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Inflow Jet Patterns of Unruptured Cerebral Aneurysms
Based on the Flow Velocity in the Parent Artery:

Evaluation Using 4D Flow MRI
X K. Futami, X T. Kitabayashi, X H. Sano, X K. Misaki, X N. Uchiyama, X F. Ueda, and X M. Nakada

ABSTRACT

BACKGROUND AND PURPOSE: Inflow jet characteristics may be related to aneurysmal bleb formation and rupture. We investigated the
visualization threshold on the basis of the flow velocity in the parent artery to classify the inflow jet patterns observed on 4D flow MR
imaging.

MATERIALS AND METHODS: Fifty-seven unruptured aneurysms (24 bifurcation and 33 sidewall aneurysms) were subjected to 4D flow MR
imaging to visualize inflow streamline bundles whose velocity exceeded visualization thresholds corresponding to 60%, 75%, and 90% of
the maximum flow velocity in the parent artery. The shape of the streamline bundle was determined visually, and the inflow jet patterns
were classified as concentrated, diffuse, neck-limited, and unvisualized.

RESULTS: At the 75% threshold, bifurcation aneurysms exhibited a concentrated inflow jet pattern at the highest rate. At this threshold,
the inflow jets were concentrated in 13 aneurysms (group C, 22.8%), diffuse in 18 (group D, 31.6%), neck-limited in 11 (group N, 19.3%), and
unvisualized in 15 (group U, 26.3%). In 16 (28.1%) of the 57 aneurysms, the inflow jet pattern was different at various thresholds. Most inflow
parameters, including the maximum inflow velocity and rate, the inflow velocity ratio, and the inflow rate ratio, were significantly higher
in groups C and D than in groups N and U.

CONCLUSIONS: The inflow jet pattern may depend on the threshold applied to visualize the inflow streamlines on 4D flow MR imaging.
For the classification of the inflow jet patterns on 4D flow MR imaging, the 75% threshold may be optimal among the 3 thresholds
corresponding to 60%, 75%, and 90% of the maximum flow velocity in the parent artery.

The inflow jets of cerebral aneurysms have been character-

ized as flow structures composed of strongly directed in-

flow with higher speeds than in other parts of the aneurysm.1,2

Computational fluid dynamics analyses by using human cere-

bral aneurysm models suggested that inflow jets may be related

to bleb formation and aneurysmal rupture.3-5 Cebral et al3

reported that most blebs formed at sites where the inflow jet

impacted the aneurysmal wall, and they qualitatively classified

the inflow jets of ruptured and unruptured cerebral aneurysms

into concentrated and diffuse inflow jets.3-5 They found that

most ruptured aneurysms featured concentrated inflow jets,

while diffuse inflow jets tended to be seen in unruptured an-

eurysms.4,5 This finding suggests that bleb formation and an-

eurysm rupture may be attributable to a degenerative change in

the aneurysm wall exposed to the increased hemodynamic

stress exerted by the inflow jet. Therefore, the assessment of

inflow jet patterns and quantitative estimation of the inflow

hemodynamics may contribute to a more precise prediction of

the risk for bleb formation and aneurysm rupture.

Computational fluid dynamics analysis uses human aneurysm

models based on a number of assumptions and approximations

regarding blood properties, vessel wall compliance, and flow con-

ditions.3-8 For the quantitative evaluation of the hemodynamics

in real human cerebral aneurysms, 4D flow MR imaging, which is

based on time-resolved 3D cine phase-contrast MR imaging tech-

niques, has been used.9-20 In this study, we investigated the visu-

alization threshold on the basis of the flow velocity in the parent

artery to classify the inflow jet patterns of unruptured cerebral

aneurysms on 4D flow MR imaging. We applied different thresh-

olds to visualize the inflow streamlines, evaluated the inflow jet

patterns, and examined the relationship between the inflow jet

pattern and the inflow hemodynamics.

Received August 7, 2015; accepted after revision December 16.

From the Department of Neurosurgery, Mattoh-Ishikawa Central Hospital (K.F.),
Ishikawa, Japan; and Departments of Neurosurgery (T.K., H.S., K.M., N.U., M.N.) and
Radiology (F.U.), Kanazawa University School of Medicine, Ishikawa, Japan.

Please address correspondence to Kazuya Futami, MD, Department of Neurosur-
gery, Mattoh-Ishikawa Central Hospital, 3-8 Kuramitsu, Hakusan, 920-8588
Ishikawa, Japan; e-mail: kfutami@mattohp.com

http://dx.doi.org/10.3174/ajnr.A4704

1318 Futami Jul 2016 www.ajnr.org

http://orcid.org/0000-0002-8944-6214
http://orcid.org/0000-0002-8068-4080
http://orcid.org/0000-0002-0910-2287
http://orcid.org/0000-0002-3752-2406
http://orcid.org/0000-0003-3776-6731
http://orcid.org/0000-0002-2025-7239
http://orcid.org/0000-0001-9419-6101


MATERIALS AND METHODS
This study was approved by the ethics committee of Mattoh-

Ishikawa Central Hospital. Prior written informed consent was

obtained from all patients.

Materials
We acquired 4D flow MR images in 68 patients with 72 unrup-

tured cerebral aneurysms. Excluded from our study were 7 aneu-

rysms whose poor-quality images were inadequate for evaluation

due to motion artifacts21 during the systole phase of the cardiac

cycle and 8 aneurysms with a maximum diameter of �4.0 mm or

a neck size of �2.0 mm because the spatial resolution is limited on

4D flow MR imaging.20,22 Consequently, this study included 53

patients (22 men, 31 women) ranging in age from 51 to 86 years

(mean, 71.6 � 9.0 years) with 57 unruptured cerebral aneurysms

(24 bifurcation and 33 sidewall aneurysms). Of the aneurysms, 4

were located on the cavernous, and 15, on the paraclinoid seg-

ment of the ICA; 14, on the ICA segment branching the posterior

communicating artery; 1, on the ICA bifurcation; 6, on the bifur-

cation of the anterior cerebral artery and the anterior communi-

cating artery; 14, on the MCA bifurcation; and 3, on the basilar

artery bifurcation. The maximum diameters of the aneurysms

and their neck sizes were 6.8 � 3.1 mm (range, 4.0 –17 mm) and

5.0 � 2.2 mm (range, 2.0 –13.7 mm), respectively.

MR Imaging
MR imaging was performed on a 1.5T scanner (Magnetom

Avanto; Siemens, Erlangen, Germany) with a slew rate of 125

T/m/s and an 8-channel head array coil. The vascular geometry

was assessed on 3D TOF MRA. The scanning parameters were

TR/TE/NEX, 35 ms/7.15 ms/average 1; flip angle, 22°; FOV, 150 �

123 mm; z-coverage, 45.6 mm; 0.6-mm thickness; 3 slabs; 30 sec-

tions/slab; slab interval, �4.2 mm (ie, overlapping slab acquisi-

tion, 4.2 mm); matrix, 256 � 168 (512 � 336 with zero-filling

interpolation processing); voxel size, 0.59 � 0.73 � 0.6 mm

(0.295 � 0.365 � 0.6 mm with zero-filling); bandwidth, 87 Hz/

px; imaging time, 4 minutes 53 seconds; transaxial direction.

Blood flow analysis was performed on 4D flow MR imaging

scans. The parameters were TR/TE/NEX, 33.05 ms/5.63 ms/aver-

age 1; flip angle, 22°; FOV, 200 � 200 mm; 0.8-mm thickness; 1

slab; 24 –26 sections/slab; z-coverage, 19.2 mm; matrix, 192 �

192; no interpolation processing; voxel size, 1.04 � 1.04 � 0.8

mm; velocity-encoding, 80 cm/s; bandwidth, 434 Hz/px; parallel

imaging with reduction factor, 2; imaging time, 20 –30 minutes

depending on the patient’s heart rate; transaxial direction; retro-

spective gating with electrocardiogram; 20 phases. We selected a

velocity-encoding of 80 cm/s to visualize streamlines whose ve-

locity exceeded a chosen visualization threshold based on the

maximum flow velocity in the parent artery.

On the basis of the 3D TOF MRA datasets, the vascular wall

was constructed by using the region-growing method23 and the

“Marching Cubes” method.24 The 3D datasets obtained by 4D

flow MR imaging were converted to pixel datasets at a spatial

resolution of 0.5 � 0.5 � 0.5 mm by using a function featured on

commercially available software (Flova II, Version 2.9.15.0;

R’tech, Hamamatsu, Japan) to visualize 3D flow information.

Data Analysis
With a Flova II function, an arbitrary percentage value of the

maximum flow velocity in the parent artery can be selected as the

visualization threshold. We set 60%, 75%, and 90% as the thresh-

olds to evaluate the role they play in the visualization of the inflow

jet patterns. The inflow jet was visualized as a bundle of stream-

lines whose velocity exceeded the threshold at the aneurysmal

orifice. The 57 aneurysms were classified by visual inspection into

4 groups based on the shape of the streamline bundle and the site

on the aneurysmal wall impacted by the inflow streams (Fig 1).

Group C exhibited a concentrated inflow jet with intrusion into

the aneurysmal dome without dispersion in 20% of the width

of the streamline bundle at the aneurysmal orifice and an impact

at the aneurysm wall at a site half-way up the aneurysm height

(Fig 1, Concentrated). Group D comprised aneurysms with a dif-

fuse inflow jet defined as an inflow jet intruding into the aneurys-

mal dome with dispersion in �20% of the width of the streamline

bundle at the aneurysm orifice and an impact on the aneurysmal

wall at a site more than half-way up the aneurysm height (Fig 1,

Diffuse). The 20% value was chosen to accommodate measure-

ment errors of the width of the inflow streamline bundle. Group

N consisted of aneurysms with neck-limited inflow jets defined as

inflow streamlines that impacted the aneurysm wall at a site

between the neck and the lower half of the aneurysm height

irrespective of the shape of the inflow streamline bundle (Fig 1,

Neck-limited). Group U aneurysms had unvisualized inflow

streamlines (Fig 1, Unvisualized).

The inflow streamline bundles were not visualized during the

diastole phase in any of the 57 aneurysms. The inflow jet pattern

of each aneurysm was determined by selecting a stable pattern

through the systole phase of the cardiac cycle. Three observers

(K.F., F.U., and M.N.) independently recorded the inflow jet pat-

terns; disagreements were settled by consensus.

We compared the inflow hemodynamic parameters among

the 4 aneurysm groups. The parameters included the maximum

inflow velocity, the maximum inflow rate, the inflow velocity ra-

tio (in percentages) (ie, the ratio of the maximum inflow velocity

to the maximum flow velocity in the parent artery), and the inflow

rate ratio (in percentages) (ie, the ratio of the maximum inflow

rate to the maximum flow rate in the parent artery). The maxi-

mum inflow velocity and rate were measured on the section plane

corresponding to the aneurysmal orifice. The maximum flow ve-

locity and rate in the parent artery were assessed on the section

plane in the parent artery just proximal to the aneurysm. All he-

modynamic parameters were measured at peak systole by using a

function of the Flova II software. Each numeric value was deter-

mined as the mean of 3 measurements performed by one of the

authors (K.F.).

Statistical analysis was performed with the Mann-Whitney U

test for continuous variables and the Fisher exact test for categoric

variables. Differences of P � .05 were statistically significant.

RESULTS
Table 1 shows the inflow jet patterns observed at the different

thresholds in the 57 aneurysms. The distribution of the patterns

was significantly different at the 60% and 90% thresholds (P �

.0468). In 16 (28.1%) of the 57 aneurysms, the inflow jet pattern
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was different at different thresholds (Fig 2). Four of 16 aneurysms

classified as group C at the 90% threshold were group D lesions at

the 75% threshold; 3 of these 4 aneurysms were sidewall aneu-

rysms. Of the 13 aneurysms classified as group C at the 75%

threshold, 5 (38.5%) were group D at the 60% threshold; these 5

were bifurcation aneurysms. Furthermore, 10 of 16 (62.5%)

group C and 2 of 14 (14.3%) group D aneurysms at the 90%

threshold (P � .0106), 10 of 13 (76.9%) group C and 2 of 18

(11.1%) group D aneurysms at the 75% threshold (P � .0005),

and 6 of 8 (75%) group C and 7 of 23 (30.4%) group D aneurysms

at the 60% threshold (P � .0429) were bifurcation aneurysms.

Because among the 3 thresholds, at 75%,

the rate of bifurcation aneurysms was

most significantly higher in the concen-

trated group (group C) than in the dif-

fuse group (group D), we compared the

inflow hemodynamic parameters in the

4 groups at the 75% threshold.

Table 2 shows the maximum inflow

velocity and the maximum inflow rate at

the 75% threshold for the different an-

eurysm groups. The maximum inflow

velocity was significantly higher in

groups C and D than in group U, and the

maximum inflow rate was significantly

higher than in groups N and U. There

was no statistically significant difference

in these values between groups C and D

and between groups N and U.

In Table 3, we present the inflow

velocity ratio and the inflow rate ratio

at the 75% threshold for the 4 aneu-

rysm groups. Again, these values were

significantly higher in groups C and D

than in groups N and U, and there was

no statistically significant difference

between groups C and D and between

groups N and U.

DISCUSSION
4D flow MR imaging makes it possible to

assess the flow status in human aneu-

rysms.10-20 The hemodynamics (eg, the

velocity distribution, inflow streamlines,

and flow patterns) determined on 4D flow

MR imaging have been validated by com-

putational fluid dynamics studies in hu-

man cerebral aneurysms,10,12,14 experi-

mental canine aneurysms,25 and life-size

human aneurysm phantoms.22,26,27 The

feasibility of visualizing the aneurysmal in-

flow on 4D flow MR imaging has been

confirmed.9,11,14,17,20,21 We used 4D flow

MR imaging to evaluate the inflow jet pat-

terns and the inflow hemodynamic pa-

rameters in patients with unruptured

aneurysms.

At present there is no accepted robust definition of inflow jets.

They have been evaluated by visual inspection and characterized

by their strongly directed, high-speed flow structure.1,2 Sch-

neiders et al7 and Jansen et al8 defined the inflow jet as the top 25%

of the flow magnitude within an aneurysm. However, there may
be a considerable difference in the maximum flow magnitude
within an aneurysm. In fact, we found that there was a 3.8-fold
difference in the mean value of the maximum inflow rate between
group C and U lesions (Table 2). According to Szikora et al28 and
Castro et al,6 in ruptured aneurysms, the inflow jet tended to enter
straight from the parent artery. Their observation suggests that

FIG 1. Classification of inflow jet patterns visualized on 4D flow MR images. Concentrated: An
aneurysm on the anterior communicating artery with a concentrated inflow jet defined as a
bundle of inflow streamlines intruding into the aneurysmal dome without dispersion in 20% of
the width of the streamline bundle at the aneurysmal orifice and impacting the aneurysmal wall
at a site more than half-way up the aneurysm height. Diffuse: A sidewall aneurysm on the ICA with
a diffuse inflow jet defined as inflow streamlines intruding into the aneurysmal dome with dis-
persion in �20% of the width of the streamline bundle at the aneurysmal orifice and impacting
the aneurysmal wall at a site more than half-way up the aneurysm height. Neck-limited: A sidewall
aneurysm on the ICA with a neck-limited inflow jet defined as inflow streamlines impacting the
aneurysmal wall between the neck and half-way down the aneurysm height. Unvisualized: A
sidewall aneurysm on the ICA with unvisualized inflow streamlines defined as no inflow streams
into the aneurysm.

Table 1: Inflow jet patterns visualized at the 60%, 75%, and 90% threshold of the maximum
velocity in the parent arterya

Inflow Jet Pattern
No. of Aneurysms
(Threshold 60%)

No. of Aneurysms
(Threshold 75%)

No. of Aneurysms
(Threshold 90%)

Concentrated inflow jet 8 (14.0%) 13 (22.8%) 16 (28.1%)
Diffuse inflow jet 23 (40.4%) 18 (31.6%) 14 (24.6%)
Neck-limited 15 (26.3%) 11 (19.3%) 9 (15.8%)
Unvisualized 11 (19.3%) 15 (26.3%) 18 (31.6%)

a The distribution of the inflow jet patterns at the 60% and 90% threshold was significantly different (P � .0468).
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the inflow jet should be defined on the basis of the flow magnitude
in the parent artery. We assessed the inflow jets on 4D flow MR
imaging by using thresholds based on the maximum flow velocity
in the parent artery and classified the aneurysms on the basis of
the inflow jet pattern.

Szikora et al28 reported that concentrated inflow jets were ob-
served in most ruptured aneurysms and that all aneurysms with
such inflow jets were bifurcation aneurysms; none were sidewall
aneurysms. We showed that individual inflow jet patterns re-

flected the threshold used to visualize the inflow streamlines.
Three sidewall aneurysms whose inflow jets were concentrated at
the 90% threshold exhibited a diffuse inflow jet at the 75% thresh-
old, while 5 bifurcation aneurysms whose inflow jets were con-
centrated at the 75% threshold exhibited a diffuse inflow jet at the
60% threshold. The most significant difference in the rate of
bifurcation aneurysms between groups C and D was observed
at the 75% threshold. However, there is no evidence that the
75% threshold is optimal for evaluating the risk for aneurysmal

FIG 2. Inflow jet patterns on 4D flow MR images determined by observing the inflow streamline bundle with a velocity exceeding visualization
thresholds corresponding to 60% (A and D), 75% (B and E), and 90% (C and F) of the maximum velocity in the parent artery. A–C, An aneurysm
on the ICA segment branching the posterior communicating artery. D–F, An aneurysm on the paraclinoid segment of the ICA. A and B, A diffuse
inflow jet intruding into the aneurysmal dome. The visualization thresholds are 60% (A) and 75% (B). C, A concentrated inflow jet intruding into
the aneurysmal dome without dispersion (visualized at the 90% threshold). D, A neck-limited inflow jet visualized at the 60% threshold. E and F,
Unvisualized inflow streams—that is, no inflow streams are observed at the 75% (E) and the 90% (F) thresholds.

Table 2: Maximum inflow velocity and maximum inflow rate in unruptured aneurysms with different inflow jet patterns visualized at
the 75% threshold of the maximum velocity in the parent arterya

Inflow Jet Pattern Median (IQR) Concentrated Inflow Jet Diffuse Inflow Jet Neck-Limited Unvisualized
Concentrated inflow jet

Maximum inflow velocity (mm/s) 572 (206) .2539 (NS) .4689 (NS) .0002 (S)
Maximum inflow rate (mL/s) 2610 (3080) .8414 (NS) .0049 (S) .0006 (S)

Diffuse inflow jet
Maximum inflow velocity (mm/s) 636 (289) .2539 (NS) .0963 (NS) �.0001 (S)
Maximum inflow rate (mL/s) 2450 (3080) .8414 (NS) .0017 (S) �.0001 (S)

Neck-limited
Maximum inflow velocity (mm/s) 462 (380) .4689 (NS) .0963 (NS) .2645 (NS)
Maximum inflow rate (mL/s) 890 (424) .0049 (S) .0017 (S) .3637 (NS)

Unvisualized
Maximum inflow velocity (mm/s) 382 (44.0) .0002 (S) �.0001 (S) .2645 (NS)
Maximum inflow rate (mL/s) 696 (454) .0006 (S) �.0001 (S) .3637 (NS)

Note:—IQR indicates interquartile range; S, significant; NS, not significant by the comparison test adjusted for the P value.
a Statistical analysis was performed between a variable in the left column and a variable in the headers.
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growth, bleb formation, or rupture. Long-term observation
studies are needed to identify the optimal visualization
threshold.

Among the aneurysms in our study, those in groups C and D
manifested significantly higher values in the inflow hemodynamic
parameters than did group N and U lesions (Tables 2 and 3).
While there was no statistically significant difference in the max-
imum inflow velocity, the maximum inflow rates, the inflow ve-
locity ratio, and the inflow rate ratio between groups C and D,
concentrated inflow jets may exert a stronger impact force on a
small area in the aneurysm wall than diffuse inflow jets. Cebral
et al4,5 reported that the inflow jets of ruptured aneurysms tended
to be concentrated, while unruptured aneurysms manifested dif-
fuse inflow jets that impacted larger areas. However, it remains
unclear at what degree of inflow hemodynamic force aneurysmal
rupture is likely. On the other hand, others29,30 have associated
aneurysmal rupture with low-flow conditions as seen in our
group N and U aneurysms. Our classification of inflow jet pat-
terns and our quantitative estimation of the inflow hemodynam-
ics may be the foundation for further studies investigating risk
factors for aneurysmal rupture.

Our study has some limitations. In aneurysms with a low
height and a wide neck, the inflow streamline bundle is usually
short and wide. This may render it difficult to determine the ex-
tent of inflow jet dispersion by visual inspection. To identify risky
inflow jet patterns computationally and to avoid subjective judg-
ments, studies to establish numeric values for inflow hemody-
namic parameters representing risk factors are needed. 4D flow
MR imaging may yield poor-quality images due to motion arti-
facts attributable to a relatively long acquisition time21 and lim-
ited spatial resolution.9-14,17,20,22,25-27 Because flow quantifica-
tion by using 4D flow MR imaging requires at least 16 isotropic
voxels over the vessel lumen area,31 a spatial resolution of 1.0 mm
in the isotropic voxel dimensions is needed to evaluate the flow
conditions in aneurysms with a diameter of 4.0 mm.22 Although
only 1.5T MR imaging scanners are available at our institution,
high-resolution MR imaging on greater than 3T instruments may
make it possible to evaluate the inflow jets of aneurysms smaller
than 4.0 mm.12-14,17,22 While contrast-enhanced 3D cine phase-
contrast MR imaging may improve the spatial and temporal res-
olution, its efficacy for the evaluation of inflow hemodynamics
remains to be established. In addition, computational fluid dy-

namics analysis can be performed on the basis of the accurate
vascular geometry with a motion-free acquisition. Additional
studies are needed to understand the effects of novel techniques
applied to 3D cine phase-contrast MR imaging and to validate the
evaluation of small aneurysms on 1.5T scanners by computational
fluid dynamics analysis.

CONCLUSIONS
The inflow jet pattern may depend on the threshold applied to

visualize the inflow streamlines on 4D flow MR images. Because

of the significant difference in the rate of bifurcation aneurysms

and in the values of inflow hemodynamic parameters, for a clas-

sification of the inflow jet patterns on 4D flow MR imaging, the

75% threshold may be optimal within the 3 thresholds corre-

sponding to 60%, 75%, and 90% of the maximum flow velocity in

the parent artery.
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