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ORIGINAL RESEARCH
ADULT BRAIN

Prevalence of Brain Microbleeds in Alzheimer Disease:
A Systematic Review and Meta-Analysis on the Influence of

Neuroimaging Techniques
X A.A. Sepehry, X D. Lang, X G.-Y. Hsiung, and X A. Rauscher

ABSTRACT

BACKGROUND AND PURPOSE: The literature on the prevalence of Alzheimer disease–associated cerebral microbleeds assessed with
MR imaging shows considerable heterogeneity in terms of imaging techniques and parameters. Our aim was to perform a meta-analysis of
the role of imaging techniques, including image acquisition, field strength and scanner type, and clinical and demographic factors on the
reported prevalence of microbleeds in Alzheimer disease.

MATERIALS AND METHODS: The prevalence of microbleeds was examined with respect to a priori–selected moderating variables via
meta-analytic tools of literature reports.

RESULTS: Fourteen unique studies providing 15 microbleed prevalence rates met the selection criteria for inclusion. The aggregate
prevalence of microbleeds was 24% (95% CI, 19%–28%). Scan (SWI � 40%, gradient echo � 18%, EPI � 19%) and field strength (slope � 0.39;
standard error � 15, P � .01) influenced the prevalence of microbleeds. The associations between microbleeds and age, sex, and global
cognitive status were not significant. After updating the literature, the aggregate prevalence remained in the 95% CI range.

CONCLUSIONS: Imaging technique and field strength are strongly associated with the prevalence of microbleeds over the global
aggregate. Standardized imaging protocols for identification of microbleeds are recommended to minimize confounds.

ABBREVIATIONS: AD � Alzheimer disease; ER � event rate; GRE � gradient recalled-echo imaging; MB � microbleed; MCI � mild cognitive impairment; STROBE �
STrengthening the Reporting of OBservational studies in Epidemiology

A growing number of studies have suggested that the presence

of microbleeds (MBs) and the overall microbleed burden

have prognostic significance for Alzheimer disease (AD).1,2 In

AD, MBs are thought to contribute to the pathophysiology of the

illness, demonstrating a link between amyloid pathology and neu-

rovascular change.3 Although still controversial, the impact of

MBs on the progression of mild cognitive impairment (MCI) due

to incipient AD and subsequent emergence of AD has been sug-

gested.4 It is not clear whether MBs are consequences of AD or

cerebral amyloid angiopathy, or just a bystander. Current data on

the impact of MBs on global cognition have been equivocal, and

most studies showed a minimal effect of MBs.5 The lack of

effect has been associated with small sample size, insufficient

MB counts to cause any cognitive change, or AD severity mask-

ing the subtle effect of MBs on neurocognitive functioning.6

Heterogeneous classifications and poor validation of both the

presence and prevalence of MBs have further obscured poten-

tial relationships between neurocognitive functioning and

MBs.7,8 With respect to subregional neuropathology, few stud-

ies have directly examined the effect of MBs on other markers

of AD such as CSF-associated amyloid antibodies or hip-

pocampal atrophy.8,9

A number of clinical human studies examining the prevalence

of MBs in AD have been published since 2000. The most recent

review on the prevalence of MBs in AD included 4 unique stud-

ies.3 Those studies reported heterogeneous samples of patients

with AD with varying severity of cognitive impairment, age

ranges, sex, study design, and other confounds. Reported preva-

lence rates ranging between 17% and 32% were described, likely

due to considerable heterogeneity of imaging acquisition tech-

niques and MB identification approaches.

In MR imaging, paramagnetic hemosiderin in MBs gives rise

to local field inhomogeneities, which affect both the magnitude
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and the frequency of the MR imaging signal. Conventional gradi-

ent recalled-echo imaging (GRE) makes use of changes in the

magnitude via loss in the T2*-weighted signal. Susceptibility-

weighted imaging is a gradient-echo technique with high spatial

resolution that generates images with improved sensitivity to MBs

by also incorporating the MB effects on the MR signal fre-

quency.10,11 Because SWI is a 3D sequence, it allows thin sections

without intersection gaps. Typical spatial resolution of SWI is

0.5 � 0.5 � 2 mm, whereas GRE sections are up to 5 mm thick

with intersection gaps of up to 2 mm. The improved spatial reso-

lution allows SWI to capture small MBs, which may be missed

with GRE. Imaging of MBs also benefits from increased magnetic

field strength, which leads to a higher signal-to-noise ratio and

makes the field inhomogeneities around MBs more pronounced,

resulting in increased image contrast. The choices of both field

strength and imaging technique have, therefore, a substantial in-

fluence on the visibility of small bleeds (Fig 1). With technical

developments, the sensitivity of MR imaging to MBs has increased

and the prevalence reported on previous reviews may have to be

revised.

The purpose of this study was to conduct a meta-analysis of

MB prevalence in AD that takes into account imaging, clinical,

and demographic parameters.

MATERIALS AND METHODS
Search Strategy
MEDLINE and EMBASE were queried for a priori– defined key

words with key terms and subject headings on September 9, 2014.

The following were combined to yield our search outcome: SWI

OR “susceptibility weighted imaging” OR “gradient echo imag-

ing” OR “gradient echo MR imaging” OR “susceptibility-

weighted MR imaging” OR MR imaging OR nuclear MR imaging

AND Microbleed* OR microhemorrhage OR “petechial hemor-

rhage” OR hemosiderin OR “cerebral amyloid angiopathy” OR

cerebral hemorrhage OR intracranial hemorrhages AND Alzhei-

mer disease OR dementia OR Alzheimer*. Examining the refer-

ence list of review articles relevant to the study substantiated the

search. The search of the literature was updated on May 11, 2015.

Selection Criteria
Two reviewing authors (A.A.S. and A.R.) examined all retrieved

abstracts independently. Studies were retained when they re-

ported both the diagnosis of AD and the prevalence of MBs. Ar-

ticles were excluded if they were the following: 1) a case report,

review, meta-analysis, letter, editorial, case-control or cross-sec-

tional studies; 2) a treatment study; or 3) reported duplicate data

on the following: 4) on postmortem brain; 5) atypical AD (eg,

logopenic); 6) explicitly on familial AD type; or 7) included mixed

groups (eg, AD with MCI). The same method was applied to

studies found by a hand search of reference lists of review articles.

When disagreement occurred in study classification, further dis-

cussion was undertaken to reach concordance. Additionally,

quantitative analysis of between-rater agreement was performed.

The selection criteria were formulated to minimize statistical and

sample heterogeneity.

A Priori–Selected Moderating Variables
The selected moderating variables were the following: imaging

parameters including scanner type, field strength, and scan tech-

niques; MB definition; age of patients with AD (total AD sample);

global cognitive scores of the sample; sex; diagnosis of AD (pos-

sible or probable); study design; hemorrhage; infarct/lacuna;

stroke; and the anatomic distribution of MBs. Due to the limited

number of included studies and the large number of variables,

exploratory single-variable meta-regressions were performed.

Effect Size and Calculations
Event rates (effect sizes) were generated by using the reported

prevalence rate for MBs (�1) in patients with AD for each study.

Subsequently, an aggregate measure was computed by using the

random-effects model that takes into account the sample size

from each study. For categoric and continuous-type moderating

variables, meta-regression or categoric analyses were performed.

All the analyses and graphs were implemented by using Compre-

hensive Meta-Analysis (Version 2.0, https://www.meta-analysis.

com).12

Each study contributed 1 time to the aggregate event rate esti-

mate, unless the authors provided different event rates for differ-

ent techniques. For the study reporting field strengths of 1T and

1.5T, the lower field strength was used. For studies reporting cog-

nitive scores or mean age for patients with and without MBs, an

aggregate mean and SD were calculated by using D-STAT13 and

were subsequently used in the overall analyses. Comparison be-

tween the prevalence of MBs in patients with AD versus healthy

controls and those with subjective cognitive impairment and

other dementias was performed by using odd ratios. Examination

of the effect of antiplatelet medication, the apolipoprotein E4 allele

(presence and percentage reported), hypertension, and immuno-

therapy when possible was performed by using categoric and

meta-regression analyses. For all analyses, the critical level of sig-

nificance was set to 5%. For all meta-regressions, secondary (ag-

gregate) statistics were used. The reported prevalence (event rate)

from each study was transformed to a log scale to allow both

continuous and dichotomized moderating variables. For single-

variable meta-regressions, we regressed the moderating variable

FIG 1. Gradient-echo MR imaging (left) and SWI (right) acquired in the
same subject on a 3T Achieva (Philips Healthcare, Best, the Nether-
lands) with an 8-channel sensitivity encoding head coil and sensitivity
encoding reconstruction of multichannel data. The gradient-echo
scan shows 1 microhemorrhage when the more sensitive SWI scan
detects 3.
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on the prevalence rate. The R2 analog was used to report the ex-

plained magnitude of between-study variance.

Quality Assessment
The quality of the included studies was assessed according to

STrengthening the Reporting of OBservational studies in Epide-

miology (STROBE) guidelines.14 For reporting of the meta-anal-

ysis data, when applicable, reference has been made to Meta-anal-

ysis of Observational Studies in Epidemiology or the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) statement.15,16

Assessment of Bias
For examination of publication bias, the funnel plot and the

Begg and Mazumdar rank correlation test17 and the test of the

intercept of Egger et al18 were used. A significant P value for

both Begg and Mazumdar and Egger test is indicative of pos-

sible bias.

Heterogeneity
Statistical heterogeneity was examined for global and subsequent

moderating variables by using the Q-statistic and I2.19 To mini-

mize the magnitude of bias resulting from selectively dropping

studies to explain heterogeneity and to keep the maximum num-

ber of studies in the analyses, we assessed the heterogeneity by

using multivariable meta-regressions (incremental or diagonal

approach) when applicable. The incremental approach was used

when variables could have been added, and the diagonal was used

when there was colinearity among variables. The first category

consisted of imaging parameters including field strength, scan

technique, and scanner type. The second category included de-

mographics and Mini-Mental State Examination score. The third

category pertained to clinical variables, including the effect of MB

location and definition, lacunae, stroke,

hemorrhage, AD diagnosis, and risk fac-

tors. Subsequently, analyses were per-

formed of the following: 1) prevalence

for other dementias and control groups,

2) risk factors including apolipoprotein

E4 carriers (heterozygote, homozygotes,

or both) and percentage with hyperten-

sion, 3) publication date on the preva-

lence of MBs, and 4) analyses based on

updated literature.

RESULTS
Study Selection
The search of electronic literature

yielded 273 unique abstracts (99 from

MEDLINE and 267 from EMBASE).

Also, 2 studies20,21 emerged from the

search of review articles. From these, 73

studies from MEDLINE and 228 from

EMBASE were excluded at abstract

screening. The remaining 26 from

MEDLINE and 39 from EMBASE were

examined for data and selection criteria

in more detail. At this stage, the interra-

ter � agreement was at 0.87. From MEDLINE/EMBASE and

emerging studies, 14 published studies met selection criteria and

had no overlap with any other included study. One study22 re-

ported results from 2 techniques in the same cohort, resulting in

15 reported prevalence rates for the subsequent analyses (see On-

line Table 1 for excluded studies, and flow-diagram, Fig 2). There-

fore, the final included number of studies was 15 (Table 1 and

On-line Table 2).

Demographic Data and Acquisition Platforms of the
Included Studies
The sample sizes ranged from 10 to 550. For the studies reporting

global cognition scores as assessed by the Mini-Mental State Ex-

amination, the values ranged from 17.9 to 26. The mean age range

was 67–79.5 years; the percentage of male subjects was between

29% and 51%. AD diagnoses were reported as probable AD, a mix

of probable and possible AD as per the 1984 criteria of McKhann

et al,23 and unspecified.

Scanners used were Signa 1.5T and Signa 3T (GE Health-

care, Milwaukee, Wisconsin); Intera 1.5T, Intera 3T, and

Achieva 3T (Philips Healthcare, Best, the Netherlands); and 1T

Impact, 1.5T Avanto, 1.5T Vision, 1.5T Sonata, and 3T Trio

(Siemens, Erlangen, Germany). The field strengths were 1T,

1.5T, and 3T; the techniques used were T2*-weighted gradient

echo, echo-planar imaging, and SWI. Most studies reported on

diffuse/global distribution of the MBs and explicitly consid-

ered MBs as round and �10 mm.

Prevalence Aggregate
The global event rate (ER) estimate for at least 1 MB included 583

cases from a sample of 2333 (ER � 0.24, n � 15) and was heter-

ogeneous (I2 � 85.99). Both graphic (funnel plot) and quantita-

FIG 2. Flow diagram showing the progress of data collection.
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tive analyses for publication bias were nonsignificant (P � .05),

suggesting a lack of significant bias.

Global/diffuse distribution of the MB event rate was similar

to the global effect (ER � 0.24, n � 11); and for cortical,

subcortical, or nonspecified MB locations, various prevalence

rates were reported. For those that reported explicitly and used

a size of �10 mm to define MBs, the prevalence of MBs was 25

(ER � 0.25, n � 13).

Moderating Factors

Imaging Techniques. With SWI (ER � 0.40, n � 5), the preva-

lence was more than twice as high as that in those studies

conducted with GRE imaging (ER � 0.18, n � 7) or EPI (ER �

0.19, n � 3). For Siemens scanners, the prevalence of MB was 27%

(ER � 0.27, n � 8).

Demographics. Age (P � .29), sex (P � .75), and global cogni-

tion (P � .09) assessed by single mixed-effects meta-regression

did not modify the prevalence of MBs (Table 2). For cigarette

smoking, the prevalence of MBs was nearly 25% (ER � 0.246;

95% CI, 0.200 – 0.298). Details for medication and substance use

were insufficient for further analyses.

Diagnostic Characteristics. For studies reporting explicitly on

probable AD as per the diagnostic framework of McKhann et al,23

the prevalence of MBs (ER � 0.27, n � 7) was slightly higher

compared with those studies that did not specify an AD diagnostic

criterion (ER � 0.24, n � 6) but was significantly higher than

those reporting a combination of probable and possible AD

groups (ER � 0.14, n � 2). The associations between MBs and

age, sex, and global cognitive status were not significant factors

that affected the prevalence of MBs for probable AD (P � .1).

Quality Assessment. The quality of studies as assessed by

STROBE guidelines did not appear to affect the overall event

rate estimate (slope � 0.055, standard error � 0.118, P � .646,

n � 15).

Details on event rates and meta-regression results are listed in

Table 2 and On-line Table 3.

Heterogeneity
The heterogeneity was assessed by using multivariable meta-re-

gressions. For the imaging model, independently, the field

strength was significant (P � .002) and explained approximately

34% of the between-study variability but was no longer significant

when the scanner type and, subsequently, the technique were in-

cluded in the model. When including the field strength and scan-

ner type, GRE explained 73% and SWI explained 93% of the vari-

ability. When all 3 variables were included in the model, only the

Philips scanner was significant. This effect was not present when

initially the technique and then the scanner type were entered into

the model.

None of the other models (demographic, clinical factors, lacu-

nae/stroke/hemorrhage) and clinical AD diagnoses (probable/

probable-possible/not specified) and none of the risk factors

(apolipoprotein E4 carriers, hypertension), alone or in combina-

tion, were statistically significant or resulted in a between-study

variability of �3%. Immunotherapy and antiplatelet therapy

were not examined due to limited data.

Table 1: Neuroimaging parameters of the included studies
Studies Scanner/Technique/Field Strength Gap/Raters

Benedictus et al, 201328 GE Healthcare/EPI/3T Unknown/1 neuroradiologist
Cordonnier et al, 20067 Siemens/GRE/1T 1.5/1 observer, type unknown
Fukui et al, 201321,a Unknown/GRE/1.5T Unknown
Goos et al, 201122,b Siemens/GRE/1.5 1.5/1 rater, type unknown

Siemens/SWI/1.5T NA/1 rater, type unknown
Kester et al, 201429,a GE Healthcare, Siemens/GRE/1T, 1.5T, and 3T Unknown
Kirsch et al, 20094 Siemens/SWI/1.5T NA/4 readers �1 neuroradiologist
Nagasawa et al, 201420 Unknown/GRE/1.5T 0.5/2 neurologists, 1 neuroradiologist
Nagata et al, 201240 Unknown/EPI/1.5T Unknown/unknown
Nakata-Kudo et al, 200641 Philips/GRE/1.5T 1/1 neurologist, 1 radiologist
Park et al, 201342 Philips/GRE/3T 2/2 neurologists in consensus
Qiu et al, 201043 GE Healthcare/EPI/1.5T NA/1 neuroradiologist and subsequent raters
Staekenborg et al, 200944 Siemens/GRE/1T 1.5/unknown
Uetani et al, 201324 Siemens/SWI/3T NA/2 neuroradiologists in consensus
van der Vlies et al, 201245 Siemens/GRE/1T or 1.5T 1/unknown
Yates et al, 201446 Siemens/SWI/3T NA/2 neuroradiologists in consensus
Zonnefeld et al, 201447 GE Healthcare/SWI/3T NA/1 of 2 neuroradiologists
Postupdate
Olazarán et al, 201427 GE Healthcare/EPI/3T NR/neuroradiologist

Note:—NA indicates not applicable; NR, examined but not reported.
a Studies are excluded at the moderating factor analyses. Only the van der Vlies et al45 2012 study reported the percentage of medicated patients with AD.
b Two different techniques were used with the same cohort.

Table 2: Mixed-effects single meta-regressions (method of
moment) on the event rate estimate as a function of moderating
variables

Variables Slope SE P Value No.
Quality (STROBE) 0.0545 0.1184 .6455 15
Field strength 0.3924 0.1482 .0081 15
Male (%) �0.0085 0.0260 .7449 12
Age AD (mean, yr) 0.0484 0.0456 .2881 12
MMSE (mean score) �0.1919 0.1119 .0864 9
Apoe-�4 (%) 0.0117 0.0091 .1992 5
No. of image raters 0.1330 0.1598 .4055 12
Postupdatea

Year of publication 0.1099 0.0518 .0340 16

Note:—SE indicates standard error; MMSE, Mini-Mental State Examination; No.,
number of outcomes included in the analysis; imaging technique: TE and TR.
a No statistical change was observed for all other variables in the Table after analyzing
with the new study.
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Prevalence of Other Dementias
Within the subset of studies that provided a comparison group,

the presence of MBs in vascular dementia was 58% (71 of 122

cases of vascular dementia, 4 studies), 16% for healthy controls or

the subjective cognitive impairment group (92 of 553 cases of

controls, 7 studies), 28% for mild cognitive impairment (105 of

376 cases of MCI, 7 studies), and 14% for a group containing

mixed diagnoses (eg, including AD, vascular dementia, mixed

dementia) (50 of 358 cases of mixed diagnosis, 6 studies). Analy-

ses comparing the prevalence of MBs in AD with frontotemporal

lobar dementia and Lewy body dementia were not possible, given

that only 1 study24 made these comparisons. The ORs for these

comparisons are given in On-line Fig 1.

Risk Factors
The MB prevalence rate for the studies reporting the percentage of

apolipoprotein E4 carriers (heterozygote, homozygote, or both)

was similar to the global aggregate (On-line Table 3). The effect of

the percentage of apolipoprotein E4 carriers on the prevalence rate

via single meta-regression was nonsignificant (Table 2). There

was no effect of hypertension on the prevalence of MBs (slope �

0.015, standard error � 0.042, P � .71).

Literature Update
Update of the literature review, based on screening, yielded 3

studies. Two of the 3 studies were excluded,25,26 and the only

study meeting our selection criteria27 was added to the remaining

of studies. To avoid investigator bias, we also performed analyses

of the added new article separately. Small changes were observed

in the global prevalence of MBs (24.9% versus 24.1%) and other

variables, which are listed in Table 2 and On-line Table 3. On-line

Fig 2 shows the forest plot for the updated aggregate event rate.

Effect of Publication Year
Single-variable meta-regression analysis to examine the effect of

publication year on the MB prevalence rates was significant (P �

.034).

DISCUSSION
The aggregate MB prevalence emerging from this meta-analysis

for patients with AD was 24%, and 25% after including an addi-

tional study that emerged from a search update in May 2015, and

was similar to the earlier findings from studies reported by Cor-

donnier and van der Flier (23%).3 Apparent prevalence is partic-

ularly affected by the image-acquisition technique (GRE, EPI,

SWI). Those studies applying SWI had twice the prevalence rates

for MBs as studies using GRE or EPI. SWI is highly sensitive to

susceptibility-related contrast because of combining phase and

magnitude images. In studies of neurotrauma, SWI was found to

detect up to 5 times as many hemorrhages compared with GRE.28

However, SWI requires appropriate reconstruction of data ac-

quired with multichannel coils. If the data from the individual

channels are combined incorrectly, the phase images may exhibit

singularities that lead to artifactual MBs in the final SWI.22 These

singularities are avoided if complex valued coil sensitivity maps

are used for the channel combination (sensitivity encoding recon-

struction).10,22,29 On some scanner platforms, the correct coil

combination is implemented by default,10 whereas on other plat-

forms, it must be implemented by the end user.4,29

Patients with AD have increased prevalence rates of MBs com-

pared with healthy controls and those with subjective cognitive

impairment. Our aggregate prevalence of MBs for AD was con-

siderably higher than that reported in the literature for asymp-

tomatic or healthy elderly individuals (11.1 versus 25%),30 and it

is consistent with the literature reporting higher prevalence in

atypical AD compared with AD.31

The prevalence of MBs from studies reporting explicitly on

probable AD was higher than that in those reporting a combina-

tion of probable and possible AD (14% versus 27%). This is po-

tentially because in the latter group, the balance in the number of

patients included between possible and probable AD was not clear

and the pathology could have been frontotemporal lobar demen-

tia or Lewy body dementia–like, which are expected to have lower

prevalences of MBs.

The current results have implications for disease monitoring

and imaging outcomes in drug development. SWI would show

more bleeds at baseline and would be more sensitive to detecting

new MBs, which may have implications for safety monitoring in

phase II trials. Also, a change in the MB number and size could be

associated with the severity of primary pathology and secondary

symptoms.

Whether an increase in MB detection translates into a clini-

cally meaningful difference remains debatable.22 MBs contribute

to the pathophysiology of the illness, and they potentially indicate

a link between amyloid pathology and neurovascular change.3,32

Moreover, the presence of MBs and the overall MB burden have

prognostic significance for AD33-35 and may affect cognition.8,36

Better imaging of the MBs in AD may allow better understanding

of the pathophysiology of MBs in AD and the role that small-

vessel disease plays in AD pathology.

The strength of our study is that we examined multiple mod-

erating variables that to date, no other study has performed, to

our knowledge. Scanner type (Siemens and GE Healthcare), use of

SWI technique, field strength, and diagnosis of probable AD and

MB definition (�10 mm) were factors that increased the preva-

lence over the global aggregate. We also found that great variabil-

ity existed as a function of AD diagnosis, but not because of age,

sex, or cognitive status.

Our meta-analysis has certain limitations. Given the require-

ment for multiple single-variable meta-regression analysis, an in-

creased probability of type I error exists. However, the results

remain unchanged when examined at a significance level of P �

.01. Additionally, multivariable meta-regressions were used to in-

vestigate heterogeneity without dropping studies that would have

been limitations in other approaches. Nonetheless, the limited

number of studies and some missing data, which preclude suffi-

cient analyses of publication bias and multivariable modeling,

suggest that some results should be considered with caution.

Most of the studies included in our analyses did not explicitly

state that patients with a history of brain injury, stroke, or other

sources of hemorrhage were excluded. Because these events can

result in localized regions of tissue damage that could be miscon-

strued as AD-associated MBs instead of injury-associated MBs by

raters, there is a risk that inclusion of patients with head injury,
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neurovascular pathology, or hemorrhage would have skewed

their reported results. Additionally, we were unable to contact the

authors for missing data, which would have added power to each

component of the analyses, specifically at the meta-regression

level.

Because of a paucity of detailed data on patients’ medication

regimens, we could not determine the effect of immunotherapy

on the rate of MBs. Certain types of A�-42-based immunotherapy

are hypothesized to aggravate cerebral amyloid angiopathy–re-

lated vascular damage or dysfunction.37,38 We found no signifi-

cant effect of the presence of the apolipoprotein E4 allele on the

prevalence of MBs. This lack of effect could be due to heteroge-

neity in reporting the status of the apolipoprotein E4 allele carriers

(heterozygote, homozygote, or both). In fact, some studies re-

ported the percentage of the carrier without specifying allele vari-

ants, whereas others reported exact rates for homozygotes and or

heterozygotes.

Future Directions
Future studies examining the prevalence of MBs in AD should

report the number, size, and location of MBs more precisely,

which may allow analysis of the relationship between these factors

and neurocognitive outcomes. Given the large differences in prev-

alence among different imaging technologies, future studies

should attempt to use technologies that can be standardized and

are sensitive, yet widely available. SWI with 3T scanners is now

emerging as the standard for identifying MBs. This is consistent

with our finding that the year of publication is positively corre-

lated with the prevalence of MBs. In addition, MR imaging scan-

ner manufacturers need to ensure that artifact-free SWI is pro-

vided. Field strengths of 7T and above are gaining importance in

research and may eventually be used in clinical settings, which

may result in a further increase in the prevalence of MBs in pa-

tients imaged on such systems.39

CONCLUSIONS
Imaging technique and field strength are strongly associated with

the prevalence of microbleeds over the global aggregate. Stan-

dardized imaging protocols for identification of microbleeds are

recommended to minimize confounds.
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