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LETTERS

Radiomics Approach Fails to Outperform Null Classifier on
Test Data

It is with great pleasure that I read the recent article, the accom-

panying commentary, wide popular press, and lively ongoing

discussion in the community regarding “Computer-Extracted

Texture Features to Distinguish Cerebral Radionecrosis from Re-

current Brain Tumors on Multiparametric MRI: A Feasibility

Study” by Tiwari et al.1

With increasingly ubiquitous, cheap, computing infrastruc-

ture and the commoditization of high-quality machine-learning

algorithms, multivoxel and multimodal pattern classification

techniques, so-called “radiomics,” are increasingly being used to

incorporate subtle but useful imaging features into our routine

clinical decision-making as radiologists. To this end, I commend

the authors on their well-thought-out design and implementation

of a machine-learning classifier for differentiating tumor recur-

rence versus radiation necrosis in treated primary and metastatic

human brain tumors.

The authors used a state-of-the-art but straightforward

method incorporating the following: 1) image texture-based fea-

ture extraction, 2) feature selection/reduction via minimum re-

dundancy maximum relevance, 3) generalization performance

estimation of a support vector machine classifier, and most im-

portant, 4) an external layer of cross-validation to ensure that the

feature selection and performance estimation steps were unbiased

(ie, not overfit).

The authors widely acknowledged that this is, indeed, an early

feasibility study, using limited retrospective data at hand, and this

point has already been further explored by other commenters.2

Additionally, however, there was no discussion of base rate effects

or inclusion of a null classifier. A discussion here will hopefully be

useful in both understanding the authors’ specific results and gen-

eralizing to the future because we aim to target the specific clinical

scenarios where these advanced techniques may have their great-

est clinical utility.

Diagnostic testing can be framed in the Bayesian sense of a

pretest (prior) probability, which is updated by some new evi-

dence, to yield a posttest (posterior) probability.3 The pretest

probability is often informed by some general knowledge about

the background prevalence (ie, base rate) in the community. The

new evidence typically takes the form of a test result for the indi-

vidual. Consider the fringe cases: On the one hand, we can imag-

ine a clinical scenario where the base rate is 50%. Under this

regimen, similar to the authors’ training data, incorporation of

individual data— even of marginal reliability—will nudge us in

favor of 1 group and improve clinical diagnostic accuracy. On the

other hand, as the base rate approaches 0% or 100%, even the best

diagnostic tests will be useless in practice. For example, consider

the challenge of identifying an uncommon disease in a hypothetic

healthy population of 1000 individuals. If we examined the whole

population, given a supposed baseline prevalence of 0.001 (1 in a

1000), even a terrific “rule out” screening diagnostic test with

100% sensitivity and 95% specificity will result in 1 true-positive

test result and 49.95 false-positive test results, for an overall pos-

itive predictive value of only approximately 2%.

The crux of the issue then lies in the middle gray zone: As the

base rate slides more in favor of 1 group, the bar rises for any

additional candidate predictors/features to be “worth it” in terms

of the marginal discriminating information they provide with re-

spect to their inherent variability and accompanying measure-

ment error. In the present feasibility study, tumor recurrence was

only slightly more prevalent than radiation necrosis among the

primary brain tumor training data (12 of 22 cases, or 55%).

Therefore, a null classifier incorporating only this information

would perform with 55% accuracy on average (the null informa-

tion rate) and would be beaten handily by the authors’ imaging-

based classifier, which achieved 75% estimated generalization ac-

curacy via cross-validation-based resampling on the training data.

This 75% number is the benchmark we would like to compare

against human performance; however, such an analysis was not

performed in the present study.

In the holdout test sample, however, the recurrence group was

much more enriched. Therefore, while it may seem impressive

that the imaging-based classifier attained 91% accuracy (10/11

cases) and this was the main headline widely publicized in the

popular press, we would, in fact, have attained the exact same

diagnostic accuracy by ignoring all the machine-learning algo-

rithms, relying solely on our general knowledge of the base rate

that tumor recurrence is more common and assigning every hold-

out test case to the “recurrence” class label without looking at a

single image.http://dx.doi.org/10.3174/ajnr.A5326

E92 Letters Nov 2017 www.ajnr.org



This leads to several important discussion points: Because

there are so many subtle ways for classification experiments to be

methodologically invalidated, there is a strong intuitive desire to

see the methods tested on a truly independent test set, held out

from the get-go, as was done here. This approach does have the

desired effect of making us feel more comfortable with the meth-

ods; however, it also has negative effects. Not only does it make

less data available for training, thereby decreasing the quality of

the classifier, but, as we see here, the test set itself may be biased

due to small sample size or other effects. This then provides yet

another argument in favor of data-sharing and “reproducible re-

search” in neuroimaging,4 whereby the community could easily

validate the authors’ methods, confirm their cross-validated re-

sults, and obviate a separate holdout test.

It is also worth revisiting the uncomfortable fact that humans

are useful but flawed statistical machines (and hence clinical de-

cision-makers), subject to a variety of cognitive biases that have

been explored in the literature on the psychology of decision-

making during the past half-century.5 We underestimate the

value of base rate information compared with individual infor-

mation, overestimate the generalizability of our talents, overesti-

mate the confidence/precision of our estimates, and are able to be

systematically nudged by a variety of factors, including the arbi-

trary sequence in which cases are presented. In particular, as the

validity of a task decreases (ie, the signal gets smaller, subtler, or

more complex) or accompanying uncertainty increases, the con-

sistency of our approach to intuitive reasoning suffers, and the net

effects of these underlying biases may dominate.6 Although it was

not investigated here, we may speculate that some (or all) of these

effects may help explain why the “experts” performed even more

poorly than would be expected on the test data. On the bright side,

ample data do suggest that the performance of expert intuitive

reasoning under this regimen can be successfully augmented by

the introduction of even simple algorithms,7 as evidenced in our

field by the success of the Breast Imaging Reporting and Data

System, the Liver Imaging Reporting and Data System, and so

forth.

In summary, while widely publicized, the presented radiomics

approach fails to outperform a null classifier on the given test set.

Conversely, we are unable to compare the classifier cross-vali-

dated performance estimates on the training set with human per-

formance because this analysis was not performed. If one looks

forward, this interesting article describes a state-of-the-art ra-

diomics classifier, though it highlights the importance of base rate

effects and other cognitive bias when evaluating the usefulness of

such a classifier and again argues in favor of both enhanced data-

sharing in neuroimaging and enhanced incorporation of our ex-

pert intuitive reasoning into more structured frameworks for

clinical decision-making.
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