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ABSTRACT

BACKGROUND AND PURPOSE: Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in
many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms

from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose.

MATERIALS AND METHODS: A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All
were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35
subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types
(vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation
cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D
deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity,
precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical

3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts.

RESULTS: Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%–99.1%). No residual signal from osseous
structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity

compared with 37% (23/62) of the 3D rotational angiographies.

CONCLUSIONS: Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions
without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation
exposure required to obtain clinically useful 3D rotational angiography.

ABBREVIATIONS: CNN � convolutional neural network; 3DRA � 3D rotational angiography; DLA � deep learning angiography; GPU � graphics processing unit

Cerebrovascular diseases are common causes of morbidity and

mortality in the adult population worldwide.1-3 Most cere-

brovascular diseases are found during routine brain imaging with

CT or MR imaging; however, 2D-DSA remains the criterion stan-

dard for their accurate angiographic evaluation and characteriza-

tion, in particular for arteriovenous malformations,4 cerebral

aneurysms,5,6 and dural arteriovenous fistulas.7 Additional 3D

rotational angiography (3DRA) is used to improve the visualiza-

tion and spatial understanding of vascular structures during the

diagnostic work-up of these conditions. Currently, with many

angiographic systems, obtaining a 3DRA still requires 2 rotational

acquisitions, one without injection of contrast (mask run) and

one during injection of contrast (fill run). These 2 datasets are

used to compute log-subtracted projections, which are then used

to reconstruct a subtracted 3DRA volume.8,9

Machine learning is a discipline within computer science,

closely related to statistics and mathematic optimization, that

aims to learn patterns directly from a large set of examples that

demonstrate a desired outcome or behavior without the need of

explicit instructions.10 In the context of medical imaging, ma-

chine learning methods have been investigated since the early

1990s, initially for computer-aided detection and diagnosis in

mammography and pulmonary embolism11-14; however, recent

advances in deep learning15 (ie, a specific machine-learning tech-
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nique) have demonstrated unprecedented performance in many

applications, including detection of diabetic retinopathy16 and

breast cancer,17,18 quantitative analysis of brain tumors in MR

imaging,19,20 computer-aided detection of cerebral aneurysms in

MR angiography,21 and computer-aided detection and classifica-

tion of thoracic diseases.22,23

With recent advances in deep learning and the universal ap-

proximation properties of feedforward neural networks,24,25 it is

hypothesized that a deep neural network is capable of computing

cerebral angiograms with only the vascular information con-

tained in the fill scan of a 3DRA examination acquired with a

C-arm conebeam CT system. Potential benefits of eliminating

the mask scan include the following: 1) reduction of inter-

sweep patient motion artifacts caused by the misregistration of

the mask and fill scans, and 2) radiation dose reduction by at

least a factor of 2.

The purpose of this work was to develop and test the capability

of a deep learning angiography (DLA) method based on convo-

lutional neural networks (CNNs) to generate subtracted 3D cere-

bral angiograms from a single contrast-enhanced examination

without the need for a mask acquisition.

MATERIALS AND METHODS
In the following sections, the patient inclusion criteria and image-

acquisition protocols are first presented, followed by a description

of the datasets and methods used to train the DLA model. Finally,

the image analysis and statistical analysis are described. The over-

all study schema is shown in Fig 1.

Patient Cohort
All studies were Health Insurance Portability and Accountability

Act– compliant and performed under an institutional review

board–approved protocol. Clinically indicated rotational angiog-

raphy examinations for the assessment of cerebrovascular abnor-

malities of 105 patients, scanned from August 2014 through April

2016, were retrospectively collected. Cases were selected in a ran-

dom fashion to reduce the potential bias in patient selection. It

was thought that the randomized selection during this period

would result in a dataset that was representative of the varieties of

conditions that are referred for angiographic studies.

Imaging Acquisition and Reconstruction
All subjects were imaged with a standard 3DRA data acquisition

protocol using a C-arm conebeam CT system (Axiom Artis

zee; Siemens, Erlangen, Germany). The protocol consists of 2

conebeam CT acquisitions (ie, mask and fill acquisitions) with

172 or 304 projection images for a 6- or 13-second rotation time,

respectively. Angular coverage for all data acquisitions was 260°,

with a tube potential of 70 kVp, detector dose per projection im-

age equal to 0.36 �Gy per frame, and angular increments of 1.52°

or 0.85° per frame. Iodinated contrast medium was injected into

the proximal internal carotid artery or vertebral artery just after

the initiation of the fill acquisition. For each subject, “native fill”

and subtracted 3D volumes were reconstructed using the vendor’s

proprietary software (InSpace Reconstruction, syngo Workplace;

Siemens). All reconstructions were performed using the standard

filtered back-projection with edge enhancement, normal image

characteristic, full FOV (238 � 238 mm2) with a 512 � 512 image

matrix, and 0.46-mm image thickness/increment for a 0.46-mm

isotropic voxel size. The effective dose for the acquisition proto-

cols used in this study was 1.1 mSv for the 6-second rotation

acquisition and 1.8 mSv for 13-second rotation acquisition, which

is similar to the dose level reported by others.26,27

Training Dataset
A training dataset consisting of 13,790 axial images from 35 pa-

tients with �150 million labeled voxels was generated using the

information from both the conebeam CT image of the fill scan

and the subtracted images from the subtracted conebeam projec-

tion data. For each patient in the training dataset, vasculature

extraction was performed by a manual thresholding of the sub-

tracted images. The selection of the threshold was based on the

subjective assessment of complete vasculature segmentation

while excluding image artifacts and background noise, with

threshold values typically in the range of 500 –700 HU. Large

vessels, specifically the internal carotid artery, middle cerebral

artery, anterior cerebral artery, distal branches of the middle

cerebral artery and anterior cerebral artery, vertebral artery,

and posterior cerebral artery were isolated through 3D con-

nected component analysis.28 Small regions not connected to a

large vessel were assumed to be image artifacts and were ex-

cluded from the final vasculature volume. After the previous

steps, in the event of remaining intersweep patient motion and

streak artifacts, the vasculature volume was subjected to man-

ual artifact removal.

The extraction of bone tissue was performed by subtracting

the vasculature volume from the contrast-enhanced images (ie,

fill scan) and performing manual thresholding and connectivity

analysis (like that of vasculature extraction) in the resulting im-

ages. Only connected regions including the skull and mandible

were considered bone. The remaining streaking artifacts and

metal implants in the bone volume were manually removed. Fi-

nally, the soft-tissue class was extracted by thresholding the fill

images with thresholds of �400 to 500 HU and applying a mor-

phologic erosion.

The procedure described above generates approximately 0.28

million, 6 million, and 15 million voxels of vasculature, bone, and

soft tissue, respectively, for each patient. To mitigate the class

imbalance (ie, different number of labeled voxels per tissue class)

and reduce redundant training data by a similarity of adjacent

voxels, we included only 4.3 million labeled voxels per patient for

training, consisting of all vasculature voxels and an equal number

FIG 1. Overall study schema.

AJNR Am J Neuroradiol 39:916 –22 May 2018 www.ajnr.org 917



of randomly extracted bone and soft-tissue voxels (ie, random

undersampling).29

Validation and Testing Datasets
A validation dataset and a testing dataset were created using the

remaining image volumes from 70 subjects divided into 8 exam-

inations for the validation dataset and 62 examinations for the

testing dataset. These datasets were created with the same proce-

dure used to generate the training dataset; however, the tissue

labels were constrained to a region only containing the following

anatomy: ICA, middle cerebral artery, anterior cerebral artery,

distal branches of the middle cerebral artery and anterior cerebral

artery, vertebral artery, posterior cerebral artery, the base and an-

terior aspect of the skull, temporal bone, otic capsule, and sur-

rounding soft tissue as opposed to the entire head in the training

dataset. Each examination in the validation and testing dataset

had approximately the same number of labeled voxels for each

tissue class.

Neural Network Architecture and Implementation
A 30-layer CNN30 with a ResNet architecture,31,32 as shown in Fig

2, was used. All convolutional layers except the input layer used

3 � 3 filters with rectified linear units for activation function. The

input of the network was a 41 � 41 � 5 volumetric image patch

extracted from the contrast-enhanced image volume; the network

output consisted of a 3-way fully connected layer with softmax

activation. Training and inference were performed on a voxelwise

basis, in which the input volumetric image patch was labeled

with the tissue class of its central voxel. The DLA model was

implemented using Tensorflow (Google, Mountain View, Cal-

ifornia). Network parameters were initialized using the vari-

ance scaling method33 and trained from scratch using a syn-

chronous stochastic gradient descent method with a batch size

of 512 volumetric image patches using 2 GTX 1080 Ti

(NVIDIA, Santa Clara, California) graphics processing units

(GPUs) (256 image patches per GPU). The time required to

process 1 case in this study varied from 1 to 3 minutes, depend-

ing on the size of the image volume.

Each tissue class had equal probability of being included in

a single batch (ie, data resampling), to account for class imbal-

ance.29 The learning rate was initially set to 1 � 10�3 with a

momentum of 0.9. The learning rate was reduced to 1 � 10�4

and 1 � 10�5 after 1 and 1.5 epochs, respectively. The valida-

tion dataset was used only to monitor the convergence and

generalization error during model training. Early stopping was

used when the validation error reached a plateau at 2 � 105

iterations.

Statistical Analysis
The trained DLA model was applied for the task of tissue classifi-

cation in the validation and testing cohorts, consisting of image

volumes from 8 and 62 subjects, respectively. The final vascula-

ture tissue class was used to generate the 3D-DLA images. To

quantify the generalization error of the trained model, we evalu-

ated the vasculature classification for each labeled voxel in the

reference standard for the validation and testing datasets. Two-

by-two tables were generated for each patient, and accuracy, sen-

sitivity (also known as recall), positive predictive value (also

known as precision), and Dice similarity coefficients were calcu-

lated. The 95% CIs for each performance metric were also re-

ported. Finally, the clinical 3DRA and the 3D-DLA images were

subjected to a qualitative assessment for the presence of inter-

sweep motion artifacts, and results were expressed as frequencies

and percentages.

FIG 2. Neural network architecture.
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RESULTS
Contrast-enhanced image volumes from 105 subjects (53.3 �

13.5 years of age) who underwent clinically indicated rotational

angiography examinations for the assessment of cerebrovascular

abnormalities were used in the study. Contrast medium was in-

jected via the proximal ICA in 89 patients (85%) and via the ver-

tebral artery in 16 patients (15%). Average and 95% CIs for vas-

culature classification accuracy, sensitivity, positive predictive

value, and Dice similarity coefficient in the testing dataset were

98.7% (95% CI, 98.3%–99.1%), 97.6% (95% CI, 96.5%–98.6%),

98.5% (95% CI, 97.6%–99.3%), and 98.0% (95% CI, 97.4%–

98.7%), respectively. The Table summarizes the performance

metrics for vascular classification in the training, validation, and

testing datasets.

No residual signal from osseous structures was observed for

any testing cases generated using 3D-DLA except for small regions

in the otic capsule and nasal cavity compared with 37% (23/62) of

the 3DRA cases that presented residual bone artifacts. Figure 3

shows a comparison of MIP images derived from 3DRA and the

3D-DLA datasets of a patient evaluated for posterior cerebral cir-

culation. One can see how residual bone artifacts induced by in-

tersweep patient motion are greatly reduced in 3D-DLA, improv-

ing the conspicuity of small vessels. Similarly, Fig 4 shows lateral

and oblique MIP images derived from 3DRA and the 3D-DLA

datasets of a patient evaluated for anterior cerebral circulation.

Results show reduced residual bone artifacts for 3D-DLA images,

in particular for the anterior aspect of the skull and the temporal

bone. Figure 5 shows a comparison of volume-rendering images

for both the clinical 3DRA and the 3D-DLA of a patient with a

small aneurysm in the anterior communicating artery and a large

aneurysm in the middle cerebral artery bifurcation.

DISCUSSION
In this work, a deep CNN was used to learn generic opacified

vasculature from contrast-enhanced C-arm conebeam CT data-

sets to generate a 3D cerebral angiogram, without an explicit def-

inition of cerebrovascular diseases or specific vascular anatomy.

The datasets used for model training, validation, and testing were

created by applying simple image-processing techniques with

minimum manual editing for a total of 82,740 subtracted and

contrast-enhanced conebeam CT images from 105 subjects. The

proposed DLA method was used to improve image quality by

reducing image artifacts caused by misregistration of mask and fill

scans in 3DRA, in addition to enabling potential radiation dose

reduction.

Many angiographic systems require 2 rotational acquisitions

(mask and fill) for reconstruction of a subtracted 3DRA. Others,

using vascular segmentation and thresholding algorithms, allow a

3D vessel reconstruction without the availability of a mask. Those

that require 2 rotations are susceptible to artifacts caused by po-

tential misregistrations of the mask and fill projections. Those

that require the use of segmentation and thresholding algorithms

may be subject to errors related to too little contrast intensity

and/or improper segmentation. Together, these techniques re-

main the standard of care for the diagnosis and treatment plan-

ning of cerebrovascular diseases. Misregistration artifacts arise in

conventional 3DRA imaging primarily due to the following: 1)

small variations in the angular range differences occurring from

one rotational acquisition to another, and 2) potential patient

motion in both mask and fill runs. The mask-free DLA method,

by eliminating the need for one of the rotational acquisitions, in

theory, would reduce the chance of motion from both mechanical

instability and patient motion and effectively reduce the radiation

Summary of performance metrics for vascular classification in the training, validation, and testing datasets

Dataset

Sensitivity (Recall)

TP
TP + FN

PPV (Precision)

TP
TP + FP

DSC (F1 Score)

2TP
2TP + FP + FN

Accuracy

TP + TN
TP + TN + FP + FN

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI
Validation (n � 8) 97.8% (96.9%–98.7%) 97.2% (96.4%–98.1%) 97.5% (97.0%–98.0%) 98.4% (98.0%–98.7%)
Testing (n � 62) 97.6% (96.5%–98.6%) 98.5% (97.6%–99.3%) 98.0% (97.4%–98.7%) 98.7% (98.3%–99.1%)

Note:—TP indicates true-positive; FN, false-negative; PPV, positive predictive value; FP, false-positive; TN, true-negative; F1, Dice similarity coefficients.

FIG 3. Comparison of anterior and lateral views of MIP images
derived from 3DRA (A) and 3D-DLA (B) datasets of a patient eval-
uated for posterior cerebral circulation. Residual bone artifacts
induced by intersweep patient motion are greatly reduced in 3D-
DLA, improving the conspicuity of small vessels as indicated by the
white arrowheads.
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dose required to obtain a 3DRA by half in those systems that

require 2 rotations.

In the context of medical imaging, machine-learning methods

have been investigated since early 1990s11-14; however, the recent

unprecedented performance of deep learning has made major

advances in solving very difficult problems in science that were

thought to be intractable when approached by other means.34,35

In addition to clever mathematical techniques and the availability

of large annotated datasets, many authors recognize that the mas-

sively parallel computing capabilities of GPUs have played a key

role in the success of deep learning applications, providing accel-

erations of 40� to 250� compared with multicore and single-

core CPUs.10,15 For example, the training procedure of the net-

work used in this study took approximately 23 hours. This

training procedure could have taken 4 –5 weeks if only a multicore

CPU computation architecture was used, making this application

impractical. Fortunately, the training procedure is performed off-

line, it only needs to be done once, and GPU computing is already

widely available within the medical imaging community or acces-

sible via cloud computing services such as the Google Cloud Plat-

form (https://cloud.google.com/) or the Amazon Web Service

(https://aws.amazon.com/). Also, many standard open-source li-

braries used for deep learning applications are highly optimized to

be used in conjunction with GPUs.

Once the parameters of the model have been learned, the pro-

cess of analyzing new data that were not used for training the

model (ie, inference) can be further optimized for production.

The method proposed in this study uses a voxelwise training and

inference in which the input of the network is a small image region

of 41 � 41 � 5 voxels around the voxel of interest. This approach

has multiple benefits: 1) Inference can be parallelized; in other

words, the classification of multiple voxels can be performed at

the same time. Therefore, the time required to analyze a new case

is directly proportional to the number of voxels to be classified

(eg, the entire head or a targeted ROI) and the number and gen-

eration of available GPUs. The throughput of the particular re-

search implementation of the CNN model used in this study is

approximately 2500 voxels/s/GPU. 2) This approach results in a

large training dataset consisting of 150 million labeled voxels de-

rived from 13,790 axial images and 35 examinations. In addition

to a large training dataset, it is important to have a large testing

cohort to assure a good model generalization that better reflects

how this technique could be used in practice. Having a large test-

ing cohort also helps to determine whether the training dataset is

large enough to achieve a desired level of performance.

Although DLA images were successfully created for all valida-

tion and testing cases and were subjected to quantitative and qual-

itative image analysis, this study still has some limitations: First,

the use of a very specific image-acquisition protocol and recon-

struction with selective intra-arterial contrast media injection

into the proximal internal carotid artery or vertebral artery may

limit its clinical application. Fine-tuning of the model and clinical

validation with prospective reader studies are required to further

generalize these results to the vasculature of other organ systems,

to complex or uncommon vascular abnormalities, as well as to

angiography studies acquired using different image-acquisition

protocols and modalities (eg, injection of IV contrast media,

time-resolved 3DRA, multidetector CT, and so forth). This kind

of prospective reader study would also overcome the limitation of

the current qualitative evaluation in our study by a single reader

(C.S.).

Second, in this study, a specific type of deep CNN with 30

FIG 4. Comparison of lateral and oblique MIP images derived from
3DRA (A) and 3D-DLA (B) datasets of a patient evaluated for anterior
cerebral circulation. Results show reduced residual bone artifacts for
3D-DLA images, in particular for the anterior aspect of the skull and
the temporal bone.

FIG 5. Comparison of volume-rendering images for both the clinical
3DRA (A) and the 3D-DLA (B) of a patient with a small aneurysm in the
anterior communicating artery and a large aneurysm in the middle
cerebral artery bifurcation as indicated by the arrowheads.
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layers, implemented with a ResNet31,32 architecture, was used to

demonstrate the DLA application. The selection of the well-

known 30-layer ResNet is only because this architecture won an

image contest among computer scientists (ie, ILSVRC 2015 clas-

sification task; http://www.image-net.org/challenges/LSVRC/

2015/results); namely, it outperformed other types of networks

such as AlexNet, VGGNet, and GoogLeNet, for the task of natural

image classification using the ImageNet (http://image-net.org/)

dataset. This type of network architecture has also outperformed

other types of networks in medical imaging classification tasks

with deeper models (ie, increased number of layers) having im-

proved classification accuracy.20,22,32,36 However, it remains un-

known whether other architectures can be used for DLA and what

would be the advantage or disadvantage among all these networks.

Furthermore, additional optimization and fine-tuning of the DLA

model hyperparameters (eg, number of layers, number of hidden

units per layer, learning rate, regularization schemes, and so forth)

are required for optimal on-line implementation and compatibility

with clinical workflow.

Third, even though metallic objects are automatically sub-

tracted in the 3DRA images that were used to create the training

dataset, small movements of metallic implants (eg, an aneurysm

clip or a coil mass) that occur during a cardiac cycle are, in the case

of subtracted images, usually sufficient to create enough misreg-

istration artifacts to allow detection of an implant presence. This

situation, in addition to the high x-ray attenuation and proximity

to vasculature of metallic implants, could result in their imitation

in the final DLA images. The presence of a high-attenuating object

(eg, metal or Onyx [Covidien, Irvine, California]) is also known

to be an intrinsic limitation of mask-free angiography (vendors

who provide a method to obtain 3DRAs without a mask also offer

the ability to perform a mask and fill acquisition in situations in

which metal objects are known to be present), and its clinical

implications need to be addressed with an expert reader study.

CONCLUSIONS
A DLA method based on CNNs that generates 3D cerebral angio-

grams from a contrast-enhanced C-arm conebeam CT without

mask data acquisition was developed. Results indicate that the

proposed method can successfully reduce misregistration arti-

facts induced by intersweep patient motion and, by eliminating

the need for a mask acquisition, can reduce the radiation dose in

future clinical 3D angiography.
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