes were created for each subject by using a combination of region-

growing and K-means-based tissue segmentation. Sampling of these

preliminary volumes trained k-nearest neighbor (KNN) and Gauss-

ian mixture model (GMM) classifiers by using voxel intensity and

spatial coordinates. Voxel labels are assigned probabilistically by it-

eratively trained classifiers. Finally, each voxel is labeled as contrast-

enhancing tumor volume (CEV), FLAIR hyperintensity volume

(FHV), gray matter, white matter, CSF, and blood vessel (BV). Most

important, our algorithm reliably segments images from the TCIA

that were acquired by a variety of scanners and protocols.

MATERIALS AND METHODS
The Cancer Imaging Archive
MR images of glioblastoma tumors from The Cancer Imaging Ar-

chive were downloaded in June 2013. We identified subjects who

underwent MR imaging before surgery and had a full complement of

imaging, including the following: T1-weighted imaging, T1-

weighted imaging with contrast enhancement (T1wCE), T2-

weighted imaging, and FLAIR. Subjects were excluded when images

contained a prohibitive amount of motion or distortion artifacts.

Our algorithm was developed in a “pilot” set of 10 subjects from the

TCIA. The algorithm was tested in 2 sets of 15 subjects selected from

the TCIA that were not used during development. TCIA MR images

were acquired from a number of institutions whose scanners differed

by manufacturer and model and whose images varied by sequence,

quality, and spatial resolution. (On-line Tables 1 and 2).

Preprocessing
Images were preprocessed by using a combination of in-house

and external software including the FMRIB Software Library19,20

(FSL, Version 5.0; http://fsl.fmrib.ox.ac.uk/fsl). Image distortions

caused by gradient nonlinearity warping were corrected by using

previous methods,21-23 followed by bias-field correction by using

the FMRIB Automated Segmentation Tool (FAST),24 and were

registered to the Montreal Neurological Institute-152 nonlinear

sixth-generation standard brain image.25 Affine registration was

performed by using the FMRIB Linear Image Registration Tool

(FLIRT).26,27 To ensure removal of nonbrain tissues (eg, skull,

optic nerve, and carotid arteries), we created a stringent brain

mask from the T1WI by using a modified combination of

the FSL Brain Extraction Tool24 and the Robust Brain Extrac-

tion tool (https://www.nitrc.org/projects/robex).28 Briefly, this

method automatically compared the resultant brain with the vol-

ume derived from applying the Montreal Neurological Institute

brain mask. Overestimation of �10% would adjust the fractional

intensity, resulting in more restrictive brain outlines.

Preliminary Segmentation
It was crucial to generate highly specific volumes that accurately rep-

resented the range of intensity and spatial distribution for each tissue

label to appropriately train our segmentation algorithm to recognize

each subject’s features. After skull stripping, initial tissue segmenta-

tion into preliminary WM, GM, CSF, and CEVs was performed for

the available T1WI sequences by using FAST.24 The FAST-derived

initial CEV consisted of both tumor-associated CEV and BV vol-

umes. The preliminary BV volume was distinguished from the

FAST-derived CEV by performing 2 morphology-based manipula-

tions. First, CEV objects located near the cortical surface were selec-

tively removed by using a uniform spheric 3-mm erosion of the brain

mask applied to the FAST-derived CEVs. Large vessels, such as the

dural veins and carotid arteries, were removed by this operation due

to their proximity to the brain surface. Second, a modified region-

growing algorithm was used to identify vessels that were continuous

with the venous sinuses. Region-growing was seeded in the region of

the torcula (confluence of the sinuses), which was identified on the

template image, to which all images were registered. Voxels identified

as vessels by the combination of these methods were labeled as pre-

liminary BV volume, while the remaining CEV was assigned to pre-

liminary tumor-associated CEV.

The FHV preliminary volume was created by first determining

and applying an automatic threshold for the FLAIR image by

using the Otsu method.29 FLAIR hyperintense regions on MR

imaging may be tumor-associated or non-tumor-associated (eg,

periventricular or pericortical). The non-tumor-associated hy-

perintense elements were excluded by using a spheric 3-mm ero-

sion performed on the brain mask, while spheric 3-mm dilation

was performed on the CSF volume. Together, these operations

removed pericortical hyperintensities and the periventricular hy-

perintensities from the remainder of the preliminary FHVs.

Approximately 25% of voxels were labeled at this time. The voxels

labeled were randomly sampled from regions that had the highest

specificity to a particular volume of interest. For contrast enhance-

ment, these included regions of contrast enhancement not continu-

ous with the sagittal and transverse sinus. For FLAIR hyperintensity,

these included regions above an intensity threshold �1.5 SDs above

the mean intensity of the FLAIR image. The voxels assigned to each

preliminary tissue label were used as the basis for training probabi-

listic classifiers (KNN and GMM). Voxels that were not classified into

these categories during preliminary volume segmentation remained

unassigned to avoid adding noise to the classifiers.

K-Nearest Neighbor and Gaussian Mixture Model
Classifiers
The classifiers used to assign voxel membership were KNN and

GMM. The KNN algorithm is a nonparametric method that as-

signs membership of a single datum on the basis of a number of
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neighboring training examples.30,31 GMM allows statistical clus-

tering of data into a predefined number of Gaussian distributions,

which, in this case, represent distinct imaging features. Use of

these 2 probabilistic classifiers was complementary.

To expedite processing and improve accuracy, we used a

weighted random sampling of the preliminary volume voxels to

train both KNN and GMM classifiers. The weights for sampling

reflected the relative distribution of voxels assigned to tissue labels

from preliminary segmentation. Weighting was performed to

avoid biasing the classifiers toward any particular tissue label

caused by overrepresentation attributed to sampling error. Train-

ing was performed on a subject-by-subject basis, meaning that

each patient was segmented according to his or her own subject-

specific classifier by using both intensity and spatial data from

each voxel to define labels. After training, all voxels, including

those that were unassigned during preliminary volume creation,

were classified independently by both KNN and GMM probabilisti-

cally to the 6 tissue labels: CEV, FHV, CSF, GM, WM, and BV. The

probability of membership for each voxel was determined by a dis-

tance metric from classifier training. For each voxel, the greatest tis-

sue label probability determined voxel labeling. Classifier consensus

was resampled and used to re-train another iteration of KNN classi-

fication at a higher voxel sampling rate. This step had the benefit of

reducing noise introduced during the creation of preliminary vol-

umes, improving both the smoothness of the final volumes and the

accuracy of the tissue labels.

Final Segmentation
Voxel label probabilities from all classifiers were summed, includ-

ing the iterative KNN classification, for each tissue label, and a

final segmentation volume was created by assigning voxels ac-

cording to the highest probability membership to each tissue la-

bel. At this time, all voxels were probabilistically assigned. A voxel

continuity filter was applied that removed discontinuous clusters

of limited connectivity (fewer than 150 contiguous voxels). To

address voxels that had equal probabilities of belonging to �2

tissue labels, we set priority in the following manner from greatest

to least: CEV � FHV � BV to ensure that individual voxel tissue

labels were mutually exclusive. This order was determined by the

confidence of labeling each feature.

Segmentation Evaluation
To assess segmentation quality, we drew CEVs and FHVs manu-

ally for 2 sets of 15 subjects selected randomly from the available

pool downloaded from the TCIA. These volumes were completed

by 2 independent trained operators under the supervision of a

neuroradiologist (N.F.) and a neurosurgeon (C.C.C.). Manual

delineation of tumor-associated volumes was performed by using

the software program AMIRA (http://www.vsg3d.com/amira/

overview), using threshold-assisted segmentation on whole-brain

T1wCE and FLAIR images that were registered to the Montreal

Neurological Institute template. Operator-derived volumes were

compared with IPVL-derived volumes by using the Dice similar-

ity coefficient (DICE). This coefficient assesses the similarity be-

tween 2 volumes by dividing twice the sum of the intersection by

the sum of both volumes.32 Interoperator similarity was also com-

pared by using this metric. A DICE equal to 1 would imply perfect

similarity and overlap of 2 volumes.

Minimum Image Requirement for Adequate
Segmentation
To assess the performance of our method when fewer imaging

sequences were available for input, we implemented IPVL on a

group of 15 subjects multiple times while removing �1 image,

recapitulating common image combinations seen within the

TCIA subjects. The segmentations that resulted from these image

combinations were compared with operator volumes to deter-

mine their DICE similarities. FHVs were not segmented in image

combinations that lacked FLAIR sequences.

RESULTS
Overview of the Automated Segmentation Algorithm
The steps of our segmentation protocol, applied to a representa-

tive case, are illustrated in Fig 1. Generally, our segmentation

FIG 1. Work flow for iterative probabilistic voxel labeling. A, Downloaded TCIA images were preprocessed. B, Preliminary segmentation was
performed to generate conservative yet highly specific preliminary volumes. C, In the classification step, these volumes were used to train the
GMM and KNN probabilistic classifiers. The consensus of KNN and GMM classification was resampled and used to train a new classifier (KNN II),
which assigned voxel tissue labels. The classifiers integrated their respective outputs to generate tissue-specific probability volumes. D, The
voxels were assigned on the basis of their greatest probability of membership to a tissue label, and a voxel continuity filter was applied to
eliminate clusters of less than 150 continuous voxels.
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work flow was divided into 5 stages: preprocessing, preliminary

segmentation, classification, probability labeling, and final seg-

mentation. In preprocessing, images were loaded. Bias field cor-

rection, skull stripping, and registration to the template were then

performed. The results of preprocessing created images in stan-

dard space to provide input for preliminary segmentation. Pre-

liminary segmentation assigned voxel labels to CEV, FHV, BV,

CSF, GM, WM, and unassigned (for voxels with ambiguous

membership) by using k-means-based tissue segmentation and a

region-growing algorithm. During classification, voxels sampled

from these preliminary labels were used to train the GMM and

KNN classifiers. All voxels were then classified to independent

labels to identify CEV, FHV, BV, CSF, GM, and WM volumes.

During probability labeling, each voxel was assigned a probability

of membership to each tissue label. In the last step, final segmen-

tation, voxels were labeled according to their greatest probability,

and a voxel continuity filter was applied to eliminate clusters of

�150 continuous voxels. The average time required to complete

segmentation was 11.12 � 5.63 minutes.

Manual Segmentation Comparison
Examples from 4 subjects that represented the CEVs and FHVs

with the highest and lowest DICE scores relative to operator 1 are

shown in Fig 2. Corresponding FHV

segmentations for CEV and CEV seg-

mentations for FHV are included to

show that segmentation success for 1

feature is not necessarily correlated with

segmentation success for corresponding

features. Analysis showed no statistical

difference among operator-derived vol-

umes, so operator 1 was selected as the

basis for image comparison (P � .72 for

CEV interoperator, and P � .39 for FHV

interoperator). Figure 2 demonstrates

that the algorithm generates highly anal-

ogous CEVs and FHVs relative to those

derived manually.

IPVL CEVs were statistically indis-

tinguishable from volumes generated by

expert operators across all subjects (P �

.93). DICE scores, for automated CEVs,

relative to operators 1 and 2, averaged

0.923 and 0.921, respectively. These

DICE scores were highly comparable

with those obtained from interoperator

analysis (average of 0.923, Fig 3A). For

automated FHVs, the DICE scores rela-

tive to operators 1 and 2 averaged 0.851

and 0.827, respectively. DICE scores

obtained from interoperator analysis av-

eraged 0.905 (Fig 3B). Analysis revealed

that FHVs were slightly lower than inter-

operator comparison (P � .04). We ob-
served that FHV DICE scores were
poorer than CEV DICE scores for both
the interoperator and the operator-

algorithm comparisons. Overall, the

DICE scores for both CEV and FHV achieved through our algo-

rithm were improved or similar relative to those previously

reported.14-20

To ensure that these results were generalizable, we randomly

selected 15 additional subjects for analysis. The results from this

analysis are highly comparable with those reported above. DICE

scores for automated CEVs relative to operators 1 and 2 averaged

0.921 and 0.901, respectively. These DICE scores were highly

comparable with those obtained from interoperator analysis

(DICE � 0.905). For automated FHVs, the DICE scores relative to

operators 1 and 2 averaged 0.846 and 0.823, respectively. DICE

scores obtained from interoperator analysis averaged 0.812.

It was possible that difficult cases, including tumors with mul-

tifocal patterns, or tumors with attachment to large vessels or the

brain surface, may cause errors in automatic segmentation. Of the

images analyzed, 2 glioblastomas (The Cancer Genome Atlas

[TCGA]-06 – 0139, TCGA-06 – 0166) were multifocal. For these

subjects, IPVL-defined CEV and FHV showed mean DICE scores

of 0.94 (range, 0.92– 0.95) and 0.92 (range, 0.91– 0.93) relative to

expert defined volumes, respectively. Seven tumors (TCGA-02–

0048, TCGA-06 – 0164, TCGA-08 – 0358, TCGA-76 – 6280,

TCGA-76 – 6192, TCGA-76 –5386, and HF1139) were located on

FIG 2. IPVL segment volumes that are highly analogous to operator-defined volumes. Results
from 4 subjects representing the highest and lowest Dice similarity coefficient scores for CEV and
FHV segmentations are shown. A, The highest DICE (top) and lowest DICE (bottom) examples of
IPVL-segmented CEVs relative to operator-defined volumes are shown. The corresponding FHV
segmentation results are shown (right) to demonstrate that CEV segmentations are independent
of FHV segmentations. B, The highest DICE (top) and lowest DICE (bottom) examples of IPVL-
segmented FHV relative to operator-defined volumes are shown. The corresponding CEV seg-
mentation results are shown as well (right) to demonstrate that FHV segmentations are indepen-
dent of CEV segmentations. Yellow indicates regions of intersection between operator and
IPVL-defined volumes; red, operator-defined volume only; green, IPVL-defined volume only.
Corresponding CEV segmentations are overlaid in blue on FLAIR images for clarity.
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the surface of the cerebrum. For these tumors, IPVL-defined CEV
and FHV showed mean DICE scores of 0.92 (range, 0.84 – 0.96)
and 0.84 (range, 0.70 – 0.95). One tumor (TCGA-76 –5385) was
attached to a major vessel (the MCA). For this tumor, IPVL-de-
fined CEV and FHV showed mean DICE scores of 0.90 (range,
0.89 – 0.91) and 0.72 (range, 0.70 – 0.75). These results suggest
that our algorithm performs adequately in anatomic locations
and in difficult cases that are historically challenging to previously
published algorithms.

Minimal Image Requirement for Adequate Segmentation
The TCIA and other image databases include many subjects who

do not have the full complement of T1WI, T1wCE, T2WI, and

FLAIR images. In the TCIA, this full set of imaging was available

in only 52% of subjects. Therefore, it was of interest to determine

how our algorithm would perform when limited imaging modal-

ities were available. To this end, we examined how the sequential

removal of the various image sequences impacted segmentation

performance. DICE scores were determined for a subject’s seg-

mentations by using each combination of images relative to op-

erator-defined volumes. These DICE scores were plotted com-

pared with the DICE scores derived from segmentations by using

all 4 imaging sequences.

For CEV segmentations, removal of T1WI and T2WI did not

significantly affect performance. The DICE scores obtained when

comparing volumes delineated by using only T1wCE and FLAIR

were comparable with those obtained when all 4 imaging se-

quences were processed by our algorithm (Fig 4A). Similarly,

FHV segmentations were minimally impacted by image reduc-

tion, and DICE scores by using all 4 imaging sequences were com-

parable with those obtained when using only T1wCE and FLAIR

(Fig 4B).

To further characterize the impact of reducing the number of

image sequences on the performance of CEV and FHV segmen-

tations, we also plotted the range of DICE scores that resulted

from removing �1 image series for each subject. For most sub-

jects, removing images minimally impacted DICE scores—that

is, the segmentation quality was not significantly altered (Fig 4C

for CEV, Fig 4D for FHV). For FHV segmentations, removal of

T2WI and T1WI did not significantly alter segmentation perfor-

mance (Fig 4D for FHV).

Only 2 subjects, TCGA-02– 0068 and TCGA-06 – 0164, had

increased vessel contamination of the CEVs when FLAIR images

were removed during image-reduction analysis. CEV segmenta-

tions for image combinations that contained at least a FLAIR and

T1wCE image were highly comparable across all subjects (Fig 4E).

While adequate CEV segmentation required only T1wCE for

most cases, FLAIR images improved CEV and BV discrimination

and may be required for segmentation in a subset of subjects.

FIG 3. Quantitative comparison between IPVL-defined volumes and operator-derived volumes compared with interoperator comparisons. A
and B, DICE comparisons for 2 sets of IPVL-defined and operator-defined CEVs are shown. DICE scores were calculated comparing CEVs
generated by IPVL, operator 1, and operator 2. C and D, DICE score comparisons for IPVL-defined and operator-defined FHVs. DICE scores were
calculated comparing FHVs generated by IPVL, operator 1, and operator 2.
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Most surprising, CEV segmentation for T1wCE and FLAIR alone

was nearly identical to CEV segmentation results that used all

available imaging series. These results suggest that our algorithm

requires only T1wCE and FLAIR images for robust volume seg-

mentation of both tumor-associated CEVs and FHVs.

DISCUSSION
The success of any automated segmentation process hinges on the

a priori definition of the features that constitute a volume of in-

terest. Human vision can integrate visual data along with both

experience and assumption to distinguish and classify indepen-

dent features. This task is often challenging for a computer be-

cause the cross-section of data available to the computer is often

simplified. We hypothesized that the complexity of image seg-

mentation could be largely recapitulated by using iterating prob-

abilistic classifiers trained on sparse subject-specific preliminary

features. To test this hypothesis, we predefined the voxels that

were most likely associated with the features of interest to generate

preliminary volumes. We then used k-nearest neighbor and

GMM probabilistic classifiers to refine the segmentation process.

In our algorithm, these complementary probabilistic classifiers

were integrated in an iterative manner to converge on a segmen-

tation result for the various features of an MR image. Our results

demonstrate that IPVL image segmentation is highly comparable

with segmentations that were drawn manually.

Most important, the time required for segmentation per sub-

ject averaged 11.2 minutes when all 4 image sequences were used.

In contrast, manual segmentation by experts required 1–3

FIG 4. Effects of removing image sequences on IPVL segmentation. A, Select image sequences (such as T1WI) were removed before IPVL CEV
segmentations for each subject. The image sequences that were available during IPVL segmentation are indicated by a plus sign. DICE scores
were calculated for the resultant CEVs relative to operator 1– defined CEVs. The distribution of DICE scores across all subjects because of image
sequence removal is shown as a boxplot. B, Select image sequences were removed before IPVL FHV segmentations. DICE scores were calculated
for the resultant FHV segmentations relative to operator 1– defined FHVs. The distribution of DICE scores across all subjects due to image-
sequence removal is shown as a boxplot. C, A boxplot demonstrates the range of DICE scores for IPVL-segmented CEVs relative to operator-
defined CEVs per patient for all image combinations tested. D, A boxplot demonstrates the range of DICE scores for IPVL-segmented FHVs
relative to operator-defined FHVs per patient for all image combinations tested. E, A boxplot demonstrates the range of DICE scores for
IPVL-segmented CEVs relative to operator-defined CEVs per patient when only T1WI and FLAIR source images were used for IPVL segmentation.
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hours depending on the size and complexity of the volume to

be segmented. As such, our method presents an opportunity for

high-throughput quantitative analysis of TCIA images and other

imaging databases. The insensitivity of our algorithm to interin-

stitutional methodologic differences in MR imaging supports its

utility for this application. Further supporting the utility of our

algorithm, we demonstrated that only 2 image sequences (the

T1wCE and FLAIR images) are needed for reliable segmentation

of tumor CEVs and FHVs. Finally, using a common template

space will provide a platform for future analyses, intersubject

comparisons, and longitudinal studies.

While our study was focused on the development of an algo-

rithm for research use in terms of radiographic biomarker discov-

ery, reliable volume segmentation by using our algorithm may

also impact clinical practice. For example, it is often difficult to

detect subtle differences in the radiographic appearance of a tu-

mor during disease progression. As a result, changes in serial MR

imaging may be underappreciated until a patient becomes symp-

tomatic. Automated segmentation and longitudinal quantitative

comparison may help facilitate the detection of subtle radio-

graphic changes, such as tumor progression, thereby allowing cli-

nicians to perform procedures to prevent clinical deterioration in

select patients. Application of these methods may also aid the

evaluation of the therapeutic response in clinical trials.

Careful study of the discrepancies between the volumes gen-

erated by IPVL and expert-defined volumes revealed a few limi-

tations. The algorithm can fail to detect tumor contrast enhance-

ment or FLAIR hyperintensity in regions of these volumes that fall

below a single voxel (�1 mm). This limitation, a result of voxel

sampling and partial volume effect, could be mitigated with

higher resolution imaging. In a few subjects (eg, TCGA-02– 0068,

TCGA-06 – 0154), reliable delineation of BV volume from tumor

CEVs remained challenging when image combinations lacking

FLAIR images were used for segmentation, leading us to conclude

that FLAIR and T1wCE are required for our method. Segmenta-

tion of FLAIR volumes remains a challenge, but this challenge is

shared by the human eye as demonstrated by the interobserver

discrepancies reported previously. The use of higher order image

processing, such as textural analysis, may facilitate the improve-

ment of our algorithm in the near future.

CONCLUSIONS
We demonstrate that iterative probabilistic voxel labeling is a re-

liable and robust tool for automatic segmentation of MR images

in the TCIA dataset. Application of this method could facilitate

quantitative radiographic assessment of glioblastoma for both re-

searchers and clinicians alike.
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