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ORIGINAL RESEARCH
ADULT BRAIN

Differentiation of Enhancing Glioma and Primary
Central Nervous System Lymphoma by Texture-Based

Machine Learning
X P. Alcaide-Leon, X P. Dufort, X A.F. Geraldo, X L. Alshafai, X P.J. Maralani, X J. Spears, and X A. Bharatha

ABSTRACT

BACKGROUND AND PURPOSE: Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing
glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose
of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced
T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma.

MATERIALS AND METHODS: Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous
system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of
interest were mined for textural features and subjected to a support vector machine– based machine-learning protocol. Three readers
classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated
for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the
receiver operating characteristic curve was performed with a noninferiority margin of 0.15.

RESULTS: The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798 – 0.955) for the support vector
machine classifier; 0.878 (95% CI, 0.807– 0.949) for reader 1; 0.899 (95% CI, 0.833– 0.966) for reader 2; and 0.845 (95% CI, 0.757– 0.933) for
reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly
noninferior to the mean area under the curve of reader 1 (P � .021), reader 2 (P � .035), and reader 3 (P � .007).

CONCLUSIONS: Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert
human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma.

ABBREVIATIONS: AUC � area under the receiver operating characteristic curve; PCNSL� primary central nervous system lymphoma; SVM � support vector
machine

Gliomas and primary central nervous system lymphoma

(PCNSL) represent the 2 most common primary malignant

brain tumors.1 Treatment of PCNSL consists of chemotherapy

and/or radiation.2 Because resection of PCNSL confers no sur-

vival benefit for patients,3 stereotactic brain biopsy sampling is

the standard procedure for obtaining a pathologic diagnosis.4 In

high-grade gliomas, on the contrary, extensive resections have

been shown to improve survival.5,6 Accurate preoperative diag-

nosis is also important to avoid administration of steroids before

biopsy in PCNSL because this medication can cause false-negative

results of histologic examinations.7

Differentiation between enhancing glial tumors and PCNSL

by conventional MR imaging can be challenging. Multiple imag-

ing techniques have been used to solve this problem, including

different types of MR perfusion,8-10 ADC quantification,10,11

SWI,12 DTI,13 and [18F]-fluorodeoxyglucose positron-emission

tomography.14 Texture analysis has also been used to differentiate

high-grade gliomas and PCNSL,15,16 and only 1 study15 has com-

bined this approach with machine learning to improve the diag-

nostic accuracy of textural features on conventional MR images.

To our knowledge, no prior studies on the differentiation between

glioma and lymphoma have adequately compared the accuracy of

a machine-learning algorithm and neuroradiologists.

PCNSL typically demonstrates intense homogeneous en-
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hancement as opposed to more heterogeneous enhancement of

glial tumors. We hypothesized that the extraction of textural fea-

tures of tumors and posterior input of these features in a machine-

learning algorithm could provide a model for accurate and robust

tumor classification. In machine learning, support vector ma-

chines (SVMs) are supervised learning algorithms that analyze

data used for classification. From a set of training examples, each

of them belonging to one of the categories, the SVM can build a

model that classifies new data in the different categories. The pur-

pose of this study was 3-fold: 1) to develop a classification model

by using texture analysis and a machine-learning algorithm to

differentiate PCNSL and enhancing glial tumors; 2) to compare

the diagnostic accuracy of the SVM classifier with that of neuro-

radiologists; and 3) to examine whether the SVM classifier and the

radiologists tend to misclassify the same cases.

MATERIALS AND METHODS
Study Design
A noninferiority statistical design with a noninferiority margin of

0.15 was adopted for this study. The study entailed comparisons

of diagnostic accuracy between the radiologists and the SVM clas-

sifier in the differentiation of enhancing glioma and PCNSL. The

area under the receiver operating characteristic curve (AUC) was

the primary outcome measure. The sample size for the compari-

son of diagnostic accuracies between the radiologists and the SVM

classifier was estimated by using 1-sided calculations with an � of

.05 and a power of 80% based on a noninferiority margin17 of

�15%. The selection of this noninferiority margin was based on

the goal of this technique not substituting for the radiologist’s

judgment but assisting in the diagnosis; therefore a noninferiority

margin of �15% seems clinically acceptable. A priori sample size

calculation was based on prior reported accuracies of 99.1% for

texture analysis in a machine-learning algorithm16 and 88.9% for

radiologists.16 The total sample size required was 22 (11 gliomas

and 11 PCNSLs) according to the formula described by Black-

welder18: n � f(�, �) � (�s � [100 � �s] � �e � [100 � �e]) /

(�s � �e � d)2, where �s and �e are the true percentage “success”

in the standard and experimental treatment group, respectively,

and f(�, �) � [�-1(�) � � � 1(�)]2, with �-1 being the cumu-

lative distribution function of a standardized normal deviate. We

opted for a more conservative approach with a larger sample size

because our sample of tumors was more heterogeneous compared

with other studies and accuracies may differ substantially.

Subjects
Institutional review board approval was obtained and informed

consent was waived for this Health Insurance Portability and Ac-

countability Act– compliant retrospective study. Inclusion crite-

ria consisted of consecutive adult patients (older than 18 years of

age) with a pathologic diagnosis of PCNSL or enhancing glial

tumor and preoperative MR imaging performed at St. Michael’s

Hospital, including contrast-enhanced T1WI, between January

2005 and December 2015. An exclusion criterion was poor image

quality due to motion or other artifacts. A random sample of 10%

of patients with enhancing gliomas and 20% of patients with

PCNSLs was selected. Two patients with enhancing glial tumors

were excluded due to motion artifacts degrading the images. One

hundred six patients were included (71 patients with enhancing

glial tumors and 35 patients with PCNSLs). Surgery and histologic

evaluation were performed within a month interval after imaging.

Image Acquisition
Thirty-two patients (20 with gliomas and 12 with PCNSLs) were

scanned in a 3T magnet (Magnetom Skyra; Siemens, Erlangen,

Germany) equipped with a 20-channel head-neck coil. A T1WI

FLASH sequence (TR/TE, 250/2.49 ms; flip angle, 70°; section

thickness, 5 mm; in-plane voxel size, 0.6 � 0.6 mm; FOV, 200

mm; gap, 0.5 mm; NEX, 1) was performed after administration of

10 mL of gadobenate dimeglumine. The total duration of the se-

quence was 1:1 minutes. Seventy-four patients (51 with gliomas

and 23 with PCNSLs) were scanned in a 1.5T magnet (Intera;

Philips Healthcare, Best, the Netherlands) equipped with a

6-channel head coil. A T1WI spin-echo sequence was acquired in

the axial plane after administration of 10 mL of gadobenate

dimeglumine (TR/TE, 400/8 ms; flip angle, 90°; section thick-

ness, 5 mm; in-plane voxel size, 0.83 � 0.83 mm; FOV, 200

mm; gap, 1 mm; NEX, 2). The total duration of the sequence

was 4:19 minutes.

Reading of Radiologists
Three neuroradiologists (L.A., A.F.G., and P.J.M. with 3, 2, and 4

years of experience in neuroradiology after residency) classified

106 tumors as gliomas or PCNSLs independently and blinded to

clinical information and pathology reports. The 3 readers evalu-

ated the contrast-enhanced T1WI of 106 patients and recorded

their diagnoses and degrees of confidence by using a 4-point scale:

1, definite glioma; 2, likely glioma; 3, likely PCNSL; and 4, definite

PCNSL. The readers were selected from other hospitals to ensure

lack of prior exposure to the cases, and they were not informed of

the number of cases in each category. The readers spent between 1

and 2 hours reviewing the images.

Texture Metrics
A neuroradiologist (P.A.-L.) with 6 years of experience in neuro-

radiology created tumor volumes of interest by contouring the

outer margin of the enhancing component of the tumors in all

sections on the contrast-enhanced T1WI sequence. In cases of

multiple enhancing lesions, only the 2 largest lesions were con-

toured. The process of manual VOI generation took around 10

hours.

The generation of the texture features was accomplished by

using a customized code written by one of the authors (P.D.) and

took on the order of a few seconds for each study. The calculation

of most texture features involves 2 steps: The first is the accumu-

lation of histograms, and the second is the evaluation of nonlinear

functions that take the histograms as input. The first-order tex-

ture metrics require 1D histograms that count the number of

times image voxels of each possible value occur in the VOI. The

functions that take these histograms as input can evaluate percen-

tiles of the distribution or other measures of its shape such as

means, variances, skewness, and kurtosis. The second-order met-

rics are based on 2D histograms that count the number of times

voxels of one value are found spatially adjacent to voxels of an-

other value over the entire VOI. Many nonlinear functions take
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these histograms as input to produce second-order texture met-

rics such as entropy, correlation, contrast, and the angular second

moment.

A set of 11 first-order and 142 second-order texture metrics

was generated from each VOI. The first-order metrics consisted of

the 11 image-intensity percentiles from each VOI, ranging from

0% (minimum value) to 100% (the maximum value) with 9 steps

of 10% between them. These metrics provide a characterization of

the 1D image-intensity histogram shape.

Before we computed the 142 second-order texture metrics, the

intensities within each VOI were binned into 32 equal-sized bins

spanning the range of image intensities between the first percen-

tile at the bottom and the 99th percentile at the top. The binning

is a standard technique for minimizing histogram noise when

computing second-order texture metrics, while the use of image

intensities between the first and 99th percentiles serves to mini-

mize the effect of outliers on the bin layout. The second-order

texture features consisted of metrics from 4 classes computed

from multidimensional histograms: 1) the mean and range of the

13 Haralick features computed from the gray-scale co-occurrence

matrix19 taken over all 13 neighbor orientations20; 2) 5 features

based on the neighborhood gray tone difference matrix21; 3) 10

features from the gray-level run-length matrix22; and 4) the same

10 features from the gray-level size zone matrix.23 A detailed,

illustrated description of these metrics has been previously pub-

lished.20 The result of this computation is a set of 153 texture

features that are then fed into the machine-learning algorithm as

predictors.

Machine Learning
The goal of the machine learning was to train a classifier to predict

whether each tumor was a glioma or lymphoma based on the

texture features extracted from the VOIs. All machine learning

was performed by using the SVM algorithm with a radial basis

function kernel. The Matlab (MathWorks, Natick, Massachu-

setts) interface to the LibSVM software library (http://www.

csie.ntu.edu.tw/�cjlin/libsvm/)24 was used to apply the SVM

training algorithm to the data. The SVM25 was selected over other

machine-learning methods such as deep learning (eg, convolu-

tional neural networks) for 2 reasons: first, because deep learning

in general and convolutional neural networks in particular re-

quires very large datasets for training; second, because the tumors

investigated in this study have very predictable internal structures

and whatever exploitable regularity may be present in tumors has

so far been shown to be primarily statistical in nature, a category

of pattern that is much better quantified by using texture metrics

than convolutional kernels. For each SVM training run, it was

necessary to tune 3 hyperparameters governing the behavior of

the classifier. The first hyperparameter pertained to feature selec-

tion. An F-statistic approach26 was used to rank the 153 input

texture features in the order of their association with the response

classification. A tunable hyperparameter representing the fraction

of the most highly associated features to keep was then applied to

select the features that were used. The second hyperparameter was

the standard cost parameter common to all types of SVM, while

the third was the width of the Gaussian that makes up the radial

basis function kernel.

A nested cross-validation scheme was used to tune the 3 hy-

perparameters while keeping the assessment of accuracy com-

pletely independent. In each of 100 iterations of the outer loop,

10-fold cross-validation was used to hold out 10% of the data for

testing, while the remaining 90% was passed to the inner loop.

Within the inner loop, a further 10-fold cross-validation protocol

was used for each point in a 3D grid covering a range of fractions

of the best features to retain, values of the SVM cost parameter,

and values of the radial basis function width. The inner loop

cross-validation result was recorded for each grid point searched,

and at the conclusion of the inner loop, the best performing triple

of the hyperparameters was used to train a classifier by using all of

the inner loop data. This classifier was then applied to classify the

held-out data from the outer loop. A SVM classifier does not

produce a dichotomous binary classification as its output, but

rather a single, continuous number on the real line. Only when a

threshold is applied, is it transformed into a classification. Repeat-

ing the outer loop of the nested cross-validation protocol 100

times yields 100 such numbers for each tumor. Each of the 100

numbers for a particular tumor represents an instance in which it

was held out during cross-validation with a different 10% of the

data. The percentage of trials in which each case was classified as a

PCNSL was recorded.

The training of the classifier took a few days of computer time

to complete, and the estimation of the accuracy of the classifier

took 3 weeks. After the classifier has been produced, its applica-

tion to each new case in a production environment would take

only a small fraction of a second.

Statistical Analysis
Receiver operating characteristic curves were constructed for each

reader and for the SVM classifier by using SPSS, Version 21 (IBM,

Armonk, New York). For the receiver operating characteristic

curve and AUC calculation, glioma was considered “negative”

and PCNSL was considered “positive.” The AUCs were estimated

in each case by nonparametric methods. The noninferiority test

for diagnostic accuracy based on the paired AUCs described in

Zhou et al27 was performed to compare each radiologist with the

SVM classifier. The standard error of the difference between

AUCs was calculated by taking into account the correlation de-

rived from the paired nature of the data as described by Hanley

and McNeil.28

To assess whether the radiologists and the SVM classifier

tended to misclassify the same cases, we estimated interrater

agreement among the 3 readers, and the SVM classifier was esti-

mated by a linearly weighted �.29 The results from the SVM clas-

sifier were simplified to 4 categories so that they could be com-

pared with the radiologists’ readings. These categories were

defined by the percentage of trials in which each case classified as

PCNSL: 0%–25%, definite glioma; 26%–50%, likely glioma;

51%–75%, likely PCNSL; and 76%–100%, definite PCNSL.

RESULTS
In the glioma group (n � 71), there were 23 women (mean age,

59.5 years; range, 33– 88 years) and 48 men (mean age, 54.5 years;

range, 19 – 84 years). Two gliomas were grade III, and 69 were

grade IV. In the PCNSL group (n � 35), there were 14 women
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(mean age, 55.7 years; range, 41–71 years) and 21 men (mean age,

58.9 years; range, 39 – 83 years). Thirty-four cases of PCNSL cor-

responded to diffuse large B-cell lymphomas, and 1 was a T-cell

lymphoma. Thirty-three cases of PCNSL occurred in immuno-

competent patients, 1 in a patient with HIV, and 1 corresponded

to an Epstein-Barr virus– driven lymphoma in a patient with a

kidney transplant.

Diagnostic Accuracy
The mean AUCs were 0.877 (95% CI, 0.798 – 0.955) for the SVM

classifier; 0.878 (95% CI, 0.807– 0.949) for reader 1; 0.899 (95%

CI, 0.833– 0.966) for reader 2; and 0.845 (95% CI, 0.757– 0.933)

for reader 3. Receiver operating characteristic curves are shown in

Fig 1. The mean AUC of the SVM classifier was significantly non-

inferior to the radiologists’ mean AUCs. Differences in the AUCs

between the SVM classifier and each of the readers are detailed in

Table 1 and featured in Fig 2.

Agreement
Table 2 shows the linearly weighted Cohen � coefficients for each

pair of readers or reader-SVM classifier. Agreement was slightly

higher among radiologists than between the SVM classifier and

the radiologists.

Figure 3 shows the percentage of correctly classified trials by

the SVM classifier in the order of decreasing accuracy on a case-

by-case basis. The number of radiologists who classified each tu-

mor correctly is also represented.

Figure 4 shows images from 2 cases in which there was agree-

ment between the radiologists but a mismatch between the SVM

classifier and the radiologists.

DISCUSSION
This article presents an SVM classification scheme for differenti-

ating enhancing glioma and PCNSL noninferior to human eval-

uation. Prior studies with smaller samples have used texture anal-

ysis for differentiation of PCNSL and glioblastoma with16 and

without 15 machine learning. Yamasaki et al,15 in a study includ-

ing 40 patients, reported an accuracy of 91%. Their higher accu-

racy can be explained by lack of grade III glial tumors in their

sample, which was limited to grade IV glial tumors. Grade III

tumors typically lack necrosis, making the differential diagnosis

with PCNSL more challenging. This study also lacks details re-

garding enrollment and a comparison with the accuracy of radi-

ologists. The work by Liu et al,16 also based on texture analysis,

incorporates machine learning. They included only 18 patients

and excluded not only non-grade IV glial tumors but also immu-

nocompromised patients with PCNSLs. PCNSLs in immuno-

compromised patients commonly show atypical features (necro-

sis and hemorrhage), mimicking high-grade glial tumors and

metastases. These exclusion criteria may explain the high accu-

racy of the machine learning algorithm (99.1%) in the work by

Liu et al,16 which was reported to be higher than that of the radi-

ologists (88.9%) despite lack of statistical analysis for this com-

parison. In summary, prior studies on the topic lack representa-

tive samples and direct comparison with the diagnostic

performance of radiologists. Our study on a random sample of

FIG 2. The chart shows the mean differences in area under the curve
(95% confidence interval between the support vector machine clas-
sifier and reader 1 � �0.001 (95% CI, �0.096 – 0.094); between the
SVM classifier and reader 2 � �0.022 (95% CI, �0.106 – 0.062); and
between SVM classifier and reader 3 � 0.032 (95% CI, �0.074 – 0.138).
All the confidence intervals sit wholly above the �0.15 limit (dashed
line) representing the noninferiority margin.

Table 2: Linearly weighted � coefficients representing the
agreement between the neuroradiologists and the SVM classifier

Reader 1 Reader 2 Reader 3 SVM Classifier
Reader 1 – 0.58 0.56 0.40
Reader 2 – 0.63 0.55
Reader 3 – 0.46

FIG 1. Receiver operating characteristic curves for discrimination of
primary central nervous system lymphoma (positive) and glioblas-
toma (negative) of the support vector machine classifier (continuous
line) and the 3 readers (dashed lines). The mean areas under the curve
estimated under the nonparametric assumption were 0.877 (95% con-
fidence interval, 0.798 – 0.955) for the SVM classifier; 0.878 (95% con-
fidence interval, 0.807– 0.949) for reader 1; 0.899 (95% confidence
interval, 0.833– 0.966) for reader 2; and 0.845 (95% confidence inter-
val, 0.757– 0.933) for reader 3.

Table 1: Differences in mean AUC between the SVM classifier and
the neuroradiologists

Comparison Difference
95% CI for
Difference

P
Valuea

SVM classifier vs reader 1 �0.001 �0.096, 0.094 .021
SVM classifier vs reader 2 �0.022 �0.106, 0.062 .035
SVM classifier vs reader 3 0.032 �0.074, 0.138 .007

a P value for the test of noninferiority.
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consecutive patients including 106 subjects is more likely to en-

compass the whole imaging spectrum of enhancing gliomas and

PCNSLs, providing more realistic estimates of diagnostic accu-

racy than prior work.

The radiologists tended to agree slightly more among them-

selves than with the SVM classifier. It is interesting to analyze the

disagreements, particularly those cases in which the SVM pro-

vided the right diagnosis and the radiologists failed. Figure 4

shows 2 such cases. In the case illustrated in Fig 4A, the tumor has

a very heterogeneous appearance, more typical of gliomas; how-

ever, the radiologists classified it as a lymphoma, likely due to the

periventricular location. The SVM classifier, on the contrary, only

uses textural information and classified the case correctly as a

glioma. One of the sources of disagreements between radiologists

and the SVM classifier may be that radiologists take other tumor

features into account such as the location and the presence of

nonenhancing infiltrative components. Another possible source

of disagreement is that the SVM classifier had only textural infor-

mation from the 2 largest enhancing lesions, whereas the radiol-

ogists analyzed the whole brain. In the future, SVM and other

types of machine-learning algorithms will be able to analyze the

full dataset of images, combine it with the clinical information,

and provide more reliable results. Adequately trained SVMs may

support preoperative tumor diagnosis, especially in centers with-

FIG 3. Comparison between the accuracy of the radiologists and the support vector machine classifier for each of the 106 cases. The horizontal
axis shows the different cases sorted in order of decreasing SVM classifier accuracy. The left vertical axis shows the percentage of correctly
classified trials by the SVM across 100 nested cross-validation trials. The right vertical axis shows the number of radiologists that classified the
tumor correctly. For this graph, the results of the radiologists were simplified to 2 categories “glioma” and “lymphoma” without taking into
account the degree of certainty. Although agreement is slightly better among radiologists than between radiologists and the SVM classifier, the
cases in which the SVM provides different results for different trials (midright area of the graph) correspond to cases with more disagreements
among the radiologists.

FIG 4. A, Axial contrast-enhanced T1-weighted image of a 51-year-old woman with a grade IV glioma. All 3 radiologists incorrectly classified the
tumor as PCNSL, whereas the SVM classified it correctly in 92% of the trials. B and C, Axial contrast-enhanced T1WI of a 47-year-old woman with
a grade IV glioma. All 3 radiologists incorrectly classified the tumor as PCNSL, whereas the SVM classifier provided the right diagnosis in 88% of
the trials.

AJNR Am J Neuroradiol 38:1145–50 Jun 2017 www.ajnr.org 1149



out experienced neuroradiologists. This support will help avoid

unnecessary neurosurgical resections in patients with PCNSL.

Our study has a number of limitations. First, the evaluation of
contrast-enhanced T1WI in isolation from other valuable se-
quences such as ADC, perfusion, and T2 gradient-echo is not
representative of the real clinical scenario. Second, the require-
ment of VOI tracing from an expert makes our approach semiau-
tomatic and therefore subject to intra- and interobserver variabil-
ity. Third, only the 2 largest enhancing lesions were segmented
and analyzed by the SVM in cases of multiple lesions.

CONCLUSIONS
Our results show that SVMs can be trained to distinguish PCNSL

and enhancing gliomas on the basis of textural features of con-

trast-enhanced T1WI with an accuracy significantly noninferior

to that of neuroradiologists. The testing of larger datasets includ-

ing other MR images will not only provide better accuracy esti-

mations but also further improve the performance of the classi-

fier, because SVM classification systems benefit from more

extensive training.
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