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BRIEF/TECHNICAL REPORT
INTERVENTIONAL

Integrating 3D Rotational Angiography into Gamma Knife
Planning

X H. Hasegawa, X S. Hanakita, X M. Shin, X M. Kawashima, X T. Kin, X W. Takahashi, X M. Shojima, X A.K. Nomoto, X S. Aoki, and
X N. Saito

ABSTRACT
SUMMARY: 3D rotational angiography provides remarkable spatial resolution for cerebrovascular disorders; however, it cannot be
integrated directly into gamma knife planning due to the discrepancy of DICOM “tag” information, and most physicians still cannot
benefit from 3D rotational angiography. Here, we describe a simple and easy technique to enable the integration of 3D rotational
angiography.

ABBREVIATIONS: GKRS � gamma knife stereotactic radiosurgery; 3DRA � 3D rotational angiography

Gamma knife stereotactic radiosurgery (GKRS) is an image-

guided radiation therapy characterized by its high geometric

accuracy; thus, no treatment margin is usually required when cir-

cumscribing the target. This feature, in conjunction with its sharp

dose fall-off, enables high-dose irradiation in a single session;

however, successful radiosurgery is highly dependent on the qual-

ity of radiographic images used.

GKRS has been accepted as one of the standard therapeutic

modalities for small-to-medium arteriovenous malformations.1-9

Currently, biplanar DSA and CT angiography or MR imaging or

both are commonly used in most institutions.10-15 Recently, ad-

vances in modern endovascular suites and newer generation flat

panel detectors with C-arm systems have enabled acquisition of

3D rotational angiography (3DRA), providing remarkable spatial

resolution for cerebrovascular disorders. Indeed, 3DRA is begin-

ning to be used in the treatment planning of other modalities of

stereotactic radiation therapy, including CyberKnife (Accuray,

Sunnyvale, California), XKnife (Integra LifeSciences, Plainsboro,

New Jersey), and Trilogy (Varian Medical Systems, Palo Alto,

California), contributing to improved accuracy of the treatment

planning.16-18 One remaining issue is that 3DRA cannot be inte-

grated directly into GKRS planning because the planning software

(Leksell GammaPlan; Elekta Instruments, Stockholm, Sweden)

does not accept 3DRA. Moreover, very few studies have described

the effectiveness of 3DRA on GKRS planning, though they do not

state a detailed integration method.19-21 Thus, most physicians

still cannot benefit from 3DRA. Here, we show a very simple

method to integrate 3DRA into GKRS planning.

Techniques
Before the day of treatment, we usually perform MR imaging

(mainly time-of-flight MR angiography, supplemented by T2 and

gadolinium-enhanced T1 images) for preplanning. As in the usual

preparations for GKRS, the Leksell frame (Elekta Instruments) is

set on the patient’s head with the patient under sedation with local

anesthesia. Then, the patient is transferred to the angiographic

suite (Allura Xper FD20/10; Philips Healthcare, Best, Nether-

lands). Along with conventional DSA, 3DRA is acquired using the

programmed acquisition protocol (3DRA mode). The amount of

contrast medium used and preinjection delay are individually de-

termined by neuroendovascular surgeons; briefly, 1–3 mL/s of

contrast medium is continuously injected with a 1.5- to 2.0-sec-

ond preinjection delay during the rotation of the C-arm. Because

3DRA could be easily coregistered to stereotactic CT if 3DRA

contained enough bony tissue, a large-sized detector is generally

preferred for precise image coregistration (Fig 1A). On the con-

trary, the smallest 8-inch detector could be used when the nidus is

located near the skull base (basal ganglia, posterior fossa, and so

forth) because acquired images spontaneously contain a large

portion of bony tissues (Fig 1B). The obtained volume dataset is

automatically transferred to the preinstalled workstation (Xtra-

Vision; Philips Healthcare), with which further reconstruction is

performed with a 2563- or 5123-resolution voxel matrix in a
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planned cube-shaped FOV with preset side lengths of 34.96,

52.18, 69.92, or 104.36 mm. We mostly use a 69.92-mm side-

length cube with a 2563-resolution voxel matrix to maintain

the balance between spatial resolution and contrast resolution;

thus, spatial resolution is roughly calculated as 0.27 mm. Then,

the DICOM “tag” technique is corrected from XA into CT

in our software so that the GammaPlan can recognize the

3DRA properly as a CT-like image. Once the 3DRA is installed

in the GammaPlan, image coregistration to stereotactic CT

will be automated using the preinstalled coregistration func-

tion. A step-by-step instruction manual to integrate 3DRA is

shown in On-line Figure. Detailed case illustrations are shown

in Fig 2.

DISCUSSION
With the above-described simple contrivance, 3DRA can readily

be used for GKRS planning. The strength of this technique is its

accessibility. GammaPlan cannot directly accept 3DRA because of

the discrepancy of DICOM tag information; accordingly, we must

address this issue. No changes are required in the geometric or

patient information; thus, the image quality itself is intact. Be-

cause 3DRA is a CT-like image, being characteristic of the finest

spatial resolution for high-contrast objects with poor contrast res-

olution and thus having many features common to CT,22,23 ste-

reotactic CT would be the best reference image for the coregistra-

tion.18 By means of high-definition images, physicians can not

only reduce unwanted waste radiation to the surrounding brain

tissues but also enable a safe prescription of high radiosurgical

doses, enough to obliterate the nidus, which might theoretically

lead to improvement in the obliteration rate as well as a decrease

in radiation-induced adverse events. However, this article is only

a technical report, and the actual clinical outcomes should be

further examined.

Although 3DRA mode is preferred in our institution, contrast-

enhanced conebeam CT with a small targeted FOV (high-resolu-

tion XperCT mode; Philips Healthcare) is also available in our

angiographic suite. This acquisition mode provides superior spa-

tial resolution with a long acquisition time (20 seconds), using a

slow C-arm rotation and an 8-inch

detector, which might be better for

very small arteriovenous malforma-

tions. However, use of the high-resolu-

tion XperCT mode might raise a con-

cern about coregistration. Notably,

images containing a large portion of the

cranium as well as skull base bone are

important for precise coregistration; the

use of a smaller detector contributes to

further increased spatial resolution but

also loses images of the surrounding

cranium and skull base, leading to dif-

ficulty in coregistration. We usually

perform stereotactic CT after finishing

angiography so that the contrast me-

dium remaining in the blood vessels

can provide additional information of

vascular anatomies, which may en-

hance the quality of image coregistration. Further research is

desirable to examine the coregistration accuracy to ensure the

quality of the prescription of the therapeutic radiation dose.

Moreover, when a nidus receives blood flow from �2 ves-

sels, the precise nidus contour is shown as the summation of

parts of the nidus obtained by cannulation in each vessel. Thus,

it is quite important to perform 3- or 4-vessel angiography and

judge the involvement to avoid underestimation of the whole

nidus angioarchitecture.

Although 3DRA provides superior resolution for angio-

architectures of vascular lesions, we recommend creating ra-

diosurgical plans by meticulously comparing all the available

imaging modalities. Particularly, MR imaging exhibits excel-

lent contrast resolution and provides a better understanding of

the surrounding functional brain anatomies, and DSA enables

surgeons to instinctively recognize a spatial expanse of the ni-

dus. Notably, surgeons should manipulate the DICOM header

at their own risk because carelessly manipulating DICOM

could spoil the quality of the images. Meticulous care must be

taken not to change important information in the DICOM

header other than technique because it could alter spatial rela-

tionships. Given the above reasons, 3DRA should not be used

as a main technique but as reference information during radio-

surgical planning.

CONCLUSIONS
We describe a simple, easy-to-access technique to enable inte-

gration of 3DRA into GKRS planning, which could provide the

highest resolution for angioarchitectures of vascular lesions.

The present method remains preliminary; thus, the created

treatment plans should be validated in comparison with the

conventional planning method. Further research is desirable to

assess the effect of this technique on the actual radiosurgical

outcomes.

Disclosures: Hirotaka Hasegawa—RELATED: Grant: JSPS KAKENHI, Comments: grant
No. JP17K16628.

FIG 1. 3D rotational angiography images obtained with a large (A) and an 8-inch detector
(B) are coregistered to each stereotactic CT image on treatment-planning software
(GammaPlan).
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