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ORIGINAL RESEARCH
ADULT BRAIN

Relationship between Glioblastoma Heterogeneity and
Survival Time: An MR Imaging Texture Analysis

X Y. Liu, X X. Xu, X L. Yin, X X. Zhang, X L. Li, and X H. Lu

ABSTRACT

BACKGROUND AND PURPOSE: The heterogeneity of glioblastoma contributes to the poor and variant prognosis. The aim of this
retrospective study was to assess the glioblastoma heterogeneity with MR imaging textures and to evaluate its impact on survival
time.

MATERIALS AND METHODS: A total of 133 patients with primary glioblastoma who underwent postcontrast T1-weighted imaging
(acquired before treatment) and whose data were filed with the survival times were selected from the Cancer Genome Atlas. On the basis
of overall survival, the patients were divided into 2 groups: long-term (�12 months, n � 67) and short-term (�12 months, n � 66) survival.
To measure heterogeneity, we extracted 3 types of textures, co-occurrence matrix, run-length matrix, and histogram, reflecting local,
regional, and global spatial variations, respectively. Then the support vector machine classification was used to determine how different
texture types perform in differentiating the 2 groups, both alone and in combination. Finally, a recursive feature-elimination method was
used to find an optimal feature subset with the best differentiation performance.

RESULTS: When used alone, the co-occurrence matrix performed best, while all the features combined obtained the best survival
stratification. According to feature selection and ranking, 43 top-ranked features were selected as the optimal subset. Among them, the
top 10 features included 7 run-length matrix and 3 co-occurrence matrix features, in which all 6 regional run-length matrix features
emphasizing high gray-levels ranked in the top 7.

CONCLUSIONS: The results suggest that local and regional heterogeneity may play an important role in the survival stratification of
patients with glioblastoma.

ABBREVIATIONS: CM � co-occurrence matrix; GBM � glioblastoma; RFE-SVM � recursive feature-elimination–based support vector machine classifier; RLM �
run-length matrix; ROC � receiver operating characteristic; SVM � support vector machine; TCGA � the Cancer Genome Atlas

Glioblastoma (GBM) is the most common malignant brain

tumor.1 Despite maximal safe surgery plus radiation therapy

and chemotherapy, the prognosis of patients with GBM remains

poor. The median survival of patients with GBM is only 10�14

months,2 though some patients can survive longer than 36

months.3 Because the heterogeneity of GBM contributes to its

poor and variant prognosis,4 it is very important to evaluate the

heterogeneity and analyze the relationship between GBM hetero-

geneity and survival time.

As a common method to explore intratumoral characteriza-

tion in the clinic, percutaneous biopsy can only provide limited

information about a tumor at the biopsy site and does not repre-

sent the heterogeneity of the entire tumor.5 With the develop-

ment of medical imaging, an image-based approach may avoid

the risks of biopsy and assess heterogeneity more comprehen-

sively.6,7 Tumor heterogeneity occurs at the molecular level,

but heterogeneity can be macroscopically reflected by the tex-

ture patterns observed in medical imaging. Texture analysis

refers to the various mathematic methods that allow pattern

evaluation of gray-level intensities and pixel positions on med-

ical images, which have been proved an effective way to mea-

sure tumor heterogeneity, as shown in studies related to breast

cancer,8 lung cancer,9 colorectal cancer,10 and so forth. These
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studies suggest that texture analysis would be effective in evaluating

GBM heterogeneity and its correlation with survival time.

As a type of heterogeneous tumor,4,11 GBM varies across geo-

graphic regions. Thus, some researchers segmented the heteroge-

neous GBM into multiple regions, including active tumor, necro-

sis, and edema and used the texture features of these regions to

predict prognosis.12,13 Considering that the region of active tu-

mor better reflects the molecular activities in GBM, Itakura et al14

further used the enhanced region of postcontrast T1-weighted

MR imaging to identify different phenotypic subtypes of GBM.

On the basis of the relationship between the GBM heterogeneity

and the enhanced region of postcontrast T1WI, recently Molina et

al15 used the Cox proportional hazards analysis to correlate the

texture features of the enhanced region with GBM heterogeneity.

Although they verified that the texture analysis could assess the

heterogeneity of GBM and predict prognosis,15 the types of tex-

ture features that could better characterize the heterogeneity and

which heterogeneous characterizations play a key role in progno-

sis prediction are still unknown.

MATERIALS AND METHODS
Study Design
In this study, we aimed to investigate the relationship between

GBM heterogeneity characterized by MR imaging texture analysis

and survival time. The data processing mainly included 3 parts: 1)

Preprocessing, based on the contrast-enhanced regions of post-

contrast T1WI (the tumor regions were manually contoured); 2)

Heterogeneity Measurements, the co-occurrence matrix (CM),

run-length matrix (RLM), and histogram-based features, re-

flecting the local, regional, and global spatial variations of tu-

mor, respectively, extracted to measure the heterogeneity on

different scales; and 3) Heterogeneity-Survival Analysis, the

support vector machine (SVM) classification used to deter-

mine how the 3 texture types perform in differentiating the 2

groups, both alone and in combination. After that, the recur-

sive feature-elimination– based SVM classifier (RFE-SVM)

was used to obtain an optimal feature subset with the best

differentiation performance.16 On the basis of the optimal fea-

ture subset, the model for survival stratification of the patients

with GBM can be built. With the model, the stratification of all

patients with GBM was estimated, and Kaplan-Meier plots

were used to assess the model. The schematic diagram for the

data processing is shown in Fig 1.

Dataset
A dataset of 133 patients with primary GBM was collected from the

Cancer Genome Atlas (TCGA, https://wiki.cancerimagingarchive.

net/display/Public/TCGA-GBM). Although the dataset con-

tains �200 GBM cases, only the cases scanned with postcon-

trast T1WI and filed with a clinical survival time were included.

On the basis of the overall survival, the patients were divided

into 2 groups: long-term survival (overall survival, �12

months, n � 67) and short-term survival (overall survival, �12

months, n � 66). A summary of patient characteristics of long-

FIG 1. The schematic diagram for data processing and analysis.

Table 1: Summary of patient characteristics of long- and short-
term groups

Group
Sex

(Male/Female)

Age
(Median,

Range) (yr)

Overall Survival
(Median, Range)

(days)
Long-term group 40:27 59, 14�81 600, 370�1731
Short-term group 43:23 64, 17�85 145, 16�357
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term and short-term groups is shown in Table 1. All MR images

were acquired before treatment, and the patients were subse-

quently diagnosed as having GBM on the basis of histologic

examination. Because all the patient data in TCGA were de-

identified, an institutional review board approval was waived.

Image Preprocessing
All MR images in this study were acquired in axial sections. The

postcontrast T1WI was acquired with a spin- or gradient-echo

sequence with the following range of parameters: TE/TR �

2.48�20/7.62�880 ms, section thickness � 1�6 mm, spacing

between sections � 0.8�7.8 mm, and matrix size � 256 � 256 or

512 � 512.

In light of the different imaging parameters, we preprocessed

the MR images to standardize the data analysis across patients. On

the basis of the contrast-enhanced regions of the postcontrast

T1WI, ROIs were manually contoured by 2 neuroradiologists

with a custom-developed package in Matlab R2012b (Math-

Works, Natick, Massachusetts). The 2 neuroradiologists had 23

and 8 years of MR imaging interpretation experience. During the

delineation, they were blinded to all the clinical information and

delineated the contours of the tumors from each patient slice by

slice, independently. Then, they worked together on the outlined

contours of each patient via a consensus reading. Finally, matrices

above 256 � 256 were resampled to this resolution, to avoid the

effect of resolution on the textural analysis.17

Heterogeneity Measurements
To alleviate the effect of variations in the section thickness and

spacing on the feature analysis, we extracted 2D texture features

from each tumor ROI. In this study, the image section for the 2D

analysis was judged by the maximum tumor area. Then, the 2D tex-

ture features were computed to measure the heterogeneity of the

tumors.18 According to the different scales, we used the CM, RLM,

and histogram-based features to quantify the local,15 regional,17,19

and global heterogeneity in the ROIs of the tumor.20

The CM features proposed by Haralick et al21 describe the

arrangements of pixel pairs within 2D images.22 They are defined

to measure the relations between 2 neighboring pixels and reflect

the local heterogeneity of the tumor region.15 In this study, for

each 2D tumor region, 4 CMs were constructed along 4 directions

(0°, 45°, 90°, and 135°). For each CM, Haralick et al proposed 13

features, named “Haralick features.” Thus, the 13 Haralick fea-

tures were successively extracted from 4 directions. The mean and

range (the difference between the maximum and minimum val-

ues) of the 13 features were calculated to keep the features rota-

tionally invariant.

The RLM features essentially describe the distribution of

the gray-level runs, in which the run length is defined to mea-

sure the contiguous gray-levels along a specific orienta-

tion.19,23 Thus, the RLM features can characterize groups of

pixels within the tumor to represent the regional heterogeneity

information.17,19 In the tumor region, fine textures tend to

have a short run length, while coarser textures would result in

a longer run length. In this study, we calculated the mean and

range of the 11 RLM features over 4 directions (0°, 45°, 90°, and

135°), to constitute the final RLM features.

The histogram shows the number of pixels in the whole image

having the same intensity. The common histogram-based features

include the mean, entropy, uniformity, SD, smoothness, skew-

ness, third-order moment, kurtosis, and so forth.24 These features

represent the statistical properties of an image and further de-

scribe the heterogeneity of the entire tumor.20,25

We used 26 CM features, 22 RLM features, and 8 commonly used

histogram-based features, taken together, to measure GBM hetero-

geneity on different scales (Table 2). In this study, all the features were

extracted with a custom-developed package in Matlab R2012b.

Classification Performance with Different Texture Types
To evaluate the performance of different texture types in the dif-

ferentiation task, we performed an SVM classifier with a radial

basis function kernel implemented by the LIBSVM package (https://

www.csie.ntu.edu.tw/�cjlin/libsvm/).26 After all the features

were normalized to [�1, 1], the grid search method was used to

search for the optimal parameter combination of an SVM clas-

Table 2: Texture features extracted from ROIs of GBM images
Feature Group/

Feature ID Description
CM features

CM1 Energy
CM2 Contrast
CM3 Correlation
CM4 Variance
CM5 Inverse difference moment
CM6 Sum average
CM7 Sum variance
CM8 Sum entropy
CM9 Entropy
CM10 Difference variance
CM11 Difference entropy
CM12 Information measures I of correlation
CM13 Information measures II of correlation
RCM1–RCM13 Range of corresponding features listed

above
RLM features

RLM1 Short-run emphasis
RLM2 Long-run emphasis
RLM3 Gray-level nonuniformity
RLM4 Run-length nonuniformity
RLM5 Run percentage
RLM6 Low gray-level run emphasis
RLM7 High gray-level run emphasis
RLM8 Short-run low gray-level emphasis
RLM9 Short-run high gray-level emphasis
RLM10 Long-run low gray-level emphasis
RLM11 Long-run high gray-level emphasis
RRLM1–RRLM11 Range of corresponding features listed

above
Histogram-based

features
H1 Mean
H2 Entropy
H3 Uniformity
H4 SD
H5 Smoothness
H6 Skewness
H7 Third-order moment
H8 Kurtosis

Note:—ID indicates identification; RCM, range of co-occurrence matrix; RRLM, range
of run-length matrix; H, histogram.
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sifier.27,28 Then, a 10-fold cross-validation was implemented

to extensively evaluate the performance of different feature

combinations.29

After classification, the results, namely the sensitivity, specific-

ity, accuracy, and area under the curve of the receiver operating

characteristic (ROC), were calculated to evaluate the classification

performance.

Feature Selection for the Optimal Feature Subset
Considering that the correlation and redundancy among the fea-
tures would inevitably affect the classification performance,30-32

the RFE-SVM method was used to first find the optimal feature

subset and then verify its overall performance in the prediction.

According to feature selection and ranking, the optimal feature

subset, containing the first N features with the highest mean ac-

curacy, was finally determined with the SVM and a 10-fold cross-

validation. On the basis of the optimal feature subset, we can build

a model to predict the survival stratifications of patients with

GBM.

Survival Analysis
On the basis of the model built in the above section, the survival

stratifications of all 133 patients with GBM were estimated. Then, a

Kaplan-Meier plot and a log-rank analysis

were used to assess the model, performed

by SPSS software, Version 22.0.00 (IBM,

Armonk, New York).

RESULTS
Classification Performance with
the Different Texture Types
The performances of the different com-

binations of the 3 texture types (CM,

RLM, and histogram) in the differentia-

tion of patients with GBM with long-

and short-term survival times were

compared (Table 3). When used alone,

the CM was the best texture type for classification perfor-

mance. When combined in pairs, the combination of CM and

RLM obtained the best classification performance. When all

the features were used, the specificity, accuracy, and area under

the curve reached the highest value.

The ROC curves of the feature combinations with the SVM

classifier were plotted, as shown in Fig 2. Consistent with re-

sults shown in Table 3, any combination including CM or CM

alone demonstrated a better classification performance. Fur-

thermore, the combination of the 3 texture types showed the

best performance.

Optimal Feature Subset Selection with RFE-SVM
Applying the RFE-SVM method on all 56 features, the selection

process for the optimal feature subset and the corresponding

ROC curve are shown in Fig 3. Finally, the feature subset consist-

ing of 43 top-ranked features was selected as the optimal subset,

which obtained the optimal classification performance (sensi-

tivity � 0.7910, specificity � 0.7727, accuracy � 0.7820, area

under the curve � 0.8104). The relative ranking orders of all

features in the optimal subset are shown in Fig 4. The length of

each bar represents the iteration number at which the feature

was rejected by RFE. The longer the bar is, the higher the fea-

ture ranks. Furthermore, the top 3 features, short-run high

gray-level emphasis (RLM9), variance (CM4), and long-run

high gray-level emphasis (RLM11), can obtain a relatively sta-

ble accuracy (0.7519).

Survival Analysis
On the basis of the model built by the optimal feature subset, the

survival stratifications (long- and short-term survival groups) of

133 patients with GBM were estimated. The Kaplan-Meier plot of

the 2 groups indicated that their survival difference was signifi-

cant (log-rank test, P � .001), as shown in Fig 5.

DISCUSSION
Tumor heterogeneity is one of the major causes of treatment re-

sistance in GBM,33 directly affecting the prognosis.8,34 On the

basis of the MR imaging data from the TCGA, the heterogeneity

was first characterized by texture features on different scales. On

this basis, the present study investigated the impact of heteroge-

neity on survival time and obtained an optimal feature combina-

tion for survival stratification. The results indicate that CM and

FIG 2. ROC curves of the different feature combinations with the
SVM classifier (CM, RLM, and Hist stand for the co-occurrence matrix,
run-length matrix, and histogram-based texture types, respectively).

Table 3: The performance of feature combinations with the SVM classifier in differentiating
long- and short-term survival time

Feature Set NF
a

SVM

Sensitivity Specificity Accuracy AUC
CMb 26 0.7910 0.6667 0.7293 0.7786
RLM 22 0.7313 0.4242 0.5789 0.5880
Histogram 8 0.6866 0.2576 0.4737 0.4326
CM � RLMb 48 0.7761 0.7727 0.7744 0.8053
CM � histogram 34 0.7761 0.6818 0.7293 0.7782
RLM � histogram 30 0.8060 0.3788 0.5940 0.6223
CM � RLM � histogramc 56 0.7761 0.7879 0.7820 0.8057

Note:—AUC indicates area under the curve.
a The number of features in each subset.
b The best classification when the feature type is used alone or pair-combined.
c The best classification result when all features are used.

1698 Liu Sep 2017 www.ajnr.org



RLM type features, which reflect the local and regional heteroge-

neity, play an important role in survival stratification. Further-

more, regional features that emphasize high gray-level distribu-

tion ranked higher in the optimal feature subset and contributed

more to prognosis.
As a powerful description of the spatial distribution of the

pixel intensity within images, the texture features are sensitive

to the reflection of tissue types and pathologic properties.35,36

Among the texture features, the first-order features were de-

rived from the gray-level histogram. They mainly take into

account the frequency of the appearance of each gray-level

within the tumor, rather than the relative spatial position of

pixels (eg, histogram-based features used in this study). Sec-

ond-order texture features describe the gray-level relationship

of the nearby pixel pairs, thereby re-

flecting the spatial distribution of pix-

els in a local way. The CM used in this

study is a typical second-order texture

description method. The high-order fea-

tures measure the regional distribu-

tions (ie, groups of pixels with the

same gray-level values). The RLM is a

high-order texture method designed to

characterize the regions with the same

gray-level in the tumor. Therefore, the

CM, RLM, and histogram features

used in this study can characterize the

local,15 regional,17,19 and global hetero-

geneity20,25 of GBM on different scales.

Only the features reflecting GBM heter-

ogeneity were included in the present

study because the present study aimed to

investigate the impact of the different

heterogeneous characterizations on the

prognosis, though it may result in a

lower accuracy in differentiating the

long- and short-term groups.

Although texture features are capable of characterizing the

gray-level heterogeneity of GBM, different types of textures

may make different contributions to the survival stratification.

The results (as shown in Table 3 and Fig 2) indicated that local

heterogeneity, identified by the CM features, played a key role

in the survival stratification, while global heterogeneity (histo-

gram features) had little effect. Although the classification per-

formance using the RLM alone was not good, its performance

improved greatly when it was combined with the CM features.

Taken together, the local and regional heterogeneity may have

more impact on the prognosis. Meanwhile, the combination of

multiple types of features might complement each other, thus

improving the classification performance.

FIG 3. Optimal feature subset selection. A, Selection process of the optimal feature subset with RFE-SVM. B, ROC curve of the optimal feature
subset selected.

FIG 4. Ranking orders of all features in the optimal subset. The length of each bar represents the
iteration number at which the feature was rejected by the RFE.
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Except for the evaluation of the different texture types on

the prognosis, the ranking orders and optimal subset of all

features were calculated on the basis of the maximum accuracy

from the SVM. The top 10 features include 7 RLM features and

3 CM features, supporting the conclusion of the texture type

analysis in the last paragraph. Although the CM features dem-

onstrate a high performance compared with other texture

types, the RLM features performed better in the optimal sub-

set. This is probably derived from the RLM properties, which

reflect relatively moderate (regional) heterogeneity informa-

tion. In particular, all 6 RLM features emphasized high gray-

levels (RLM7, RLM9, RLM11, and their ranges) ranked in the

top 7 of the optimal subset, indicating that the tumor regions

with high gray-levels or intensity in postcontrast T1WI might

contribute more to the prognosis of patients with GBM. This

may also indicate that the further segmentation of the active

tumor into multiple subregions spatially and the prognosis

prediction within these subregions may improve the predictive

performance.

Some limitations still need further investigation. First, as a

retrospective study, the MR imaging data were acquired on a va-

riety of imaging platforms with different protocols, imaging pa-

rameters, and gadolinium-based contrast agents. Second, we di-

vided all the patients into short- and long-term survival with the

criterion of 12 months. If more patients with GBM are recruited,

a more detailed classification (eg, 6-, 12-, and 24 months) would

be further performed. Third, the demographic and treatment in-

formation of the patients with GBM

might also influence the survival. The

adjustment for the demographic and

treatment factors should be considered

in future studies. Fourth, considering

the large section thickness and spacing

in most data, we used the 2D texture

analysis instead of the 3D analysis,

which may result in certain information

missing. Finally, only a portion of the

subjects in TCGA had multimodality

data. Because it was a primary study, our

aim was to examine the relationship be-

tween GBM heterogeneity characterized

by texture features in postcontrast T1WI

and survival time. Further study may

benefit from the combined use of more

anatomic and functional images.

CONCLUSIONS
We used the postcontrast T1WI of pa-

tients with GBM from the TCGA to

investigate the impact of different het-

erogeneous characterizations on sur-

vival stratification, characterized by

texture features on different scales.

The results of our study indicated that

local and regional heterogeneity may

play an important role in the survival

stratification.
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