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REVIEW ARTICLE

Dynamic Contrast-Enhanced MR Imaging in Head and Neck
Cancer: Techniques and Clinical Applications

S. Gaddikeri, R.S. Gaddikeri, T. Tailor, and Y. Anzai

ABSTRACT
SUMMARY: In the past decade, dynamic contrast-enhanced MR imaging has had an increasing role in assessing the microvascular
characteristics of various tumors, including head and neck cancer. Dynamic contrast-enhanced MR imaging allows noninvasive assessment
of permeability and blood flow, both important features of tumor hypoxia, which is a marker for treatment resistance for head and neck
cancer. Dynamic contrast-enhanced MR imaging has the potential to identify early locoregional recurrence, differentiate metastatic lymph
nodes from normal nodes, and predict tumor response to treatment and treatment monitoring in patients with head and neck cancer.
Quantitative analysis is in its early stage and standardization and refinement of technique are essential. In this article, we review the
techniques of dynamic contrast-enhanced MR imaging data acquisition, analytic methods, current limitations, and clinical applications in
head and neck cancer.

ABBREVIATIONS: AIF � arterial input function; DCE–MR imaging � dynamic contrast-enhanced MR imaging; EES � extracellular extravascular space; GCA �
gadolinium contrast agent; HNC � head and neck cancer; Kep � transfer function from EES to the plasma space; Ktrans � volume transfer constant; Ve � extravascular
extracellular volume fraction

Head and neck cancer (HNC) accounted for approximately

3% of all new cancers and 2% of all cancer-related deaths

in 2010 in the United States.1 Conventional cross-sectional

imaging (CT and MR imaging) plays an important role in as-

sessing locoregional extension of a primary tumor and gross

nodal metastases. The shortcomings of conventional imaging

include failure to identify early locoregional recurrence, detec-

tion of nodal metastasis in normal-sized lymph nodes, predic-

tion of tumor response to treatment, and treatment monitor-

ing in patients with HNC. CT perfusion has been reported to

provide vascular information about HNC, though there is in-

creasing concern for exposure to ionizing radiation.2 FDG-

PET is also widely used for initial staging and monitoring re-

sponse to treatment. However, there is increasing restriction in

the number of FDG-PET scans that any patient can undergo

during the entire treatment course.3

Dynamic contrast-enhanced MR imaging (DCE–MR imag-

ing) is an imaging technique in which rapid sequential MR images

are obtained through an area of interest before, during, and after a

bolus administration of contrast material. This process allows quan-

tification of various vascular biomarkers, such as blood volume,

blood flow, permeability, and wash-in and washout properties.

Angiogenesis (formation of new vessels) is one of the hall-

marks of cancer because it is necessary for tumor survival and

growth. This process of neoangiogenesis results in tortuous and

leaky vessels because the vessel walls in tumor may be discontin-

uous.4 Characteristics of tumor microvasculature include lack of

muscularis propria, widened interendothelial junctions, and a

discontinuous or absent basement membrane, all of which con-

tribute to increased permeability.4 It has been reported that the

degree of angiogenesis in a tumor correlates well with tumor bi-

ology.5,6 Well-differentiated tumors may have near-normal micro-

vasculature, whereas poorly differentiated tumors have disorganized

and leaky vessels.5 The leaky blood vessels are inefficient in the deliv-

ery of oxygen, thus potentially contributing to tumor hypoxia. The

process of gadolinium leakage from intravascular-to-extravascular

compartments depends on multiple factors such as blood flow to

tissue, microvascular attenuation, vascular permeability, and frac-

tional volume of extracellular extravascular space (EES).7 These bio-

logic features can be assessed by DCE–MR imaging.

In this article, we review the technical considerations of

DCE–MR imaging, qualitative and quantitative analysis, and po-

tential clinical applications in HNC.
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Technique

Basic Principles of DCE–MR Imaging. Following intravenous ad-

ministration, gadolinium contrast agent (GCA) travels through

the microvasculature and leaks from the intravascular compart-

ment to the EES by passive diffusion, altering signal intensity of

the tissue by changing the relaxation rates of water protons. The

changes in relaxation and signal depend on how GCA distributes

within the tissues. The transfer function from plasma to EES is

commonly referred to as volume transfer constant (Ktrans) (Fig 1).

As the concentration of intravascular GCA decreases, GCA starts

moving from the EES back into the plasma space. The transfer

function from EES to the plasma space is referred to as (Kep) (Fig

1).8 DCE–MR imaging uses rapid T1-weighted imaging to mea-

sure the relaxivity changes resulting from gadolinium leakage in

and out of the EES. T1-relaxation is generally assumed to be propor-

tional to the degree of concentration of GCA in the EES.9 The time-

concentration curve often reveals the dynamics of GCA accumula-

tion and washout across time. With the knowledge of concentration

of GCA (signal intensity) in the EES and vascular compartment (ar-

terial input function [AIF]) with time, DCE MR imaging allows

quantitative assessment of vascular function in HNC.

Data Acquisition
The DCE-MR image acquisition consists of 3 steps: 1) a baseline

T1 mapping before administration of GCA, 2) dynamic data ac-

quisition, and 3) arterial input function assessment.

Baseline T1 Mapping. To obtain accurate kinetic fitting of

DCE–MR imaging data, T1 mapping is critical.10 The basic as-

sumption for pharmacokinetic modeling of DCE–MR imaging

data is that tissue T1 relaxivity (and hence the signal intensity of

tissue) at each time point is directly proportional to the tissue

concentration of GCA.11 However, this relationship is not always

linear because it is influenced by the T1 characteristics of the na-

tive tissue.12 To compensate for this nonlinear relationship be-

tween signal intensity and tissue GCA concentration, baseline T1

mapping and equilibrium magnetization at each imaging time

point are essential.12,13 The T1 values calculated on a voxel-by-

voxel basis are termed the T10 map.

Various techniques of imaging data acquisition for T1 mapping

are described in the literature, such as variable flip angle techniques

(double flip angle versus multiple flip angle),14,15 the inversion re-

covery technique,16,17 and the Look-Locker technique.18,19 Origi-

nally, the Look-Locker technique was reported to have a high degree

of accuracy and precision20,21 within a reasonable acquisition time,22

compared with the conventional inversion recovery technique.23

More recently, it has been reported that the multiple flip angle tech-

nique provides more accurate and robust T1 mapping and kinetic

parameter estimation than the double flip angle technique. Further-

more, T1 mapping by using multiple flip angles can be obtained with

a short scan time without sacrificing signal-to-noise ratio. As such,

multiple flip angle T1 mapping is the preferable method of choice for

DCE–MR imaging in HNC.24

Dynamic Data Acquisition. The dynamic data acquisition follows

immediately after baseline T1 mapping. The images are acquired

before, during, and after intravenous gadolinium administration.

The critical component of high-quality DCE–MR imaging is high

FIG 1. Flow chart demonstrating a typical quantitative method of data analysis. The information from the T1 mapping and dynamic data is used
to estimate the changes in T1 relaxivity during the dynamic scan, which, in turn, provides the information of tissue gadolinium concentration. By
fitting the tissue gadolinium concentration and arterial input function data in to commonly used “2-compartment” models (extended Toft or
adjusted Brix model), various parameters can be assessed. The difference between the Toft and extended Toft model is the inclusion of
assessment of blood plasma volume per unit tissue volume in the later version.
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temporal resolution (2– 4 seconds). This allows accurate assess-

ment of the hemodynamic process as GCA passes through the

microvasculature in the tissue of interest. Higher temporal reso-

lution may compromise SNR and/or coverage (number of sec-

tions). The trade-offs among temporal resolution, SNR, and spa-

tial resolution need to be carefully balanced because a reasonable

SNR and spatial resolution (in-plane resolution, 0.5–1.7 mm) are

required for adequate assessment of tumor vascular function.25

The dynamic sequence can be tailored depending on the planned

method for data analysis. For example, high spatial resolution
with reasonable temporal resolution imaging is sufficient for a
“semiquantitative” time-intensity curve analysis, whereas a very
high temporal resolution with reasonable spatial resolution is
critical for “quantitative” kinetic analysis.

The application of DCE–MR imaging has been reported with

both 1.5T and 3T scanners.26-30 Various types of fast 2D and 3D

T1-weighted sequences have been described, including fast spin-

echo T1WI,31-34 FISP35-40 fast-spoiled gradient recalled acquisi-

tion,29,41-44 turbo fast-field echo,28,45-47 and turbo FLASH.48,49

Application of parallel imaging for DCE–MR imaging has in-

creased temporal resolution by severalfold,50 and thus fast 3D

acquisitions are gradually replacing 2D acquisitions in DCE–MR

imaging. Details of the dynamic sequence practiced at the Univer-

sity of Washington are summarized in Table 1.

Arterial Input Function. Another crucial component of DCE–MR

imaging is the assessment of an AIF. The AIF estimates the rate of

change in the concentration of contrast in the plasma (vascular

space) with time. An accurate AIF is essential for quantitative

analysis of dynamic data by using any of the currently available

analytic methods. Generally, AIF is commonly obtained from

the dynamic dataset.51-53 The changes in signal intensity dur-

ing the passage of GCA can be measured simultaneously in

both the blood vessels and the tissue of interest. AIF allows

conversion of the blood plasma signal intensity to intravascu-

lar contrast agent concentration on implementation of a cali-

bration algorithm. Any visible large artery within an area of

interest can be selected for AIF with the dynamic dataset. For

HNC imaging with DCE–MR imaging, the carotid and verte-

bral arteries are well-suited for AIF selection because they run

along the long axis of the neck and are of relatively large

caliber.54

Table 1: Dynamic sequence at the University of Washington is performed on a 3T scanner
Parameters Philipsa Siemensb GEc

Coil 16-Channel neurovascular coil
Parallel imaging SENSE iPAT ASSET
Sequence 3D-T1WI FFE 3D-T1WI FISP or

3D-T1WI FLASH
3D-T1WI FSPGR

TR/TE for T1 mapping 5.2/2.5 ms
MFA for T1 mapping 30°, 20°, 15°, 10°, and 2°
TR/TE/FA for dynamic imaging 5.2/2.5 ms/5°
FOV 212 � 149 mm2

Voxel 0.95/0.95/3.00 mm3

Section thickness 3 mm
Signal averaging NSA: 1 ACQ: 1 NEX: 1
Number of sections per dynamic scan/section

orientation
20/Axial

Temporal resolution 3.6 seconds
Total T1 mapping acquisition time 26.5 seconds
Total dynamic acquisition time 6.10 minutes
Fat saturation No
Contrast injection Single dose of 20-mL gadoteridol (ProHanced)

injected at a rate of 5 mL/s through a
peripheral arm vein, followed by a 20-mL
saline flush with a power injector

Note:—FFE indicates fast-field echo; FSPGR, fast-spoiled gradient recalled; MFA, multiple flip angles; SENSE, sensitivity encoding; iPAT, integrated parallel acquisition technique;
ASSET, array spatial sensitivity encoding technique; NSA, number of signal averages; ACQ, acquisitions; FA, flip angle.
a Phillips Healthcare, Best, the Netherlands.
b Siemens, Erlangen, Germany.
c GE Healthcare, Milwaukee, Wisconsin.
d Bracco Diagnostics, Princeton, New Jersey.

Table 2: Commonly used model-free (semiquantitative) parameters for DCE-MRI analysis
Parameter Definition Units

Area under curve Area under the signal intensity or gadolinium dynamic curve a.u.min or mmol.min/L
Relative signal intensity St/S0 NA
Initial slope or enhancement slope/rate Maximum or average slope in the initial enhancement a.u/min
Washout slope/rate Maximum or average slope in the washout phase a.u/min
Peak enhancement ratio or maximum signal

enhancement ratio
(Smax � S0)/S0 NA

Tmax or time to peak Time from contrast arrival to peak S
Maximum intensity–time ratio PER/Tmax S�1

Note:—St indicates MR signal intensity at time t; S0, precontrast signal intensity; Smax, maximum signal intensity; a.u, arbitrary unit; min, minute; PER, peak enhancement ratio;
Tmax, time to maximum enhancement; NA, not applicable; S, seconds.
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Data Analysis
DCE–MR imaging is commonly analyzed with semiquantitative

analysis or quantitative analysis.

Semiquantitative Method
The semiquantitative method is a model-free analysis by using

the observed data points on a time-intensity curve. It

is a simple and easily implementable method by using commer-

cially available software.31,35-41,44,55-58 Commonly calculated pa-

rameters on the time-intensity curve are

listed in Table 2. The time-intensity

curve obtained following placement of
an ROI on the tumor provides a rough
estimate of how fast the GCA enters and
exits the tumor. It has been reported that
malignant tumors have a longer time to
peak and lower relative maximum en-
hancement compared with benign le-
sions in the head and neck.59 The pro-
longed time to peak and lower relative
maximum enhancement were also
noted in metastatic lymph nodes com-
pared with benign lymph nodes among
patients with HNC.42 The limitation of
this semiquantitative analysis is that the
semiquantitative parameters do not
necessarily have physical correlates;
rather, they may represent mixed mea-
sures. For example, the area under curve
is a combination of tissue blood flow
vascular permeability and fractional in-
terstitial space and is, therefore, not an
accurate estimate of blood volume.
Therefore, the physiologic meanings of
these parameters remain ambiguous
as to what biologic property they
represent.25

Quantitative Methods
Quantitative analysis of DCE–MR imag-

ing data is based on the generalized phar-

macokinetic models. The 2 most impor-

tant assumptions of these models are the

following: 1) GCA is distributed in �1

compartment of the human body, and 2)

distribution of the contrast agent in a par-

ticular compartment is uniform.

A typical quantitative method of data

analysis is outlined in the flow chart (Fig

1). The most frequently used pharmaco-

kinetic models in head and neck

DCE–MR imaging data analysis include

the Toft and Kermode model (Toft

model),29,30,45,60,61 the Brix model,28,34

and their modifications (Fig 1). These

are based on the assumption of a “2-

compartment model,” in which the

GCA is distributed into the “central”

and “peripheral” compartments. The

central compartment consists of intravascular extracellular

volume fraction (blood plasma), and the peripheral compart-

ment consists of extravascular extracellular volume fraction

(Ve). The Toft model generally requires the knowledge of AIF

and T1 mapping for accurate assessment of quantitative pa-

rameters. Fitting the DCE–MR imaging data into 1 of these

models allows estimation of various model-base parameters,

which potentially aids in the understanding of tumor physiol-

FIG 2. A 57-year-old male patient with T2N3bM0 undifferentiated nasopharyngeal cancer. Pre-
treatment gadolinium-enhanced axial T1-weighted MR imaging of the neck demonstrates meta-
static right level IIb lymph nodes (A). Parametric maps (C, D, and E) show higher volume transfer
constant (Ktrans � 0.26/min), Kep, and area under curve, respectively. Axial contrast-enhanced
neck CT at 6 months post-chemoradiation treatment demonstrates a favorable response to
treatment (B).

Table 3: Commonly used quantitative parameters in the DCE-MRI pharmacokinetic analysis
Parameter Definition Units
Ktrans Volume transfer constant between EES and blood plasma Min�1

Ve EES volume per unit tissue volume NA
Vp Blood plasma volume per unit tissue volume NA
Kep or K21 Rate constant from EES to blood plasma Min�1

Kpe or K12 Rate constant from blood plasma to EES Min�1

Kel Elimination rate constant Min�1

Amp or AH Amplitude of the normalized dynamic curve NA

Note:—Amp or AH, amplitude of the normalized dynamic curve; NA, not applicable; Min, minute.
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ogy and pathology.62 Frequently used parameters that can be

obtained from quantitative DCE–MR imaging data are sum-

marized in Table 3.

Quantitative methods of data analysis provide parameters

quantifying microvasculature physiology and tumor biology. Ad-

ditionally, the model-based parameters are more precise and re-

producible and are reported to be independent of scanners and

tissue type.63 Hence, these parameters may be potentially useful

for sequential follow-up to determine treatment response in an

individual patient and also as biologic markers for predicting and

monitoring the therapeutic efficacy in multicenter trials.

Clinical Applications of DCE–MR Imaging in Head and
Neck Cancer
One of the most exciting aspects of DCE–MR imaging application

in HNC is its potential to serve as an imaging biomarker for hyp-

oxia. The abnormal tumor vessels are inefficient in the delivering

oxygen or chemotherapy drugs to the

tissue. In addition, this inefficiency

causes increased interstitial fluid pres-

sure, which ultimately reduces tumor

perfusion, further facilitating tumor

hypoxia.64 Although a study by New-

bold indicated that tumors with higher

Ktrans were associated with hypoxia de-

fined by pimonidazole and carbonic an-

hydrase staining, and hence poor out-

come,46 others reported that tumors

with lower Ktrans were associated with

poor response.27,29,61,65 Ktrans generally

reflects a combination of perfusion and

permeability. Lower Kep is also reported

to correlate with poor response to treat-

ment.61 A tumor with higher Ktrans,

highly perfused tumor has higher oxy-

genation, better delivery of chemo-

therapeutic drugs, likely explaining

improved treatment response.66-67

Skewness of Ktrans is also reported to

predict treatment response, that a tumor

with larger skewed Ktrans has a worse

prognosis potentially reflecting tumor

heterogeneity.29

DCE–MR imaging has been reported

to be useful for various applications in

HNC imaging, such as differentiating

squamous cell carcinoma from lym-

phoma and undifferentiated carcino-

mas,68 detecting metastatic lymph

nodes,42 assessing tumor cell prolifera-

tion and microvessel attenuation,55,69

and predicting early treatment response

and treatment outcome.27-29,41,46,61

We searched MEDLINE, PubMed,

and Google for the literature published

during the most recent 6-year interval

(2008 –2013) containing all of the fol-

lowing: DCE–MR imaging, HNC, and

quantitative (model-based) analysis of dynamic data for pretreat-

ment assessment and/or monitoring treatment response. The On-

line Table summarizes various studies in the literature and their

respective contributions to DCE–MR imaging of HNC by using

various quantitative methods. Early assessment of treatment re-

sponse is critical for advanced head and neck cancers. The ques-

tion remains as to whether pretreatment measures of DCE pa-

rameters suffice to address the treatment response or it is

necessary to measure changes in DCE parameters to access

treatment response. Figs 2 and 3 demonstrate 2 patients with

HNC with nodal metastasis exhibiting different responses to

chemoradiation.

Challenges
DCE–MR imaging of HNC is clearly in its early stage. Substantial

variability exists in quantification methods, parameter choice,

FIG 3. A 52-year-old male patient with squamous cell carcinoma of the right palatine tonsil. Pretreat-
ment axial contrast-enhanced neck CT demonstrates metastatic right level II lymph nodes (A). Para-
metric maps (C, D, and E) show a lower volume transfer constant (Ktrans � 0.06/min), Kep, and area
under curve, respectively. Gadolinium-enhanced axial T1-weighted MR imaging of the neck at 12
months post-chemoradiation treatment demonstrates an unfavorable response to treatment (B).
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and analytic methods. Many factors in the data acquisition and

analysis can affect the reliability of results in DCE–MR imaging

studies. For example, the accuracy and precision of the pharma-

cokinetic parameter estimates are largely determined by SNR,

temporal resolution of the MR image, AIF, and estimation of

T1 mapping.70 Systematic errors can be introduced from var-

ious sources, such as the breakdown of linearity in the gado-

linium concentration calibration curve and inaccuracy of T1

mapping.71,72

Standardization of data acquisition and analysis will facilitate

the translation of DCE–MR imaging to clinical settings, in partic-

ular to multicenter clinical trials.73 The DCE–MR imaging sub-

committee of the Radiological Society of North America Quanti-

tative Imaging Biomarkers Alliance initiative provides guidelines

for data acquisition, analysis, and quality control on 1.5T systems.

The image intensity should be converted to gadolinium concen-

tration through the use of a multiple flip angle precontrast T1 map

after corrections for patient motion, B1 field inhomogeneity, and

coil sensitivity.74 The pharmacokinetic parameter Ktrans (Toft

model) and area under curve (model-free parameter) are recom-

mended as standard quantitative end points that should be used

in clinical trials and practice.

Another challenge with DCE–MR imaging parameters is vali-

dation with tumor histology and hypoxia. A potential reason in-

cludes tumor heterogeneity at the subvoxel level. Therefore, some

authors suggest that DCE–MR imaging parameters may be better

validated with immunohistochemical measurements averaged

over several fields randomly picked from the ROI.73

CONCLUSIONS
Although DCE–MR imaging has the potential to provide biologic

information of tumor angiogenesis and vascular function in

HNC, its technical development is still in an early stage. The stan-

dardization of image acquisition and data analysis is critical to

moving forward with a multicenter head and neck tumor registry

and in determining the clinical role of DCE–MR imaging in head

and neck oncologic imaging.

Disclosures: Tina Tailor—RELATED: Grant: American Society of Head and Neck Ra-
diology, William N. Hanafee Award.
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